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Abstract

Background: The human phenome has been widely used with a variety of genomic data sources in the inference
of disease genes. However, most existing methods thus far derive phenotype similarity based on the analysis of
biomedical databases by using the traditional term frequency-inverse document frequency (TF-IDF) formulation.
This framework, though intuitive, not only ignores semantic relationships between words but also tends to produce
high-dimensional vectors, and hence lacks the ability to precisely capture intrinsic semantic characteristics of
biomedical documents. To overcome these limitations, we propose a framework called mimvec to analyze the
human phenome by making use of the state-of-the-art deep learning technique in natural language processing.

Results: We converted 24,061 records in the Online Mendelian Inheritance in Man (OMIM) database to low-
dimensional vectors using our method. We demonstrated that the vector presentation not only effectively enabled
classification of phenotype records against gene ones, but also succeeded in discriminating diseases of different
inheritance styles and different mechanisms. We further derived pairwise phenotype similarities between 7988
human inherited diseases using their vector presentations. With a joint analysis of this phenome with multiple
genomic data, we showed that phenotype overlap indeed implied genotype overlap. We finally used the derived
phenotype similarities with genomic data to prioritize candidate genes and demonstrated advantages of this
method over existing ones.

Conclusions: Our method is capable of not only capturing semantic relationships between words in biomedical
records but also alleviating the dimensional disaster accompanying the traditional TF-IDF framework. With the
approaching of precision medicine, there will be abundant electronic records of medicine and health awaiting for
deep analysis, and we expect to see a wide spectrum of applications borrowing the idea of our method in the near
future.

Background
Deciphering genetic basis of human inherited diseases is
a fundamental task in human and medical genetics [1].
Typically, this task is done by applying linkage analysis
to a pedigree or association study to a cohort to roughly
locate genomic regions that are statistically associated
with a disease of interest, and then experimentally verify

functions of genes located in these regions [2, 3]. In order
to effectively determine target genes in functional experi-
ments, computational methods are often used to prioritize
candidate genes based on the “guilt-by-association”
principle [4] by making use of multiple genomic data
sources, including gene expression [5], protein sequences
[6], protein-protein interaction [7], gene ontology [8, 9],
and many others [10–14]. The basic assumption in a
guilt-by-association analysis is that genes associated with a
disease share common functions, and thus exhibit
common characteristics across a variety of genomic data
sources. As such, one can infer the functional similarity of
a candidate gene to a set of seed genes that are already
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known as associated with the disease under investigation
and then use the resulting score to rank candidate genes.
However, the essential prerequisite of known seed genes
greatly restricts the scope of application of these methods,
making them more suitable to study diseases whose
genetic basis is partly known a priori.
To overcome this limitation, there have been quite a

few studies make use of the human disease phenome,
particularly, relationships between all human disease
phenotypes [15]. With a reasonable extension of the
“guilt-by-association” principle to assume that genes
causative for phenotypically related diseases often share
common functions, computational methods can “bor-
row” known disease genes from highly correlated disease
phenotypes, hence enabling the prioritization analysis
for diseases whose genetic basis can be completely
unknown [16]. With the incorporation of more sophisti-
cated statistical models or machine learning methods,
the utilization of the human phenome has evidenced a
wide range of applications in deciphering genetic basis
of human diseases [17–21].
Most existing methods for inferring the human phe-

nome start from the Online Mendelian Inheritance in
Man (OMIM) database [22]. In a typical pipeline, one
first extracts biomedical concepts (terms) from a OMIM
record based on a standardized vocabulary such as the
Unified Medical Language System (UMLS) [23], Medical
Subject Headings (MeSH) [24], and Human Phenotype
Ontology (HPO) [25]. Then, the frequency of occurrence
of a term in a record is counted, yielding a statistic called
the term frequency (TF) that indicates how important the
term is in the record. Meanwhile, the negative logarithm
of the occurrence frequency of a term in all records is
measured, resulting in another statistic called the inverse
document frequency (IDF) that represents whether the
term provides concrete meaning. The product of these
two statistics is often referred to as TF-IDF, which has
been frequently used as a weighting factor in information
retrieval and text mining [26]. Finally, with the TF-IDF of
every term collected, one represents a record as a vector
of TF-IDFs. The cosine of the angle between two vectors
can then be calculated to measure the similarity between
two disease phenotypes.
In natural language processing, the above pipeline be-

longs to a category of methods called “bag-of-words”
(BOW), which can be traced back to 1950’s and is now
known to have several obvious disadvantages [27]. For
example, words are treated independently in the calcula-
tion of TF-IDF values, and thus the semantic relation-
ships between words are completely ignored. As an
extreme example, any permutation of words in a record
yields an identical TF-IDF vector as that obtained from
the original record. This certainly goes against the ob-
jective of text mining. Moreover, the number of concepts

is normally large, and thus the dimension of a TF-IDF
vector is commonly high. In such a high dimensional
space, the characterization of the similarity between two
vectors is itself a difficult problem. In the case that the vec-
tors are used in a machine learning task, the dimensional
disaster seems inevitable.
Recent advances in the computer science community

have evidenced several efforts to overcome the limitations
of the “bag-of-words” methods. For example, Mikolov et al.
introduced the skip-gram model [28], which represented
words as vectors in a low-dimensional space and enabled
precise prediction of the context surrounding a word. This
method is ultra-efficient in that a single computer can
easily train more than 100 billion words in a single day.
Furthermore, sophisticated techniques such as sub-
sampling of frequent words and the negative sampling have
also been incorporated into the skip-gram model, speeding
up this method by one order of magnitude with improved
accuracy. Le and Mikolov further proposed a framework
called paragraph vector that extends the vector representa-
tion from a single word to a sentence or even a document
[29]. Besides the merit characteristic of converting unstruc-
tured text into a low dimension vector, these methods also
have the ability to understand semantic relationships be-
tween words. For example, in the vector space, “Madrid” –
“Spain” + “France” is closest to “Paris”, meaning that the
vector presentation precisely grasps the intrinsic semantic
relationships of a country and her capital.
With the understanding of shortcomings of analyzing

the human phenome based on the traditional method-
ology of TF-IDF and merit characteristics of the recent
advances in vector presentation of text, we propose in this
paper a method named mimvec to analyze the human
phenome. Our method converts 24,061 OMIM records to
low-dimensional numeric vectors (e.g., 100 dimensions)
by customizing the paragraph vector methodology. We
show that the resulting vector representation of OMIM
records not only effectively enables the classification of
diseases against genes records in the OMIM database, but
also successes in the discrimination between diseases of
different inheritance styles. We further calculate pheno-
type similarities between 7988 disease phenotypes and use
this resource with multiple genomic data sources to
prioritize candidate genes, yielding a novel method for fin-
ing disease genes that exhibits superior performance over
existing ones. To facilitate applications of our method, we
provide free downloads of pre-calculated vector presenta-
tions of 24,061 OMIM records at http://bioinfo.au.tsin
ghua.edu.cn/jianglab/mimvec.

Results
Overview of the proposed approach
The proposed method, mimvec, customized a deep
learning method in natural language processing called
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Paragraph Vector [29] to analyse OMIM records and
converted them to low-dimensional numeric vectors. As
illustrated in Fig. 1, we first identified the MIM number
of an OMIM record from the NO field, and we extracted
from the TX field a sequence of words, in the order as
they appeared in the record. In this procedure, we dis-
carded all section captions, punctuations and numbers.
Then, we represented both the MIM number and the
words as low-dimensional (e.g., one hundred) numeric
vectors. Next, we concatenated vectors corresponding to
the MIM number and a small number of words in a
sliding window (e.g., of size five) to form a new vector.
Finally, we used this vector to predict the word appear-
ing immediately after the window. In this model, an
OMIM record was identified by its own MIM number,
and thus was represented by a distinct vector. A word,
on the contrary, was often shared by a number of
OMIM records, and thus the corresponding vector was
also shared across records. In this sense, the vector cor-
responding to an OMIM record provided information
specific to the record and enabled more precise analysis
of the relationship between the words within the record.
The prediction task was modeled as a multiclass classifi-
cation problem and solved by adopting a neural net-
work, which took the concatenated vector as input and
produced the probability of a word via a softmax func-
tion. In order to train such a model, we first initialized
all vectors at random and then fed OMIM records to
the model and maximized the average log probability of
all predictions via a stochastic gradient descent algo-
rithm with backpropagation (see Methods for details).
When a model was well trained, we extracted the vector
corresponding to a MIM number to obtain the vector
presentation of the corresponding OMIM record.

Mimvec distinguishes phenotypes from genes
We asked the question of whether the vector presentation
of an OMIM record could capture its intrinsic semantic
characteristics. To answer this question, we converted all
the 24,061 OMIM records to 100-dimensional vectors,
and we explored the possibility of distinguishing the 7988
phenotype records from the rest 16,073 gene records. We
first applied a principle component analysis (PCA) to the
matrix (24,061×100) containing vectors of all the records
and visualized the results in a two-dimensional Euclidean
space composed of the first two principle components
(PC). As demonstrated in Fig. 2a, we find that dots corre-
sponding to diseases can be well distinguished from those
corresponding to genes, except for a small number of
outliers. Moreover, if we project the dots to the first
principle component (x-axis), diseases obviously have
smaller coordinates than genes. To show this observa-
tion in a clearer way, we plotted a heatmap by using
the first 10 principle components (Fig. 2b). It is clear
that the first principle component alone can well
distinguish diseases from genes (accuracy = 91.45%),
suggesting that most information contributing to the
characteristics of these two different categories of
records is already captured by this component.
We then performed a binary classification of disease

records against gene ones by using all elements in the
100-dimensional vectors as features. We evaluated three
classifiers, logistic regression (LR), random forest (RF)
and support vector machine (SVM), using 10-fold cross-
validation and show the results in Table 1. From the
table, we clearly see that all the three classifiers can well
discriminate between these two catalogs. For example,
the area under the receiver operating characteristic
curve (AUC) for logistic regression is as high as 99.41%,

Fig. 1 Overview of the proposed Mimvec method. Both the MIM number and the words in a sliding window are represented as low-dimensional
numeric vectors, which are further concatenated to form features and used with a softmax function to predict the word followed. In the training phase,
vectors are initialized at random, and OMIM records are fed sequentially to the model. The average log probability of all predictions and maximized via a
stochastic gradient descent algorithm with backpropagation. When a model was well trained, vectors corresponding to MIM numbers are extracted
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and the classification accuracy (ACC) achieves 96.17%.
Considering the situation of imbalance between the
number of diseases (7988) and that of genes (16,073), we
further calculated a criterion called balanced error rate
(BER, the average of error rates for the two classes) and
obtain a value of only 2.6%, again revealing the effective-
ness of classifying diseases against genes using elements
in the vector presentation as features.
We further tried different numbers of dimensions in

the vector presentation and found the difference in the
results is negligible for logistic regression and support
vector machine. The performance of random forest,
however, tends to drop with the increase of the number
of dimension, especially for BER, suggesting that low
dimensional vectors are preferred.
All these results support the conclusion that the vector

presentation of OMIM records can indeed capture in-
trinsic characteristics of the records. Furthermore, the
number of dimensions of the presentation is not critical
for the capture of information implicated in the records.

Mimvec distinguishes diseases of different inheritance styles
We further asked the question of whether the vector
presentation of phenotypes could distinguish diseases of
different inheritance styles. To answer this question, we
identified 1853 autosomal dominant diseases (MIM:
1xxxxx) and 1547 autosomal recessive diseases (MIM:
2xxxxx) from the OMIM database, and again applied the

three classifiers (LR, RF and SVM) to classify autosomal
dominant diseases against autosomal recessive ones. Re-
sults of the leave-one-out cross-validation experiments,
as shown in Table 2, give us a positive answer to this
question. For example, when presenting a phenotype as
a 100-dimensional vector, the AUC, ACC and BER for
logistic regression are 89.85, 83.21 and 17.05%, respect-
ively. The other two methods also achieve reasonably
high performance (RF: AUC = 87.29%, ACC = 79.32%
and BER = 21.59%; SVM: AUC = 89.80%, ACC = 83.18%
and BER = 17.10%). These results reveal the effective-
ness of the vector presentation in the classification of
diseases of different inheritance styles. Furthermore, we
tried different numbers of dimensions in the vector pres-
entation and found the performance of LR and SVM
tends to improve with the increase of the number of
dimensions, while that of RF tends to drop, though the
change is itself small (Table 2).
We then identified 48 immune diseases and 263 neuro-

logical disorders according to the Genetic Association
database [30], and we also applied the three classifiers
(LR, RF and SVM) to discriminate these two catalogs of
diseases. Results of the leave-one-out cross-validation
experiments, as shown in Table 3, demonstrate the possi-
bility of solving this binary classification problem using
the vector presentation of disease phenotypes as features.
For example, with 100-dimensional vectors, the AUC,
ACC and BER for SVM are 85.62, 86.13 and 29.14%,

Fig. 2 Mimvec distinguished phenotypes from genes. a Projection of OMIM records to a two-dimensional Euclidean space using the first two
principle components shows that diseases can be well distinguished from genes. b The first component alone can already discriminate diseases
from genes with high accuracy

Table 1 Classification of phenotypes against genes

AUC (%) ACC (%) BER (%)

LR RF SVM LR RF SVM LR RF SVM

Mimvec (50) 99.31 99.20 99.34 97.52 96.49 97.80 2.97 4.29 2.74

Mimvec (100) 99.41 98.92 99.31 97.83 96.17 97.78 2.60 5.19 2.75

Mimvec (150) 99.35 98.79 99.34 97.73 95.21 97.69 2.71 6.41 2.83

Mimvec (200) 99.43 98.67 99.26 97.75 94.43 97.67 2.65 7.99 2.85

Mimvec (250) 99.42 98.71 99.33 97.73 94.04 97.86 2.75 8.55 2.64

Mimvec (300) 99.36 98.50 99.17 97.70 93.59 97.60 2.75 9.32 2.91

Disease and gene records can be well distinguished by vector representations of the records
Bold numbers highlight performance achieved at the default setting (100 dimensions)
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respectively. The other two methods also achieve reason-
ably high AUC and ACC (LR: AUC = 80.63%,
ACC = 81.94%; RF: AUC = 78.20%, ACC = 85.16%). How-
ever, we notice that BER for RF is only 44.57%, suggesting
that this classifier tends to assign wrong label to one of
the catalogs (i.e., immune diseases). We guess the
phenomenon is due to the imbalance of the training sam-
ples (48 versus 263). We further tried vectors of different
dimensions and found the performance of LR and RF
tends to drop with the increase of the number of dimen-
sions. For SVM, the classification performance is quite
stable for different number of dimensions (Table 3).

Mimvec links phenotypes to causative genes
A fundamental problem in human genetics is to link
phenotypes to genotypes. In medical genetics, it is of great
importance to identify genes responsible for a disease
phenotype. This is typically done by applying linkage ana-
lysis or association studies to identify genomic regions that
show strong association with a specific disease of interest
and then prioritizing candidate genes located in these re-
gions by making use of such genomic data sources as gene
expression [5] and protein-protein interaction [7]. With
disease phenotypes and genes represented as vectors by
our unsupervised deep learning approach, we explore the
possibility of linking a disease phenotype to its causative
genes by using their vectors alone.

From the OMIM database, we identified 4397 associa-
tions between 3798 diseases and 2944 genes. We then
quantified the similarity between every pair of disease
and gene by using the cosine measure, and we plotted
distributions of the resulting similarities. As shown in
Fig. 3a, the distribution of similarities between diseases
and their known causative genes exhibit an obvious
positive shift against that between diseases and genes se-
lected at random, suggesting the possibility of utilizing
this cosine measure as a score to distinguish true causa-
tive genes from irrelevant ones. With this understanding,
we conducted a leave-one-out experiment to simulate
the ambitious goal of identifying causative genes for a
specific disease. In detail, for each of the 4397 known as-
sociations between a disease and a gene, we ranked the
gene against other genes according to the cosine score
(the larger the better), with genes known as associated
with the disease excluded. As shown in Fig. 3b, 2379
(54.11%) known disease genes are ranked first, 422
(9.60%) ranked second, 197 (4.48%) ranked third. In con-
trast, with a random guess procedure, one could only
expect to see 0.2736 (4397/16,073) known disease genes
ranked first. In other words, prioritizing candidate genes
according to the cosine similarity score yields a fold
enrichment of more than 8695 (2379/0.2736), strongly
suggesting the effectiveness of this method for finding
disease genes.

Table 2 Classification of autosomal dominant diseases versus autosomal recessive ones

AUC (%) ACC (%) BER (%)

LR RF SVM LR RF SVM LR RF SVM

Mimvec (50) 87.75 86.04 87.56 80.97 78.74 80.91 19.37 22.03 19.46

Mimvec (100) 89.85 87.29 89.80 83.21 79.32 83.18 17.05 21.59 17.10

Mimvec (150) 90.57 86.93 89.95 83.47 78.76 82.76 16.72 22.19 17.37

Mimvec (200) 90.82 85.95 91.12 85.00 77.68 84.91 15.14 23.33 15.33

Mimvec (250) 90.88 86.00 91.71 84.47 78.56 85.50 15.69 22.57 14.68

Mimvec (300) 91.02 86.00 91.62 84.74 77.68 85.06 15.46 23.58 15.15

Diseases of different inheritance styles can be well distinguished by vector representations of the records
Bold numbers highlight performance achieved at the default setting (100 dimensions)

Table 3 Classification of Immune diseases versus neurological disorders

AUC (%) ACC (%) BER (%)

LR RF SVM LR RF SVM LR RF SVM

Mimvec (50) 77.94 83.49 82.99 86.77 86.45 88.06 25.27 38.56 28.88

Mimvec (100) 80.63 78.2 85.62 81.94 85.16 86.13 32.49 44.57 29.14

Mimvec (150) 71.98 72.81 80.67 74.52 84.19 85.16 38.61 46.89 30.59

Mimvec (200) 76.11 78.89 85.83 74.84 84.19 89.03 33.18 48.63 24.81

Mimvec (250) 65.73 76.63 84.6 68.39 84.52 87.42 41.35 47.57 28.38

Mimvec (300) 61.14 72.83 84.08 61.14 72.83 84.08 46.94 46.51 28.08

Diseases of different mechanisms can be well distinguished by the vector representation of the records
Bold numbers highlight performance achieved at the default setting (100 dimensions)
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We further repeated the above experiments with the
use of three alternative similarity measures (Pearson’s
correlation coefficient, Spearman’s correlation coeffi-
cient, and normalized Euclidean similarity). As shown in
Fig. 3a, for all the three measures, the distribution of
similarities between diseases and their known causative
genes also exhibits an obvious positive shift against that
between diseases and genes selected at random. As shown
in Fig. 3b, all the three similarity scores are also capable of
distinguishing causative genes from irrelevant ones. More-
over, we notice that the cosine and Pearson’s correlation
coefficient measures yield similar performance, which is
obviously higher than that of Spearman’s correlation
coefficient and normalized Euclidean similarity.

Mimvec bridges phenotype similarity and gene functional
overlap
Most computational methods for finding disease genes
obey the guilt-by-association principle, which assumes
that genes associated with a disease would have similar
functions [4]. A more general assumption is that genes
associated with phenotypically similar diseases exhibited
functional similarities across different genomic data
sources [19]. This assumption has become the basis for
designing gene prioritization methods, with such success-
ful stories as PRINCE [21], pgFusion [18], pgWalk [17]
and many others [15]. With our method to characterize
phenotype similarity based on vector representations of
phenotypes with the use of the cosine measure or the

alike, we explore whether the resulting phenotype
similarity between diseases also implies genotype overlap.
We identified 4593 associations between 3921 diseases

and 3023 genes using the tool BioMart [31]. For every
pair of diseases, we measured their phenotype similarity
based on the vector presentation (100 dimension) using
the cosine score, and we measured their genotype over-
lap as the average pairwise similarity scores of their asso-
ciated genes under a genomic data source. Particularly,
we adopt four types of genomic data (RNA-seq, protein
sequence, protein-protein interaction, and gene ontol-
ogy, as described in Methods). We then partitioned the
phenotype similarity scores into 10 bins of equal size,
identified disease pairs belonging to each bin, and calcu-
lated the average genotype similarity of disease pairs in
each bin, as shown in Fig. 4. From this figure, we ob-
serve strong correlations between the phenotype similar-
ity and the genotype overlap. Taking gene expression
derived from RNA-seq data as an example, it is shown
that the genotype similarity increases with the increase of
the phenotype similarity (Fig. 4a). Particularly, for disease
pairs with very weak phenotype similarity (< 0.3), their
genotype similarity is also very weak (near zero, not
shown). For disease pairs with strong phenotype similarity
(0.9 ~ 1.0), their genotype similarity is also strong (0.4630
on average). In the middle of the spectrum, for disease
pairs with medium phenotype similarity (0.5 ~ 0.6), their
genotype similarity is also at the medium level (0.1378 on
average). We further regressed the mean genotype similar-
ity of each bin against the corresponding mean phenotype

Fig. 3 Mimvec links phenotypes to causative genes by semantic similarity. a Distribution of similarities between diseases and their known
causative genes exhibit an obvious positive shift against that between diseases and genes selected at random. b Most known disease genes are
ranked among top positions

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):76 Page 8 of 119



similarity. For the other four genomic data sources, we
observe similar patterns (Fig. 4 b-d). These results clearly
suggest that genes associated with phenotypically similar
diseases indeed exhibit functional similarities across
different gnomic data sources. We further regressed the
mean genotype similarity of each bin against the corre-
sponding mean phenotype similarity. Results show that
the coefficients of determination (r2) are 0.9621 for the
gene expression, 0.7573 for protein sequence, 0.7140
for protein-protein interaction, and 0.6860 for gene
ontology. These results further suggest that the pheno-
type similarity derived from the vector presentation
implies the genotype overlap.

Mimvec enables the prioritization of candidate genes
With the assumption that genes associated with pheno-
typically similar diseases exhibited functional similarities
across different genomic data sources being validated,
we further implemented a random walk with restart
model (see Methods for details) to prioritize candidate
genes to demonstrate how the vector presentation of
phenotypes can be used to facilitate the identification of
disease genes.
We performed three large-scale leave-one-out cross-

validation experiments to validate the effectiveness of
this method using the 4593 associations between 3921
diseases and 3023 genes. We fist simulated the situation
of a traditional linkage analysis or association study, in
which the objective was to prioritize candidate genes in

a linkage interval. In each validation run, we focused on
one known disease-gene pair in an annotated association
and looked at whether our method could correctly
identify the gene from a set of control genes that were
located within a 10 Mb region centred at the test gene
(i.e., the gene associated with the disease), and ranked
the test gene against the control genes using our
method. In this procedure, we removed all annotated
associations regarding the query disease to simulate the
circumstance that the genetic basis of the query disease
was completely unknown.
We derived three criteria to quantify the performance

of our method. Dividing the number of test genes
ranked first by the total number of candidate genes, we
obtained a criterion called the top ranked test genes
(TOP). Dividing the rank of a test gene by the total
number of test and control genes in a validation run, we
obtained the rank ratio of the test gene. Averaging rank
ratios of all test genes, we obtained a criterion called the
Mean Rank Ratio (MRR). At a certain threshold of the
rank ratio, we defined the sensitivity and the specificity
as the fraction of test and control genes ranked above
and below the threshold, respectively. Varying the
threshold, we plotted the rank operating characteristic
(ROC) curve (sensitivity versus 1-specificity) and further
calculated the area under this curve as a criterion called
the AUC score.
As shown in Table 4 and Fig. 5, TOP, MRR and AUC

for validation experiment against a linkage interval with

Fig. 4 Mimvec bridges disease semantic similarity and gene functional similarity. There exist strong correlations between the phenotype similarity
and the genotype overlap. Four genomic data sources are used, include a gene expression, b protein string, c protein-protein interaction. d gene
ontology (biological process)
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the use of phenotype similarity derived from the vector
presentation (mimvec, 100-dimension) and gene similar-
ity derived from RNA-seq data are 32.33, 19.62 and
80.67% respectively. In contrast, when using phenotype
similarity derived from ULMS by analysing TF-IDF of
biomedical concepts (Methods), the TOP, MRR and
AUC are only 30.48, 20.45 and 79.84%, respectively.

When using the phenotype similarity derived from
MeSH, the TOP, MRR and AUC are only 28.72, 20.97
and 78.35%, respectively. When using the phenotype
similarity derived from HPO, the TOP, MRR and AUC
are only 28.22, 20.95 and 79.34%, respectively. Since the
genotype similarity data are the same in the above com-
parison, these comparisons suggest that the vector

Table 4 Performance of the random walk model with different measures of phenotype similarity and gene similarity in the leave-
one-out cross-validation experiments

TOP (%) MRR (%) AUC (%)

RSEQ PSEQ STRG GOBP RSEQ PSEQ STRG GOBP RSEQ PSEQ STRG GOBP

Linkage Interval Mimvec 32.33 35.88 43.54 41.69 19.62 21.22 12.72 11.97 80.67 79.07 87.65 88.41

UMLS 30.48 34.92 42.72 41.08 20.45 21.77 13.13 12.47 79.84 78.52 87.24 87.90

MeSH 28.72 32.42 41.65 38.99 20.97 21.93 13.29 12.72 79.32 78.35 87.08 87.66

HPO 28.22 31.09 39.19 37.32 20.95 22.14 13.61 13.25 79.34 78.14 86.79 87.08

Nearest Neighbor Mimvec 40.37 44.11 54.19 51.19 19.19 20.89 12.38 11.59 81.13 79.46 88.02 88.81

UMLS 37.93 43.04 52.99 50.03 20.07 21.50 12.80 12.10 80.24 78.85 87.60 88.29

MeSH 35.53 40.00 51.40 47.72 20.54 21.60 12.90 12.35 79.76 78.75 87.43 88.04

HPO 34.44 37.77 48.29 44.83 20.53 21.77 13.27 12.90 79.77 78.57 87.12 87.29

Random Control Mimvec 44.33 50.36 59.87 57.04 17.72 20.34 11.66 10.83 82.60 80.01 88.74 89.57

UMLS 41.48 46.94 57.65 54.34 18.98 20.91 12.17 11.37 81.33 79.43 88.61 89.02

MeSH 38.71 44.74 55.32 51.86 19.59 21.05 12.32 11.63 80.72 79.30 87.43 88.76

HPO 37.21 41.96 52.23 44.83 19.56 21.26 12.65 12.14 80.75 79.08 87.75 88.24

Mimvec phenotype similarity derived from the vector presentation of phenotypes (100 dimension), UMLS phenotype similarity derived from the Unified Medical
Language System, MeSH phenotype similarity derived from the Medical Subject Headings, HPO phenotype similarity derived from the Human Phenotype
Ontology, RSEQ gene similarity derived from the RNA-seq data, PSEQ gene similarity derived from the protein sequence data, STRG gene similarity derived from
the protein-protein interaction data, GOBP gene similarity derived from the gene ontology (biological process)

Fig. 5 Mimvec enables the prioritization of candidate disease genes in linkage interval cross-validation experiments. All the three evaluation
criteria (a. TOP, b. MRR, and c. AUC) support that the performance of the four phenotype similarity measure can be sorted as mimvec > UMLS >
MeSH > HPO
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presentation of phenotypes, though does not resort to any
prior knowledge about biology and medicine, is superior
to the TF-IDF counterparts that utilize UMLS, MeSH and
HPO. We further repeated the above experiments by
using gene similarity derived from protein sequence,
protein-protein interaction data and gene ontology, and
the results give us similar conclusion. Particularly, when
fixing a phenotype similarity measure, performance of the
four genomic data can be sorted as protein-protein
interaction > gene ontology > protein sequence > gene ex-
pression. When fixing a genotype similarity measure, per-
formance of the four phenotype similarity measure can be
sorted as mimvec > UMLS > MeSH > HPO.
The number of control genes in a linkage interval may

have variation, thereby introducing biases in assessing
the capability of a method in enriching test genes at top
positions (e.g., ranking a test gene among top 10 against
20 control genes is much easier than ranking it among
top 10 against 100 control genes). We therefore per-
formed another validation experiment (i.e., nearest
neighbor) by ranking each test gene against 99 control
genes that were closest to the test gene in the same
chromosome. From the results shown in Table 4, we
draw the same conclusion as we have for linkage inter-
val. Briefly, when fixing a genotype similarity measure,
performance of the four phenotype similarity measure
can be sorted as mimvec > UMLS > MeSH > HPO, no
matter which evaluation criterion is used.

We further simulated the situation of exome sequencing
studies, in which genetic variants are sequenced across the
whole exome. In each validation run, we focused on one
disease-gene pair in an annotated association and ranked
the test gene against a set of 99 control genes that were se-
lected at random from the entire genome. From the results
shown in Table 4, we draw the same conclusion as we have
for linkage interval and nearest neighbor. That is, when fix-
ing a genotype similarity measure, the performance of the
four phenotype similarity measure can be sorted as
mimvec > UMLS > MeSH > HPO.
The above results are obtained by representing a

phenotype as a vector of 100 dimensions. To study the
possible influence of the number of dimensions to the
performance of our prioritization method, we varied the
vector size from 50 to 300 with step 50 and repeated the
cross-validation experiments. As shown in Table 5, in
general, the performance is quite robust for different
number of dimensions, since the evaluation criteria do
not vary much with the variation of the numbers of
dimensions. In more detail, a relatively small number of
dimensions (e.g., 50) can already give us reasonably good
performance (higher than UMLS, MeSH and HPO). A
relatively large number of dimensions does not show
much help in improving the performance. When the
number of dimensions is greater than 200, we even
observe a drop of the performance. Considering that the
number of parameters in the neural network increases

Table 5 Robustness of the phenotype similarity derived from phenotype vectors of different dimensions

TOP (%) MRR (%) AUC (%)

RSEQ PSEQ STRG GOBP RSEQ PSEQ STRG GOBP RSEQ PSEQ STRG GOBP

Linkage Interval Mimvec (50) 31.09 34.57 42.37 40.47 19.64 21.37 12.89 11.84 80.66 78.91 87.47 88.54

Mimvec (100) 32.33 35.88 43.54 41.69 19.62 21.22 12.72 11.97 80.67 79.07 87.65 88.41

Mimvec (150) 32.09 35.52 43.22 41.08 19.95 21.46 12.91 12.31 80.34 78.82 87.45 88.06

Mimvec (200) 32.33 35.97 43.15 41.56 20.10 21.59 13.06 12.43 80.19 78.69 78.30 87.94

Mimvec (250) 31.53 35.29 42.93 41.11 20.29 21.62 12.98 12.45 80.00 78.67 87.39 87.92

Mimvec (300) 32.05 35.38 43.20 41.13 20.22 21.83 13.05 12.61 80.07 78.45 87.31 87.76

Nearest Neighbor Mimvec (50) 38.36 42.39 52.21 49.88 19.19 21.05 12.56 11.43 81.13 79.30 87.84 88.96

Mimvec (100) 40.37 44.11 54.19 51.19 19.19 20.89 12.38 11.59 81.13 79.46 88.02 88.81

Mimvec (150) 40.50 44.22 54.15 51.32 19.50 21.13 12.53 11.88 80.81 79.22 87.86 88.51

Mimvec (200) 40.74 44.35 53.69 51.36 19.68 21.25 12.69 12.06 80.63 79.10 87.70 88.33

Mimvec (250) 39.47 43.81 53.52 50.95 19.84 21.27 12.61 12.04 80.47 79.08 87.79 88.84

Mimvec (300) 40.21 43.97 53.78 50.84 19.78 21.47 12.66 12.21 80.52 79.28 87.74 88.18

Random Control Mimvec (50) 42.72 48.01 58.61 54.78 17.83 20.43 11.87 10.68 82.50 79.91 88.53 89.73

Mimvec (100) 44.33 50.36 59.87 57.04 17.72 20.34 11.66 10.83 82.60 80.01 88.74 89.57

Mimvec (150) 44.46 49.50 59.81 56.50 18.08 20.59 11.86 11.08 82.24 79.76 88.54 89.32

Mimvec (200) 44.68 49.40 59.50 55.93 18.34 20.71 11.98 11.26 81.99 79.64 88.43 89.64

Mimvec (250) 43.94 49.25 59.18 55.91 18.48 20.71 11.95 11.22 81.84 79.64 88.45 89.68

Mimvec (300) 44.11 48.88 59.02 55.76 18.37 20.95 11.97 11.43 81.95 79.39 88.44 88.96

Mimvec (50 ~ 300): phenotype similarity derived from phenotype vectors of different dimensions
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linearly with the number of dimensions, and thus the
computational burden also increases, a medium number
of dimensions (e.g., 100) seems already a good choice.

Discussion
We conjecture that the success of our method can be
attributed to the combination of the following aspects.
First, our model considers local semantic relationships
between words instead of treating words as independent
units. From the viewpoint of natural language processing,
relying on a standardized vocabulary (e.g., UMLS, MeSH
and HPO) and the TF-IDF measure to analyze OMIM re-
cords belongs to a class of methods called “bag-of-words”
(BOW), which ignores relationships between words and
thus cannot capture semantic meaning of nearby words.
In contrast, our method overcomes this limitation by pre-
dicting a word using its predecessors, and thus implicitly
takes semantic relationships between words into consider-
ation. Second, our model represents a record as a low-
dimensional dense vector, while traditional methods based
on TF-IDF describes a record as a high-dimensional
sparse vector. However, a large number of dimensions
usually leads to a disaster in machine learning, yielding
such hard tasks as feature selection. Besides, the precise
measure of the similarity between two vectors in a high-
dimensional space is itself a difficult problem, no mention
the fact that the space is very parse.
The main weakness of our vector representation

method is that a dimension does not have the concreate
meaning. In methods based on TF-IDF, a dimension cor-
responds to a term or concept in a standardized vocabu-
lary, and thus it is convenient to explain the meaning of
an element in a TF-IDF vector. Our method, however,
embeds and compresses a record into a low dimensional
vector, and hence the meaning of a dimension is not
clear. With understanding, it might be worth pursuing
to seek for a methodology similar to deconvolution to
dissect the meaning of a vector. Another possible im-
provement of our method is to stand on the shoulders
of already established fruitful biomedical knowledge.
Although we have demonstrated the effectiveness of the
vector representation without the use of any prior infor-
mation about biomedical concepts, starting from scratch
certainly wastes such knowledge that has been accumu-
lated for a long period of time. In this sense, it might be
worth pursuing to incorporate biomedical knowledge
into our approach to further improve its effectiveness.
Finally, the methodology of representing a document as
a vector is not specific to the analysis of OMIM records.
With the coming of precision medicine, there are abun-
dant electronic records of medicine and health awaiting
for deep analysis. We expect to see a wide range of
applications borrowing the idea of our method in the
near future.

Conclusions
In this paper, we have proposed a deep learning ap-
proach named mimvec to analyse the OMIM database,
with particular emphasis on the human phenome. We
have shown that the unsupervised conversion of OMIM
records to low-dimensional vectors effectively enables
the classification of diseases against genes, the discrimin-
ation between diseases of different inheritance styles,
and the prioritization of candidate genes. When utilized
with multiple genomic data sources, the similarity
measure derived from vector presentation of phenotypes
with no prior knowledge exhibits superior performance
over traditional measures derived from ULMS, MeSH
and HPO in a model for prioritizing candidate genes.

Methods
Data sources
We extracted 24,061 records from the OMIM database
(accessed in April 2015) and identified 7988 disease
phenotypes and 16,073 genes, represented by MIM
numbers. We identified 20,327 genes from the Ensembl
database (accessed in November 2015), represented by
Ensembl gene ID. We extracted 4606 associations
between 3933 diseases and 3028 genes by using the tool
BioMart [31]. On average each disease was associated
with 1.17 genes, and each gene was relevant to 1.52
diseases. We downloaded raw sequencing data of 503
RNA-seq experiments from the ENCODE projects and
calculated expression levels (FPKM) of the 20,327 genes
by using the standard Tophat and Cufflinks pipeline. We
extracted sequences of 20,272 human proteins from the
Swiss-Prot database (release 2014_01). We extracted
403,514 interactions between 13,747 human proteins
from the STRING database (version 9.1). We extracted
the biological process domain of the gene ontology and
downloaded associated annotations for 15,602 human
genes (both released on 2014–11-22).

Vector presentation of phenotypes based on a
standardized vocabulary
We adopted a text mining technique to characterize an
OMIM record of human disease phenotype by using a
standardized vocabulary. First, we splinted sentences in
the TX and CS fields of a record into words, and we
mapped these words onto UMLS concepts by using the
program MetaMap [32] (Version 2016 V2), obtaining
8446 concepts for describing human disease phenotypes.
For each of these concepts, we counted its occurrence
frequency in the record to obtain a statistic called term
frequency (TF), calculated the negative logarithm of its
occurrence frequency in all OMIM records to obtain a
statistic called document frequency (IDF), and derived a
quantity called TF-IDF as the product of the TF and IDF
values. Concatenating this quantity for all concepts
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together, we obtained a TF-IDF vector to characterize
the record based on UMLS. Second, with a similar pro-
cedure, we obtained 4097 concepts by using MeSH as
the standard vocabulary and characterized an OMIM
record using a TF-IDF vector of these terms. Third, focus-
ing on HPO and associated annotations for 6708 human
disease phenotypes [25], we collected 11,813 concepts in
the ontology and characterized a phenotype using a nu-
meric vector of such number of dimensions. An element
in such a vector was the information content of the corre-
sponding concept, calculated as the negative logarithm of
its occurrence frequency in the annotations. Considering
the directed acyclic graph (DAG) structure of HPO, we
added the occurrence frequency of a concept to its parents
recursively.

Vector presentation of phenotypes using paragraph
vector
Let M = (mij)m × d be the vector presentation of all
OMIM records, where m is the number of records and
d the number of dimension of a vector. Each row of this
matrix, mi = (mij)1 × d, corresponds to the vector presen-
tation of a record i. Let W = (wij)w × d be the vector
presentation of all words in OMIM records, where w is
the number of words and d the number of dimension of
a vector. Each row of this matrix, wi = (wij)1 × d, corre-
sponds to the vector presentation of a word i. Given a
sequence of words in a window of size k starting from
the t-th word in a record r, represented by correspond-
ing vectors wr

t ;…;wr
tþk−1 , we denote the log likelihood

of predicting the word wr
tþk as

l r; t; kð Þ ¼ logp wr
tþk jmr;wr

t ;…;wr
tþk−1

� �
.

Using a sliding window of size k to scan all OMIM
records, the objective is then to maximize the average
log likelihood, as

1
T

Xm
r¼1

Xlr−kþ1

t¼1

l r; t; kð Þ;

where lr is the length of the r-th record, and T the total
number of windows scanned. With a softmax function,
the likelihood p(r, t, k) is calculated as

p wr
tþk jmr;w

r
t ;…;wr

tþk−1

� � ¼ exp yrtþk

� �T
wr

tþk

� �
Pw

i¼1 exp yrtþk

� �T
wi

� � ;

where the summation is taken over all possible words,
and yrtþk is the predicted vector derived from the record
vector mr and word vectors wr

t ;…;wr
tþk−1 . The j-th

dimension of yrtþk is calculated as

yrtþkð Þj ¼ αj þ βjmrj þ
Xk
i¼1

γ ijw
r
tþi−1ð Þj:

with α, β and γ ‘s being parameters. Considering that the
number of words is typically large (~105), a hierarchical
softmax is often adopted for fast training [29]. In order
to train the neural network model for the softmax classi-
fier, stochastic gradient descent is often used, and the
gradient is obtained by backpropagation. In our study,
we default the window size to 5. Our empirical analysis
also shows the robustness in the selection of this
parameter.

Derivation of phenotype semantic similarity
Given the vector presentation of disease phenotypes, we
characterized semantic similarity between two phenotypes
by calculating the cosine of the angle between the
corresponding vectors. We also adopted other similarity
measures, including Pearson’s correlation coefficient,
Spearman’s correlation coefficient, and Euclidean similar-
ity, in the comparative study. Particularly, the Euclidean
similarity was transformed from the standard Euclidean
distance via a linear transformation to ensure the similar-
ity was in the range of [0,1], while the other three similar-
ity measures were already in such a range according to
our numerical analysis. In a similar manner, we character-
ized the semantic similarity between a phenotype and a
gene, and that between two genes.

Derivation of gene functional similarity
With the RNA-seq data of [33], we characterized a hu-
man gene using a 503-dimensional numeric vector that
represented logarithm of FPKMs of the gene across the
experiments. For a pair of genes indexed by i and j, we
calculated the absolute value of the Pearson’s correlation
coefficient of the corresponding vectors to obtain their
raw similarity scores rij gexpð Þ . We further applied an expo-

nential transformation to convert the raw score into a
functional similarity score, as

s gexpð Þ
ij ¼ exp −λ

1−r gexpð Þ
ij

σ gexpð Þ
ij

 !22
4

3
5;

where σ gexpð Þ
ij the standard deviation estimated from raw

scores for all pairs of genes, and λ a tuning parameter
with defaulting value 1.
We calculated pairwise local sequence alignments of hu-

man proteins using the Smith-Waterman algorithm im-
plemented in SSEARCH [34]. We then constructed a
sequence similarity network of these proteins by connect-
ing two proteins with an undirected edge if their align-
ment e-value is less than a predefined threshold (10−4).

Next, we calculated the shortest path distance (δ gexpð Þ
ij ) for

every pair of proteins i and j in this network and
converted it into a similarity value in the range of 0 and 1
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by a linear transformation (r gexpð Þ
ij ¼ 1−δ gexpð Þ

ij =maxδ gexpð Þ
ij ).

Finally, we applied the exponential transformation to
convert a raw score to a functional similarity score.
We extracted interactions between proteins from the

STRING database (Version 9.1) [35] and constructed a
protein-protein interaction network accordingly. Then,
as was done for protein sequences, we calculated the

shortest path distance (δ gexpð Þ
ij ) for every pair of proteins i

and j in this network and converted it into a value in the

range of 0 and 1 ( r gexpð Þ
ij ¼ 1−δ gexpð Þ

ij =maxδ gexpð Þ
ij ). Finally,

we applied the exponential transformation to convert a row
score to a functional similarity score.
We identified 26,784 concepts from the biological

process domain of the gene ontology [36] and charac-
terized each human gene using a numeric vector of
such number of dimensions. Here, each element in a
vector was the information content of the correspond-
ing concept. We calculated the raw similarity score
between a pair of genes as the cosine of the angle be-
tween the corresponding vectors and applied the ex-
ponential transformation to convert a raw score into a
functional similarity score.

Random walk for prioritizing candidate genes
Given a semantic similarity measure for phenotypes, we
could construct a nearest neighbor network of diseases
by keeping only 10 neighboring diseases of the highest
similarity scores for each disease. Similarly, given a
functional similarity measure for genes, we could also
construct a nearest neighbor network of genes by keep-
ing only 10 neighboring genes of the highest similarity
scores for each gene. These two networks, together
with known associations between diseases and genes,
formed a heterogeneous work that included both dis-
eases and genes and immediately enabled us to adopt
the following random walk model for prioritizing candi-
date genes.
In detail, such a heterogeneous disease-gene network is de-

noted by a triple H = (D, G, A), where D= (dij)m×m is the
weight matrix of the disease subnetwork, G= (gij)n×n that of
the gene subnetwork, A= (aij)m×n the adjacency matrix of
the interconnections, and m and n the numbers of diseases
and genes, respectively. Applying row-normalization to D, we
obtain a transition matrix U= (uij)m×m, where uij ¼ dij=Pm

j¼1dij denotes the probability that a random walker moves

from the i-th disease to the j-th disease when it stays in the
disease subnetwork. Similarly, we obtain three other transi-
tion matrices: V = (vij)n × n with vij ¼ gij=

Pn
j¼1gij denoting

the probability that the walker moves from the i-th gene to
the j-th gene when it stays in the gene subnetwork, R

= (rij)m × n with rij ¼ aij=
Pn

j¼1aij rij ¼ 0 if
Pn

j¼1aij ¼ 0
� �

being the probability that the walker jumps from the
i-th disease to the j-th gene when it stays in the dis-

ease subnetwork, and S = (sij)n ×m with sij ¼ aji=
Pm

j¼1

aji sij ¼ 0 if
Pm

j¼1aij ¼ 0
� �

being the probability that

the walker jumps from the i-th gene to the j-th
disease when it stays in the gene subnetwork. We
then define matrix T as

T¼ 1−τð ÞU τR

τS 1−τð ÞV
� �

;

and perform row-normalization to obtain the transi-
tion matrix for the heterogeneous network as W
= (wij)(m + n) × (m + n)

, where wij ¼ tij=
Pmþn

j¼1 tij and τ the

probability of jumping from the disease subnetwork to
the gene subnetwork or vice versa.

Let u 0ð Þ ¼ uð0Þi

� �
m�1

and v 0ð Þ ¼ vð0Þi

� �
n�1

be initial

probabilities for the disease and the gene subnetworks, re-
spectively. We obtain u(0) by assigning probabilities pro-
portional to disease similarities to neighbors of the query
disease and 0 otherwise, and we set v(0) to zeros to simulate
the situation that genetic basis for the query disease is
completely unknown. Let p(0) = ((u(0))T, (v(0))T)T contains
initial probabilities for the heterogeneous network and p(t)

contains probabilities that the walker stays at each node at
time t, we have the iterative formula

p tþ1ð Þ¼ 1−πð ÞWTp tð Þþπp 0ð Þ:

Solving this linear equation when time tends to infin-
ite, i.e., p(∞) = (1 − π)WTp(∞) + πp(0) with respect to the
steady-state probability p(∞), we obtain the steady state
solution p(∞) = π(I − (1 − π)WT)−1p(0), which can be
decomposed into a disease part u ∞ð Þ ¼ ui ∞ð Þ

� �
m�1 and a

gene part v ∞ð Þ ¼ vi ∞ð Þ
� �

n�1 . The later one, v(∞), can then
be used to score the strength of association between a
query disease and candidate genes. It has been show that
the random walk model is not sensitive to the parameters
involved in the model [17]. We therefore set default values
for the parameters as τ = 0.5, π = 0.7 and ε = 10−4.
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