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Abstract

Background: Phylogenetic analysis is a key way to understand current research in the biological processes and
detect theory in evolution of natural selection. The evolutionary relationship between species is generally reflected in
the form of phylogenetic trees. Many methods for constructing phylogenetic trees, are based on the optimization
criteria. We extract the biological data via modeling features, and then compare these characteristics to study the
biological evolution between species.

Results: Here, we use maximum likelihood and Bayesian inference method to establish phylogenetic trees;
multi-chain Markov chain Monte Carlo sampling method can be used to select optimal phylogenetic tree, resolving
local optimum problem. The correlation model of phylogenetic analysis assumes that phylogenetic trees are built on
homogeneous data, however there exists a large deviation in the presence of heterogeneous data. We use conscious
detection to solve compositional heterogeneity. Our method is evaluated on two sets of experimental data, a group

of bacterial 165 ribosomal RNA gene data, and a group of genetic data with five homologous species.

Conclusions: Our method can obtain accurate phylogenetic trees on the homologous data, and also detect the
compositional heterogeneity of experimental data. We provide an efficient method to enhance the accuracy of

generated phylogenetic tree.

Keywords: Phylogenetic analysis, Bayesian inference, Multi-chain Markov chain Monte Carlo, Conscious detection,

Compositional heterogeneity

Background

Phylogenetic analysis keeps an important role to under-
stand current research in the biological processes and
detect theory in evolution of natural selection. We extract
the biological data via modeling features, and then com-
pare these characteristics to study the biological evolution
between species. The evolutionary relationship between
species is generally reflected in the form of phylogenetic
trees. Phylogenetic analysis can help to understand the
evolutionary history of biological process, and become
important data source for the development of large scale
genomic data [1].
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Many methods for constructing the phylogenetic tree,
are based on optimization criteria, such as maximum
parsimony, maximum likelihood and minimum evolu-
tion. Maximum parsimony (MP) approach [2, 3] examines
all possible topologies or a certain number of topolo-
gies, which are likely to choose real phylogenetic tree
or approximate phylogenetic tree with fewest evolution-
ary changes. Maximum likelihood (ML) approach [4, 5]
tries to estimate trees by formulating a probabilistic model
of evolution and applying known statistical method. It
involves that phylogenetic tree yields the highest probabil-
ity of evolutionary relationship. Minimum evolution (ME)
approach [6] searches for the phylogenetic tree that mini-
mizes total branch lengths. It is based on the assumption
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that the phylogenetic tree with smallest branch lengths is
most likely to be the true one.

The correlation model of phylogenetic analysis assumes
that phylogenetic trees are built on homogeneous data
[7-10]. However, there exists a large deviation in the
presence of heterogeneous data. As early as twenty years
ago, there is first computational method [11] to detect
heterogeneity problem, which makes people to doubt
the credibility of phylogenetic analysis. Later, Markov
model [12] of DNA sequence is used in the system devel-
opment. Jukes-Cantor model [13] has been improved
and taken into account unequal nucleotide composi-
tions, different rates of changes from one nucleotide
to another, variations in the form of invariant sites,
and discrete gamma-distributed rates of variable sites.
At the same time, researchers realize that the pro-
cess of evolution would be different because of vari-
ous evolutionary trees. It is obvious that the global rate
can be often observed in fast and slow evolutionary
species.

In this paper, we use maximum likelihood and
Bayesian inference method to establish phylogenetic
trees; multi-chain Markov chain Monte Carlo sam-
pling method can be used to select optimal phylo-
genetic tree, resolving local optimum problem. We
use two different instantaneous rate matrices, which
is symmetrical and implies time-reversibility. We allow
more than one composition vector to model com-
positional heterogeneity, because the overall model is
tree-heterogeneous. The analysis is not reversible, and
the likelihood depends the position of root. Compared
to bootstrapping, Markov chain Monte Carlo yields a
much larger sample of trees in the same computational
time.

The correlation model of phylogenetic analysis assumes
that phylogenetic trees are built on homogeneous data,
however there exists a large deviation in the presence
of heterogeneous data. The sample of trees produced
by Markov chain Monte Carlo is highly auto-correlated,
whereas many fewer bootstrapping replicates are suf-
ficient. We make a conscious detection of phylo-
genetic tree produced by multi-chain Markov chain
Monte Carlo sampling, analyzing multiple sampling and
comparing different samples obtained from estimated
values. We use conscious detection to solve composi-
tional heterogeneity. Our method is evaluated on two
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sets of experimental data, a group of bacterial 16S
ribosomal RNA gene data, and a group of genetic
data with five homologous species. Our method can
obtain accurate phylogenetic tree on the homologous
data, and also detect the compositional heterogeneity
of experimental data. We provide an efficient method
to enhance the accuracy of generated phylogenetic
tree.

Method

We construct a phylogenetic tree for a set of DNA
sequences. Our method generally contains following
processes: aligning sequence [14-16], building phyloge-
netic trees, and selecting phylogenetic tree.

Aligning sequence

The genetic information storage location has some
differences on distinct species, such as information
length and carrier of genetic information. These dif-
ferences will affect our subsequent analysis. There-
fore, we should arrange all possible similar sites in the
same position, via a progressive algorithm of multiple
sequence alignment. We adopt representational evolu-
tionary multiple sequence alignment algorithm, called
ClustalW [17-19]. It displays the alignment score, in
form of identities, similarities and differences, and a
guide tree of evolutionary relationship between aligned
sequences.

Building phylogenetic trees

The phylogenetic tree consists of many nodes and
branches, where the node represents a taxon, namely
species or sequence; the branch represents the evolution-
ary relationship between species [20, 21]. All nodes are
divided into external nodes and internal nodes. In gen-
eral, the external node represents actual observed taxon,
the internal node represents location of evolutionary
event.

Phylogeny model

Given the genetic information, we need the specific phy-
logeny model to predict evolutionary tree. First, we use
the substitution model in terms of conversion rate. In gen-
eral, the instantaneous conversion matrix is expressed as
follows.
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where this matrix specifies the rate of change from
nucleotide i-row to nucleotide j-column. The nucleotides
are in the order A, C, G, T. The stationary frequencies of
nucleotides (w4, ¢, ™G, mg) are obtained by letting the
substitution process run for a very long time.

The instantaneous conversion rate matrix describes the
ratio of substitutions in a short period of time, but we need
to calculate probabilities of changes in a certain period
of time. Then, the probability matrix can be calculated as
follows.

P(t) = ¥

where Q is the instantaneous rate matrix, ¢ is the branch
length.

For a variety of evolutionary trees, we can calculate the
likelihood of each phylogenetic tree. We need to con-
sider the transformation between one external node and
one internal node, and also consider the transformation
between two internal nodes. For a specific site, we can
calculate the likelihood of phylogenetic tree as follows.
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where x and y are the external node and the internal node,
respectively. o (k) is the prefix index of &, v is the branch
length between y, () and x/yk. External nodes are s input
sequences, that is, s species; according to the graph theory,
we can get a total of 2s — 1 internal nodes.

Log-likelihood

We assume that all sites are independent with each other.
We can calculate the likelihood of each site [22], and
then multiply them together to get final likelihood of
phylogenetic tree.

We put all possible permutations, and then calculate the
likelihood of all possibilities. For a specific site, the likeli-
hood is the sum possibility of all internal nodes, denoted
by L;. The likelihood of all sites can be calculated as
follows.

N
InL =YL
j=1

where N refers to the length of sequence and the total
number of sites.

Bayesian inference
We can use Bayesian inference [23] to produce the poste-
rior probability of i-th phylogenetic tree, t;, as follows.
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where f(7;]X) is the posterior probability of t;, f(X|t;) is
the likelihood of t;, and f(7;) is the prior probability of t;.
B(s) is the number of all possible trees.

Selecting phylogenetic tree

Typically, the posterior probability of phylogenies cannot
be calculated analytically, but it can be approximated by
sampling phylogenetic trees from the posterior probability
distribution.

Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) [24] can be used to
sample phylogenies according to their posterior probabil-
ities. The Metropolis-Hastings-Green (MHG) algorithm
is an MCMC method that has been used successfully to
approximate posterior probabilities of trees. MHG algo-
rithm constructs a Markov chain with the stationary
frequency of posterior probability. The current state is
denoted as 7, and a new state is proposed as . The new
state is accepted with probability as follows.
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One important problem of MCMC method is that we

can only get the local optimal result, but not the global

optimum. As shown in Fig. 1, if the current state is at the

peak of T7, because of the jump decision, the probabil-

ity of next state must be less than one of current state, so
MCMC method may get 71, but miss better 7.

J101X)

T T, T,

Fig. 1 Markov Chain Monte Carlo method can only get the local
optimal result in range Ty or T3
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Multi-chain Markov chain Monte Carlo

When the distribution becomes flat, Multi-Chain Markov
Chain Monte Carlo (MCMCMC) is easy to get down from
the peak of local optimum, and then try to get more states.
We set a cold chain, and rest of heat chains obtained by
heat values. The heat value is obtained as follows.

1

bi= Ttci—1)

where c is the heat coefficient according to the specific
experimental data, i is the chain number. The state value
of i-chain is calculated as f;(s) = fi(s)?. Easy to see, the
distribution is more gentle, as shown in Fig. 2.

Exchange occurs between two selected chains, and the
exchange rate is determined as follows.

o )
Ji(s)fi(s)
where s is the state of chain, f(s) is the state s correspond-
ing to the state value in the special chain. When R is more

than or equal to 1, it must be exchanged; when R is less
than 1, it may be exchanged with probability value.
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Fig. 2 Cold Chain and Heat Chain for obtaining the global optimum:
red point is used for heat status and blue point is used for cold status
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Conscious detection

The correlation model of phylogenetic analysis [9]
assumes that phylogenetic tree is built on homogeneous
data, therefore there exists a large deviation in the pres-
ence of heterogeneous data. We use conscious detection
to solve compositional heterogeneity. We make a con-
scious detection of phylogenetic tree, analyze multiple
sampling, and compare different samples obtained from
estimated values. We extract the partial data from original
data and form a new data set. Hundreds of data sets are
used to generate different phylogenetic trees, and then get
the support rate of different branches in the phylogenetic
tree generated by actual data.

For m x n data set matrix, we select a random number
from 1 to #, and obtain the column corresponding to this
random number as re-sampling data for the first column;
then repeat the above step to obtain re-sampling data of
the second column, and so on. After N-loops selection,
we get the final data set with same length of the original
data set. For obtained data set, we analyze the phyloge-
netic tree according to phylogenetic analysis. Finally, we
get N phylogenetic trees and their posterior probabilities,
and analyze the genetic information.

Results and discussion

Our method is evaluated on two sets of experimental data,
a group of bacterial 16S ribosomal RNA gene data, and a
group of genetic data with five homologous species.

Experimental environment

We use Think Station S30 Workstation, and all pro-
grams are carried out on Ubuntu 14.04 64bit operating
system, Intel Xeon E5-2620, 6 core 12 threads A-2 pro-
cessor, 32G DDR3 1333MHz memory. We also use exper-
iment softwares, such as multiple sequence alignment on
CLUSTALX 2.0 [25, 26] and simulation test on JMODEL-
TEST 2.17. The experimental data source is from National
Center for Biotechnology Information (NCBI) database.

Compositional heterogeneity in bacterial 16S genes
Our development system is applied to a problematic data
set of bacterial 16S genes [27]: Deinococcus, Thermus,

Table 1 Bacterial 16S genes: Deinococcus, Thermus, Bacillus,
Thermotoga, and Aquifex

Organism Accession Type

Thermus thermophilus NR_037066 complete sequence
Bacillus subtilis NR_102783 complete sequence
Thermotoga maritima NR_029163 complete sequence
Aquifex pyrophilus NR_029172 partial sequence
Deinococcus radiodurans NR_074411 complete sequence
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Aquifex Thermotoga
Bacillus
Thermus
Deinococcus
Fig. 3 Predicted evolutionary tree on Bacterial 16S Genes

Bacillus, Thermotoga, and Aquifex. Specific information is
shown in Table 1.

Our method produces the phylogenetic tree on 16S
genes. We get prediction result with a tree (Deinococcus,
(Aquifex, Thermotoga), (Thermus), Bacillus), as shown in
Fig. 3. As we can see, Thermotoga and Aquifex are con-
nected together, Bacillus and Deinococcus are connected
together.

However, other biological evidence, according to their
actual evolutionary relationship, should introduce actual
phylogenetic tree ((Aquifex, Thermotoga), (Deinococcus,
Thermus), Bacillus), as shown in Fig. 4.

Conscious detection
Here, we re-sample 100 groups of data set, and con-
struct one phylogenetic tree for each group of data set.

Aquifex Thermotoga
Thermus
Bacillus
Deinococcus
Fig. 4 Actual evolutionary tree on Bacterial 16S Genes
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Table 2 Experiment results of our method with conscious
detection on bacterial 16S genes

Posterior probability Experimental groups

100% 17
[95%, 100% ) 28
[80%,95% ) 12
[50%, 80% ) 10

Experiment results on 67 groups of data set are the same
with their actual evolutionary relationship, as shown in
Table 2. Based on conscious detection, we can correct the
experimental data, in order to get the actual phylogenetic
tree.

Homologous experiment
We adopt homologous gene sequences to construct
the evolutionary tree, and find out evolutionary rela-
tionship. We use five species of albumin and c-myc
mRNA genes [28]: fish(Actinoptergyii, Salmo salar),
frogs(Amphibia, Xenopus laevis), birds(Aves, Gal-
lus gallus), rodents(Rodentia, Rattus norvegicus) and
humans(Primates, Homo sapiens), as listed in Table 3.
Our method produces similar experiment results on
albumin and c-myc mRNA genes. We get result with a
tree (frog, (human, rodent), (bird), fish), as shown in Fig. 5.
As we can see, human and rodent are connected together,
frog and fish are connected together. Experiment results
on albumin and c-myc mRNA genes are the same with
their actual evolutionary relationship.

Xanthine dehydrogenase from drosophila

We analyze the root of Drosophila saltans and Drosophila
willistoni groups, as outgroup rooting with the Xdh gene
[29]. Based on morphology, we got the most credible root
as shown in the root position r; in Fig. 6, as well as based
on deletion of an intron in the willistoni group-specific
Adh gene. The outgroup is D. virilis, D. pseudoobscura
and D. melanogaster. When only the ingroup is used, an
acceptable phylogeny can be generated, which is consis-
tent with the known relationships derived from morpho-
logical characters. When outgroup taxa are used in the

Table 3 Homologous data of albumin genes and c-myc mRNA

genes
Species Organism Accession (albumin)  Accession
(c-myc mRNA)
Actinoptergyii  Salmo salar X52397 M13048
Amphibia Xenopus laevis M18350 M14455
Aves Gallus gallus X60688 M20006
Rodentia Rattus norvegicus ~ J00698 Y00396
Primates Homo sapiens L00132 V00568




The Author(s) BMC Systems Biology 2017, 11(Suppl 4):79

Human

Rodent Bird

Fish Frog

Fig. 5 Evolutionary tree on albumin and c-myc mRNA genes

analysis, depending on different model or method, the
ingroup’s root position became unstable. This situation is
resulted by the compositional differences, especially the
ones between ingroup and outgroup taxa.

Four different roots indicated by positions r; -r4 in Fig. 6,
the points where the outgroup attach to the ingroup on,
are found by various methods. Here, the entire analy-
sis’s overall root and the outgroup root position can be

D.melanogaster

D.pseudoobscura

D.virilis

D.sucinea

r; D.capricorni
D.nebulosa
D.insularis
D.tropicalis

— D.willistoni

D.equinoxialis
h —_ D.paulistorum

—

D.saltans
D.prosltans
D.neocordata
D.emarginata
D.sturtevanti
D.subsaltans

Fig. 6 Rooting Drosophila saltans and willistoni groups
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distinguished from each other, numbered as in Fig. 6.
When accommodating the heterogeneous composition,
this model can recover the outgroup root position r;.
A distance-based analysis can overcome compositional
heterogeneity, finding the preferred root position r;. We
produce on these data to choose a model using the tree
rooted at position 1, with the expectation that our choice
of model is independent on other roots. A search for the
GTR+SS model using PAUP finds a tree rooted at posi-
tion rp. A Bayesian analysis using MrBayes also finds a tree
rooted at position 7.

Conclusions

In our paper, maximum likelihood, Bayesian inference
method and multi-chain Markov chain Monte Carlo sam-
pling are used to build and select global optimal phyloge-
netic tree. And also, compositional heterogeneity problem
is solved by using conscious detection. When evaluated
on two sets of experimental data, our method is efficient
and accurate to generate phylogenetic tree and detect the
compositional heterogeneity.
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