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Abstract

Background: High-throughput assays are widely used in biological research to select potential targets. One single
high-throughput experiment can efficiently study a large number of candidates simultaneously, but is subject to
substantial variability. Therefore it is scientifically important to performance quantitative reproducibility analysis to
identify reproducible targets with consistent and significant signals across replicate experiments. A few methods exist,
but all have limitations.

Methods: In this paper, we propose a new method for identifying reproducible targets. Considering a Bayesian
hierarchical model, we show that the test statistics from replicate experiments follow a mixture of multivariate
Gaussian distributions, with the one component with zero-mean representing the irreproducible targets.

Results: A target is thus classified as reproducible or irreproducible based on its posterior probability belonging to
the reproducible components. We study the performance of our proposed method using simulations and a real data
example.

Conclusion: The proposed method is shown to have favorable performance in identifying reproducible targets
compared to other methods.

Keywords: Reproducibility, High-throughput experiment, Bayesian classification, Empirical Bayes, Gaussian mixture,
EM algorithm

Background
In biological research, high-throughput assays, such as
microarrays, are widely used to effectively select poten-
tial targets by studying a large number of candidates in
a single experiment. However a high-throughput assay is
often subject to substantial variability. Reproducibility of
high-throughput assays, such as the level of agreement
across replicate samples, test sites or data analytical plat-
forms, is a concerned topic in scientific applications, and
has been discussed in [1] for microarray and [2] for ChIP-
seq technology. Therefore quantitative analysis for the
reproducibility of high-throughput assays is an important
exercise for evaluating the reliability and robustness of
scientific discoveries across studies.
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Reproducibility is nonstandard and unsettled across the
sciences. Goodman et al. [3] provides a survey on the
papers with the word reproducibility included in titles,
abstracts and keywords, and concludes that the interpre-
tation of reproducibility varies among different papers.
Goodman et al. [3] further allies the word reproducibility
in the papers and classifies them into three terms: meth-
ods reproducibility, results reproducibility and inferential
reproducibility. In [3], methods reproducibility refers to
the provision of enough detail about study procedures
and data so the same procedures could, in theory or in
actuality, be exactly repeated, such as [1] and [2]; results
reproducibility refers to obtaining the same results from
the conduct of an independent study whose procedures
are as closely matched to the original experiment as pos-
sible, such as [4] and [5]; Inferential reproducibility refers
to the drawing of qualitatively similar conclusions from
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Table 1 The summary of misclassification rates for the four compared methods under different significant levels (α) and proportions of
reproducible genes (γ )

The proposed Method The copula mixture method [10] Benjamini & Heller method [9] The rank product method [8]

α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05

γ=80% 0.007(0.001) 0.008(0.0012) 0.24(0.0708) 0.271(0.0954) 0.025(0.0022) 0.032(0.0025) 0.197(0.0044) 0.25(0.0036)

γ=60% 0.007(0.0013) 0.008(0.0013) 0.402(0.0022) 0.404(0.0028) 0.022(0.0017) 0.027(0.002) 0.073(0.0031) 0.099(0.0035)

γ=40% 0.005(0.001) 0.006(0.001) 0.568(0.0059) 0.541(0.01) 0.016(0.0017) 0.02(0.0019) 0.02(0.0018) 0.028(0.0021)

γ=20% 0.004(8e-04) 0.004(8e-04) 0.166(0.0026) 0.186(0.0015) 0.01(0.0014) 0.013(0.0015) 0.004(9e-04) 0.006(0.0011)

γ=10% 0.002(6e-04) 0.002(6e-04) 0.058(0.0104) 0.077(0.0075) 0.007(0.001) 0.008(0.0011) 0.002(5e-04) 0.002(6e-04)

γ=5% 0.001(5e-04) 0.001(5e-04) 0.011(0.0038) 0.025(0.0042) 0.004(9e-04) 0.005(0.001) 0.001(4e-04) 0.001(3e-04)

γ=1% 0.001(4e-04) 0(4e-04) 0.001(6e-04) 0.002(9e-04) 0.001(7e-04) 0.002(7e-04) 0.001(4e-04) 0(3e-04)

either an independent replication of a study or a reanalysis
of the original study, such as [1] and [2].
In this paper, our reproducibility analysis aims to iden-

tify reproducible targets with consistent and significant
signals across replicate studies, which belongs to the cat-
egory of inferential reproducibility as defined in [3]. Our
reproducibility analysis is different from meta-analysis,
such as [6] and [7]. Meta-analysis combines the data from
multiple studies to gain extra power for identifying targets
with signals. The identified targets may not necessarily be
significant across all studies.
A few methods have been developed for our repro-

ducibility analysis. Hong et al. [8] proposed a permutation
based method through estimating the empirical distribu-
tion of the rank product. Benjamini &Heller [9] developed
a framework for testing partial conjunction hypothesis
that the discovery is true in at least u studies out of total
n studies. Most recently, [10] proposed a copula mixture
model for estimating the irreproducible discovery rate
across studies.
However all existing methods potentially have limita-

tions. The permutation based method [8] can be compu-
tationally expensive when dealing with a large number of
candidates. Benjamini & Heller method [9] aims at iden-
tifying candidates with reproduced signals in a few but
not all the studies, which is a related but generally weaker

goal than ours. The special case of Benjamini & Heller
method testing whether signals are reproduced in all stud-
ies is identical to using the largest p-value. The copula
mixture [10] method builds the copula mixture using the
rank transformation of the original data, which might
be less powerful than modeling the original data with a
proper probabilistic model as in our proposed method.
A major drawback of both Benjamini & Heller method
[9] and the copula mixture [10] method is that they both
use the significant score of signals, such as p-value, with-
out taking into account the directionality of signals, hence
is prune to selecting candidates with significant scores
but different directions across studies. For example, in
the context of two replicate microarray studies with a
treatment and a control group, consider genes with signif-
icant p-values in both experiments, but are up-regulated
in one study and down-regulated in the other. Although
those genes have inconsistent signals across studies, both
methods will likely classify them as reproducible based on
p-values alone. In contrast, our proposed method mod-
els the test statistics directly and is expected to correctly
classify those genes as irreproducible most of the time.
In this paper, we propose a Bayesian hierarchical model

and show the test statistics from replicate studies can
be approximated by a mixture of multivariate Gaussian
distributions. The proposed Gaussian mixture model

Table 2 The summary of sensitivities for the four compared methods under different significant levels (α) and proportions of
reproducible genes (γ )

The proposed Method The copula mixture method [10] Benjamini & Heller method [9] The rank product method [8]

α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05

γ=80% 0.992(0.0014) 0.991(0.0016) 0.948(0.0881) 0.905(0.1184) 0.97(0.0027) 0.96(0.0031) 0.754(0.0055) 0.687(0.0045)

γ=60% 0.99(0.002) 0.988(0.0021) 0.978(0.0071) 0.956(0.0119) 0.966(0.0028) 0.955(0.0033) 0.878(0.0052) 0.836(0.0058)

γ=40% 0.989(0.0024) 0.987(0.0024) 0.975(0.0069) 0.937(0.0161) 0.962(0.0046) 0.951(0.005) 0.949(0.0045) 0.931(0.0051)

γ=20% 0.985(0.0037) 0.983(0.004) 0.176(0.0149) 0.069(0.0081) 0.949(0.007) 0.937(0.0076) 0.978(0.0046) 0.972(0.0053)

γ=10% 0.984(0.0048) 0.982(0.0051) 0.421(0.1033) 0.228(0.0746) 0.934(0.0098) 0.92(0.0108) 0.985(0.0053) 0.982(0.0055)

γ=5% 0.984(0.0069) 0.983(0.0075) 0.773(0.0741) 0.509(0.0832) 0.925(0.0191) 0.909(0.0195) 0.99(0.0049) 0.988(0.0057)

γ=1% 0.986(0.0176) 0.984(0.0177) 0.907(0.0592) 0.842(0.0882) 0.866(0.0673) 0.844(0.0706) 0.99(0.0163) 0.99(0.0163)
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Table 3 The summary of specificities for the four compared methods under different significant levels (α) and proportions of
reproducible genes (γ )

The proposed Method The copula mixture method [10] Benjamini & Heller method [9] The rank product method [8]

α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1 α=0.05

γ=80% 0.996(0.002) 0.997(0.0017) 0.009(0.0058) 0.025(0.0152) 0.994(0.0021) 0.999(0.001) 1(0) 1(0)

γ=60% 0.998(9e-04) 0.999(7e-04) 0.029(0.0075) 0.057(0.0144) 0.997(0.0015) 0.999(7e-04) 1(0) 1(0)

γ=40% 0.999(7e-04) 0.999(6e-04) 0.07(0.0136) 0.139(0.0268) 0.999(7e-04) 1(4e-04) 1(0) 1(0)

γ=20% 0.999(4e-04) 0.999(3e-04) 0.999(9e-04) 1(4e-04) 1(3e-04) 1(1e-04) 1(0) 1(0)

γ=10% 0.999(4e-04) 1(3e-04) 1(1e-04) 1(1e-04) 1(1e-04) 1(1e-04) 1(2e-04) 1(1e-04)

γ=5% 1(3e-04) 1(3e-04) 1(1e-04) 1(0) 1(1e-04) 1(0) 1(3e-04) 1(1e-04)

γ=1% 1(3e-04) 1(3e-04) 1(1e-04) 1(0) 1(0) 1(0) 1(4e-04) 1(2e-04)

classifies the signals into three components: one irrepro-
ducible component and two reproducible components
for consistent up-regulated and down-regulated signals
respectively. The posterior probability of belonging to
the reproducible components is used as a measure for
reproducibility.

Methods
For simplicity, we will introduce ourmethod in the context
of microarray studies but it can be generalized to studies
of other high-throughput assays. We consider I replicate
microarray studies for p genes. In this paper, we focus on
the situation of two replicate studies I = 2, although our
method can be readily extended to the case with more
than two studies. We assume a study includes two groups,
e.g., the treatment and control group, with sample size
equal to nik for group k, k=1,2, in the i-th study. Let xgijk
be the normalized and transformed measurement of gene
expression of the jth sample from group k for gene g in the
i-th study. The test statistics of two-sample unpaired t-test
for gene g in the i-th study is

dgi = x̄gi2 − x̄gi1
sgi

, where

x̄gi1 =
∑

j=1,··· ,ni1
xgij1/ni1, x̄gi2 =

∑

j=1,··· ,ni2
xgij2/ni2

sgi =
⎡

⎣(1/ni1 + 1/ni2)

⎧
⎨

⎩
∑

j=1,··· ,ni1
(xgij1 − x̄gi1)2

+
∑

j=1,··· ,ni2
(xgij2 − x̄gi2)2

⎫
⎬

⎭ /(ni1 + ni2 − 2)

⎤

⎦
1/2

We present an empirical Bayesian hierarchical model
to account for various sources of variability. When the
sample size nik is reasonably large, say ni1 + ni2 ≥ 30,
the test statistics dgi is well approximated by a normal
distribution:

dgi|μgi ∼ N (δSiμgi, 1) (1)

where μgi is the expected group mean difference for gene
g in the i-th study, and δSi = σ̃−1

i (1/ni1 + 1/ni2)−1/2

with σ̃i being the common standard deviation for {xgij1},
j = 1, 2, . . . , ni1 and {xgij2}, j = 1, 2, . . . , ni2. When the
sample size is small, the same procedure as in [11] can
be applied to construct z-tests based on two-sample t-
tests. For simplicity we assume the within-group between-
sample standard deviation is the same for all the genes.
The general case can be derived in a similar fashion but a
bit more tedious.
For the expected group mean difference μgi, we assume

it follows

μgi|μg ∼ N
(
μg , σ 2

g

)
(2)

where μg is the “true" group mean difference for gene
g across all studies and σ 2

g models the between-study
variability due to various experiment conditions.

Fig. 1 Bivariate plot of test statistics from two studies. The x axis
represents the test statistics from GSE 28042 study [18], and the y axis
represents the test statistics from GSE 33566 [19]. The green points are
the top 500 reproducible genes selected by the proposed method
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Fig. 2 Bivariate plot of test statistics from two studies. The x axis
represents the test statistics from GSE 28042 study [18], and the y axis
represents the test statistics from GSE 33566 [19]. The green points are
the top 500 reproducible genes selected by the copula mixture
model [10]

Furthermore we assume μg is from a mixture
distribution

μg ∼ π0I{0} + π1N
(
μG1 , σ 2

G1

)
+ π2N

(
μG2 , σ 2

G2

)
(3)

where πi ≥ 0, i = 0, 1, 2, with π0 + π1 + π2 = 1, μG1 > 0
and μG2 < 0. The distribution has three components: the
null case where there is no differentially expressed gene,
the “up-regulated” case where the treatment stimulates
the gene expression, and the “down-regulated” case where
the treatment suppresses the gene expression. Generally
for microarray studies π0 � 1. Similar mixture models
have been considered in [11–16]. Particularly we choose
to model the cluster of up-regulated (or down-regulated)
genes with a Gaussian distribution for the computational
convenience, same as in [12]. Alternative choices include
the semiparametric mixture model in [11, 14], mixture
of Gaussian distributions in [13, 15] and mixture of t-
distributions in [16].
We can show that the test statistics (dg1, dg2) follow a

Gaussian mixture model. The derivations are standard by
repeatedly applying the law of total expectation and the
law of total variance and thus omitted. The mixture model
is

(dg1, dg2) ∼ π0N (μ0,�0) + π1N (μ1,�1)

+ π2N (μ2,�2),
(4)

where N (μl,�l) (l = 0, 1, 2) is the biviariate normal dis-
tribution with mean vector μl and covariance matrix �l.
Let I2 and J2 be the identity matrix and the square matrix
of ones respectively, both with order 2. This mixture
model classify the candidates into three components:

N (μ0,�0) is the irreproducible component with zero-
mean μ0 = (0, 0)T and covariance structure �0 =(
σ 2
g + 1

)
I2; N (μ1,�1) and N (μ2,�2) are two repro-

ducible components with μ1 = (δS1μG1 , δS2μG1) > 0
and �1 =

(
σ 2
g + 1

)
I2 + σ 2

G1
J2 representing the up-

regulated genes, and μ2 = (δS1μG2 , δS2μG2) < 0 and
�2 =

(
σ 2
g + 1

)
I2 + σ 2

G2
J2 representing the down-

regulated genes, where the inequalities are meant to be
interpreted component-wise.
Note with increased sample sizes or decreased within-

group between-sample variability, the mean μ1 and μ2
of the reproducible components move further away from
the origin, making the three components more separable.
Also note the test statistics from replicate studies have
zero correlations in the irreproducible components; in the
reproducible components, the correlations become larger
when the between-study variability becomes smaller; for
all components, the variance is smaller with less between-
study variability, resulting in more separable components.
Under the Gaussian mixture model, the posterior prob-

ability of (dg1, dg2) belonging to a component is

pgl = πlφ(dg1, dg2|μl,�l)∑
	=0,1,2 π	φ(dg1, dg2|μ	,�	)

, l = 0, 1, 2. (5)

where φ(·|·) is the density function of bivariate normal
distribution. According to [10], the posterior probabil-
ity of being in the irreproducible/null component pi0 can
be introduced as the individual significant score, namely
local false discovery rate. When pg0 is less than a signifi-
cant level α, gene g is classified as reproducible.

Fig. 3 Bivariate plot of test statistics from two studies. The x axis
represents the t-statistics from GSE 28042 study [18], and the y axis
represents t-statistics from GSE 33566 [19]. The green points are the
top 500 reproducible genes selected by Benjamini & Heller method [9]
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Table 4 The list of 23 selected genes, which are in the list of the
top 500 reproducible genes selected by Benjamini & Heller
method [9], but have opposite signs of signals in two studies

Genes t-statistics in GSE 28042 [18] t-statistics in GSE 33566 [19]

1 A1BG 3.34 -3.63

2 ANKRD39 3.93 -3.35

3 CA4 -4.4 4.94

4 CDK14 -4.88 3.34

5 CHCHD2 3.5 -3.65

6 CXCR2 -4.67 3.38

7 HCG27 -4.68 3.29

8 KAT6A -3.48 3.54

9 MFSD3 4.25 -3.29

10 MMP9 -3.51 5.77

11 MRPL14 4.06 -3.69

12 MRPL15 3.99 -3.38

13 MRPL55 3.63 -3.95

14 NDUFB7 3.79 -3.54

15 NDUFS3 3.98 -3.89

16 PRPS1 3.87 -4.13

17 RBBP6 3.66 -3.67

18 ROMO1 3.33 -3.41

19 SEPHS1 4 -3.44

20 TANC2 -3.59 3.95

21 TCN1 -4.69 3.36

22 TMEM141 3.45 -3.64

23 TRIM33 -4.64 3.47

Next, we consider estimation of the unknown
parameters

θ = (μ1,μ2,�0,�1,�2,π0,π1,π2) (6)

in the mixture model (4) to get the estimate of pg0 for
individual genes. It is natural to use the expectation-
maximization (EM) algorithm to estimate θ by maximiz-
ing the log-likelihood of the data [17], i.e.,

	(θ) =
p∑

g=1
log{P(dg1, dg1|θ)}

=
p∑

g=1
log

{ 2∑

l=0
πlφ(dg1, dg2|μl,�l)

} (7)

In our algorithm, we start with some initials value for
the parameters θ0, then iterate between two steps: (1)
Evaluate the current posterior probabilities pgl using the
current parameters; (2) Maximize the likelihood estima-
tor given current posterior probabilities. The details of the

EM procedures are provided in Appendix. Multiple ran-
dom initial vaues are used to avoid being trapped at the
local maximum.

Simulation studies
In this section, we present numerical simulations to illus-
trate the performance of our proposed method compared
to three existing methods, the copula mixture model [10],
Benjamini & Heller method [9], and the rank product
method [8]. We use the following model to simulate data

xgijk = μ + αg + βi + (αβ)gi + δI(k = 2)
+ γgI(k = 2) + (γβ)giI(k = 2) + εgijk

(8)

From this model, the mean expression level of gene g for
group 1 of study s is modeled asμgs1 = μ+αg+βi+(αβ)gi,
where μ is the overall mean; αg is the main effect of gene
g; βi is the main effect of study i; (αβ)gi is the gene-study
interaction. We set μ = 0, αg ∼ N (0, 1), βi = 0.1,
and (αβ)gi ∼ N (0, 0.52). For non-differentially expressed
genes, the mean expression level for both groups are the
same, i.e., μgs1 = μgs2. For differentially expressed genes,
(8) models the difference between the two comparison
groups as μgi2 − μgi1 = δ + γg + (γβ)gi, where δ is the
fixed effect of group difference; γg is the effect of gene on
the group difference; (γβ)gi is the gene-study interaction
of the group difference. We set δ = 0, generate γg from
N (2, 0.52) or N (−2, 0.52) to mimic two possible direc-
tions of signals, (γβ)gi ∼ N (0, 0.52). εgijk is the random
error term, and following the distributionN (0, 0.52).
For each simulation run, we generate 2 studies. Each

study has two groups with 10 samples per group. We
generate G = 5000 genes per sample and choose the pro-
portions of reproducible genes (γ ) from (80%, 60%, 40%,
20%, 10%, 5%, 1%).We apply the proposedmethod and the
three existing methods to the simulated data, and classify
the genes as reproducible based on two commonly used
significant levels (α) 0.05 and 0.1. The performance of the
four compared methods is evaluated by three criteria, i.e.,
sensitivity, specificity and misclassification rate. Results
from 50 simulations are summarized in Tables 1, 2 and

Table 5 The list of 7 selected genes, which are in the list of the
top 500 reproducbile genes selected by the copula mixture
model [10], but have opposite signs of signals in two studies

Gene t-statistics in GSE 28042 [18] t-statistics in GSE 33566 [19]

1 CA4 -4.4 4.94

2 CDK14 -4.88 3.34

3 CXCR2 -4.67 3.38

4 HCG27 -4.68 3.29

5 MME -6.05 3.25

6 TCN1 -4.69 3.36

7 TRIM33 -4.64 3.47
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3 respectively. The results shows our proposed method
performs the best among the four methods with the small-
est misclassification rates (Table 1), highest sensitivity
(Table 2) and highest specificities (Table 3).

Results
In this section, we illustrate our proposed method using a
real example. This example includes two microarray stud-
ies [18] and [19] comparing idiopathic pulmonary fibrosis
(IPF) samples with healthy control samples. Data from
both studies are obtained fromGene Expression Omnibus
[20]. GSE 28042 [18] measures profiles of peripheral blood
mononuclear cell (PBMC) for 75 IPF samples and 16
control samples through GeneChip Human 1.0 exon ST
arrays, and GSE 33566 [19] measures profiles of periph-
eral blood RNA for 93 IPF patients and 30 control samples
through Agilent Whole Human Genome Oligonucleotide
Microarrays. We only consider the overlap 17708 com-
mon genes for reproducibility analysis.
We apply our proposed method, the copula mixture

model [10] and Benjamini & Heller method [9]. The rank
product method [8] is too computationally intensive to
be applied to this example and thus excluded from this
study. Figures 1, 2 and 3 show the results of selected
reproducible genes from the three compared methods
respectively (green). In all three figures, the x axis rep-
resents the test statistics from GSE 28042 [18], and the
y axis represents the test statistics from GSE 33566 [19].
The top 500 reproducible genes selected by three methods
are highlighted in green. As shown in Fig. 1, our proposed
method only selects genes with consistently significant
signals in both studies. Benjamini & Heller method [9]
incorrectly identifies 23 genes (the upper left and bottom
right corners of Fig. 2) as reproducible, which actually
have opposite directions in two studies. The complete list
of the 23 genes incorrectly selected by Benjamini & Heller
method [9] is provided in Table 4. The copula mixture
model [10] selects 7 genes (Table 5) with opposite direc-
tions of signals. It’s also noted that the copula mixture
model [10] appears to be less powerful in separating the
irreproducible and reproducible genes and has incorrectly
selected some insignificant genes (see the center of Fig. 3),
likely resulting from the rank transformation. Overall, our
method performs favorably in identifying reproducible
genes.

Conclusion and discussion
This paper proposes a new method for identifying
consistent and significant signals across replicate high-
throughput experiments. Existing methods ignore the
directionality of signals, and can incorrectly identify sig-
nals with opposite directions as reproducible ones. Our
proposed method considers both the significant scores
and directions of signals by modeling the test statistics

directly, leading to improved performance in selecting
reproducible candidates. When the proposed method is
applied to a real data example for identifying reproducible
genes in studies of idiopathic pulmonary fibrosis samples,
it is shown to have better performance in detecting signif-
icant and reproducible genes compared to other methods.
Simulations also demonstrate that our method compares
favorably to the existing methods.
Appendix
Expectation-maximization (EM) algorithm to estimate
model parameters
The algorithm for estimating θ in (6) is an iterative algo-
rithm between Expectation steps and maximization step.
We use θ̂v to denote the estimate at vth iteration. The
algorithm includes the following steps:
Step 1: Initial Values Generate the initial values for θ

and denote it as θ̂0

Step 2: Expectation-Step Continue from the vth itera-
tion step with the estimate θ̂v. We can obtain the
estimated posterior probability p̂glv of (dg1, dg2) from
(5) by

p̂glv =
π̂l

vφ
(
dg1, dg2|μ̂l

v, �̂l
v)

∑
	=0,1,2 π̂	

vφ
(
dg1, dg2|μ̂	

v, �̂	
v) , l = 0, 1, 2. (9)

Step 3: Maximization-Step Update the parameter θ̂v+1

by maximizing the log-likelihood function 	(θ) in
(7) given the current estimated posterior probability
p̂glv. The estimated parameters from the maximiza-
tion are

π̂l
v+1 =

p∑

g=1
p̂glv/p, l = 0, 1, 2.

μ̂1
v+1 = (

μ̂11
v+1, μ̂12

v+1) =
(∑p

g=1 p̂g2
vdg1

∑p
g=1 p̂g2

v ,
∑p

g=1 p̂g2
vdg2

∑p
g=1 p̂g2

v

)

μ̂2
v+1 = (

μ̂21
v+1, μ̂22

v+1) =
(∑p

g=1 p̂g3
vdg1

∑p
g=1 p̂g3

v ,
∑p

g=1 p̂g3
vdg2

∑p
g=1 p̂g3

v

)

σ̂ 2
g
v+1 =

∑p
g=1 p̂g1

v
(
d2g1 + d2g2

)

2
∑p

g=1 p̂g1
v − 1

σ̂ 2
G1

v+1 =
∑p

g=1

[
p̂g2v

(
dg1 − μ̂11v+1)2 + p̂g2v

(
dg2 − μ̂12v+1)2

]

2
∑p

g=1 p̂g2
v

−
∑p

g=1 p̂g1
v
(
d2g1 + d2g2

)

2
∑p

g=1 p̂g1
v

σ̂ 2
G2

v+1 =
∑p

g=1

[
p̂g3v

(
dg1 − μ̂21v+1)2 + p̂g3v

(
dg2 − μ̂22v+1)2

]

2
∑p

g=1 p̂g3
v

−
∑p

g=1 p̂g1
v
(
d2g1 + d2g2

)

2
∑p

g=1 p̂g1
v
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Step 4: Solution The algorithm continues between
Expectation-Step and Maximization-Step until the
following two conditions are satisfied.

1. The difference between θ̂v and θ̂v+1 is less than
a small value δ1 for all their elements;

2. The change in log-likelihood function 	(θ)

between two consecutive iterations does not
exceed a small value δ2.
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