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Abstract

Background: Molecular interaction data at proteomic and genetic levels provide physical and functional insights
into a molecular biosystem and are helpful for the construction of pathway structures complementarily. Despite
advances in inferring biological pathways using genetic interaction data, there still exists weakness in developed
models, such as, activity pathway networks (APN), when integrating the data from proteomic and genetic levels. It
is necessary to develop new methods to infer pathway structure by both of interaction data.

Results: We utilized probabilistic graphical model to develop a new method that integrates genetic interaction and
protein interaction data and infers exquisitely detailed pathway structure. We modeled the pathway network as
Bayesian network and applied this model to infer pathways for the coherent subsets of the global genetic interaction
profiles, and the available data set of endoplasmic reticulum genes. The protein interaction data were derived from the
BioGRID database. Our method can accurately reconstruct known cellular pathway structures, including SWR complex,
ER-Associated Degradation (ERAD) pathway, N-Glycan biosynthesis pathway, Elongator complex, Retromer complex,
and Urmylation pathway. By comparing N-Glycan biosynthesis pathway and Urmylation pathway identified from our
approach with that from APN, we found that our method is able to overcome its weakness (certain edges are
inexplicable). According to underlying protein interaction network, we defined a simple scoring function that only
adopts genetic interaction information to avoid the balance difficulty in the APN. Using the effective stochastic
simulation algorithm, the performance of our proposed method is significantly high.

Conclusion: We developed a new method based on Bayesian network to infer detailed pathway structures from
interaction data at proteomic and genetic levels. The results indicate that the developed method performs better in
predicting signaling pathways than previously described models.
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Background

A cellular biological system is controlled by the molecules
at different levels, such as protein phosphorylation or gen-
etic variations, and their interactions. Protein interaction
(i.e., protein-protein interaction) refers to physical inter-
connection between two or more proteins that occur in a
cell, by which protein components can carry out most of
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cellular molecular processes [1]. Genetic interaction refers
to functional relationship between two genes, which can
be measured by the difference between the phenotype
levels of double gene mutations and the expected neutral
level evaluated by the corresponding single mutant pheno-
type level [2, 3]. The publicly available data sets, such as
Biological General Repository for Interaction Datasets
(BioGRID, https://thebiogrid.org/), Saccharomyces Gen-
ome Database (SGD, http://www.yeastgenome.org/), Hu-
man Protein Reference Database (HPRD, http://
www.hprd.org/), Search Tool for the Retrieval of
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Interacting Genes/Proteins (STRING: http://www.string-
db.org/) and so on, collect thousands of proteins and a
few genetic interactions from several of species.

Given a great deal of these interaction data collected,
it is of challenges to elucidate biological meaning behind
the data, especially to identify biological pathways
underlying the data [4]. A few methods and tools have
been developed to predict signaling pathways based on
protein interaction networks [5-8]. Several different
studies utilized various biological data to discover regu-
latory networks [9-12] and reconstruct metabolic net-
works [13-16]. There are other methods that uncover
pathway networks by integrating protein-protein inter-
action data and gene expression data [17-19]. In genetic
interaction studies, the most important method is cluster
analysis, grouping genes by the similar genetic inter-
action profiles [20-22]. Some other studies focus on
aggravating or alleviating relationships between related
gene groups [23-25]. In order to automatically identify
detailed pathway structures using high-throughput
genetic interaction data, the activity pathway network
(APN) was developed [26]. However, these available
approaches cannot fully take advantages of the comple-
mentarity between protein and genetic interaction data
to infer the biological pathway structures.

In this paper, we present a Bayesian model that inte-
grates high-throughput protein and genetic interaction
data to reconstruct detailed biological pathway structures.
The model can organize related genes into the corre-
sponding pathways, arrange the order of genes within
each pathway, and decide the orientation of each intercon-
nection. Based on protein interaction network, the model
predicts detailed pathway structures by using genetic
interaction information to delete redundancy edges and
reorient the kept edges in the network. Similar to APN
[26], our model represents a biological pathway network
as a Bayesian network [27], in which each node presents
the activity of a gene product. Different from APN that
drew network sample from complete network, our
method introducing protein interaction networks as
underlying pathway structures. In addition, a scoring func-
tion is defined by gene pairwise score, which can avoid the
unadjusted balance between gene pairwise score and edge
score in the APN. Thus, our model is able to improve
computational efficiency of stochastic simulation algo-
rithm and overcome the limitation of APN that some
edges in the results are difficult to interpret. In our model,
each edge in the network can capture physical docking,
and represent functional dependency.

Methods

Bayesian network

We model a pathway network as a Bayesian network
that is a directed acyclic graph. The activity of a gene is
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assigned to a node in the network [26]. The edge in the
network is an interaction in protein interaction network.
Additionally, it presents the conditional dependency be-
tween the nodes connected as well. The experiments of
genetic interaction are not for detection of the influence
between pairwise genes but for measurement of impact
of mutation of these two genes on phenotype of interest.
Thus, it is impossible to evaluate conditional probability
distribution between the nodes of the Bayesian network,
and the standard Bayesian learning methods lost their
efficacy. Here, we only utilize conditional independence
assumptions of the Bayesian network theory to construct
a network that can represent independence assumptions
hidden in the gene interaction data. As in Ref. [26],
based on the independence assumptions, it is elucidated
that given the activity level of X, the fitness level is inde-
pendent of the activity level of Y, if gene X is fully epi-
static to gene Y. The constructed network can encode a
linear pathway substructure between X and Y, in which
Y must be the father node of X, that is, the direction of
edge between is decided.

Scoring
For a candidate pathway network (Fig. 1b) sampled from
protein interaction network, we score it in term of gen-
etic interaction quantitative measurement using method
in Ref. [26]. For every pair of genes, there are four topo-
logical structures and their local scores shown in Fig. 2.
Despite the larger score indicating the more possible
local structure for each gene pair, we still need every one
of four scores to find the optimal global structure. We
computed the four possible scores for each pair of genes
before all the steps to improve computation efficiency.
Using the scoring methods in Fig. 2 and dataset D of
genetic interaction and protein interaction, we can com-
pute a local score for every pair of genes in a candidate
pathway network N, and sum up all of the scores for all
pairs to define the global score function f{N), to which
the Bayesian network posterior probability distribution
p(N|D) is proportional, shown as eq. (1). In Bayesian net-
work theory [27], a network N with the higher posterior
probability or global score should be more accord with
the data set.

f(N) = exp< Z Score(x,y)) (1)

xzy in N

Different from study of Ref. [26], we do not include
every edge score in f{N), because the edge in our
network represents protein interaction that insures its
existence. Then, it avoids the dilemma how to adjust the
balance between the two scores.
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Fig. 1 The brief procedure of the annealed importance sampling. (a) Protein
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proportional f(n) shown as eq. (2), can be defined

has to be a connected graph. (b) The procedure sampling N, from p(N). This annealed run generates a sequence of networks: Ny, 1, Nm—2, .., No,
which are drawn from p; kept by temperature T; for the annealing run and genetic interaction score (j=0, ..., m —1). Where, p; = p]’B/p(N)B/, 1

> B,,_1=0, the p is a uniform distribution from which an initial network n,, _; can be drawn easily. Then let N, = no, and save the
weight w;. (c) Genetic interaction profiles. Using the profiles, score of candidate network can be computed, and the distribution p(N), which is

interaction network of a gene set. It is not necessary that this network

Sampling

We utilized annealed importance sampling [26, 28] to
learn the pathway structure by the above distribu-
tion p (N|D)«fIN). The annealed importance sam-

networks sampled by simulated annealing schedules,
then to evaluate that converge to the real network
structure. The approach is appropriate for sampling N
from multi-modal distributions p (N| D) or abbrevi-

pling approach can assign weights to pathway ated to p(N), since its independent sampling method
Topological structure Score
1
) )-(®) Score(x,y) = =5 (DCuY) — () +1og (»)
1
OO0 Score(x,y) = = (DCuY) — S0 + log (»)
®.. 1
@ r® Score(x,y) = =55 (D(x.y) — E(x, ¥))? +log(p)
©) Score(x,y) = — = (D(6.Y) — = (E(x,)
T STt A
v @
O} + max(S(x),5()))* + log (»)

structure is defined by the probability of actual double mutation measured

Fig. 2 Topological structure and score of gene pair. For a pair of genes (X, ¥), node P represents the measured quantitative phenotype. Dotted
line means that the connection may be not a direct edge in the pathway network. Based on Gaussian distribution, the score for each topological

S() is single mutant fitness, and E(x, y) is typical genetic interaction value defined as [22]. The variance o is the empirical variance of repeated
experiments, and p is the prior probability for each given topological structure

phenotype value (fitness). Where, D(x, y) is (x, y) double mutant fitness,
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can overcome some problems of convergence and
autocorrelation in general Markov chain Monte Carlo
(MCMC) samplers. Figure 1 presents the brief pro-
cedure of an annealing run of the annealed import-
ance sampling.

Pooling

After K annealing runs, the sampler generates K pathway
networks and their weights. Then we can compute the
confidence for any given substructure s, shown as

_ Zf:lwkl(SCNk)

C(s
“ Zlk;ﬁdk

(2)

Where I(-) is the indicator function, Nj is the sample
at the kth annealing run, and wy is the important weight.
Based on the theory of annealed importance sampling,
we can compute confidences of all structure forms of an
interesting gene subset, and choose the maximal one as
the possible detailed pathway structure of the subset.

Pseudo-code for pathway network reconstruction
Input: Matrix P: protein interaction network

Vector S: signal mutation levels
Matrix D: double mutation levels
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Matrix E: typical value for double mutation levels
Vector T: temperatures for the annealing run
Integer K: number of parallel annealing runs
Some optional parameters

Output: Matrix of directed pathway networks and
their weights

Procedure:

Compute all scores for every possible gene pair by inputs
of genetic interaction data

Compute p(N) by scores of gene pairs in N

m = length(TV)

Design distributions p;(j =0, ...,m-1) (as Fig. 1) to
approach P(N)

Fori=1to K

Sample initial network #,, _; from uniform distribution
Pm-1
Forj=m-2to O
Generate n; from #; _, by uniform distribution over P
Accept n; according to Metropolis—Hastings
algorithm by T} and p;
Update importance weight
Save network N; and its weight w;

Return networks N; (i=1, ..., K) and their importance
weights

B lDER1

'ELPZ —»' IKI1

PEP8

lVPSS

Fig. 3 Substructures referred by our method. (a) Part of SWR complex. (b) ERAD pathway. Our method can place most of ERAD genes in
appropriate position of the pathway. (c) Elongator complex. (d) Retromer complex
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Specify interesting pathways
confidence

The MATLAB codes of our algorithm can be freely
downloaded at [29].

and compute their

Results and discussion
We applied our developed method to the genetic inter-
action measured by the protein folding in the endoplas-
mic reticulum [22] and the corresponding protein
interaction network. The genetic interaction data set
contains 444 queries crossed to the same 444 array
strains from the budding yeast, Saccharomyces cerevi-
siae, and keeps available 86,396 raw double mutants
from the 444 x 444 genetic interaction pairs [22]. An-
other genetic interaction data are from the coherent
subsets of the global genetic interaction network [30],
including 198 single mutants and 30,256 double mu-
tants. We used regression method to predict the missing
genetic interaction data from known genetic interaction
profiles. The protein interaction data of the above gene
set are downloaded from BioGRID till December 2016.
Due to the fact that the raw measurements of genetic
interaction data are limited in publicly available
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databases, we applied our developed method to an avail-
able data set from Ref. [22]. Though there are some raw
measurement data sets in Refs. [2, 30], either smaller
number of samples or the higher sparsity makes it in-
feasible to apply our method to these data sets. That also
explains why few available methods were designed to re-
construct pathways by integrating genetic interaction
and protein interaction data. We compared our results
with those predicted by the APN to validate the advan-
tage of our method.

In our method, we modeled the pathway network as a
Bayesian network. The sampling algorithm of annealed
importance is applied to curate networks with the prob-
ability distribution defined by genetic interaction data,
and simultaneously assign weights to them. And the cor-
responding protein interaction network of the genes in
genetic interactions was used to represent underlying
sample population, interpreting existence of potential
edges in the sampled networks. Using these sampled
networks and their assigned weights, we can estimate
the detailed structure of the gene subset with high confi-
dence (see Methods). Two substructures reconstructed
by our method are shown in Fig. 3. Though the genetic
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(b) and (c). (@) The true ordering of N-Glycan biosynthesis pathway substructure from KEGG. (b) The linear structure of the pathway discovered by
our model with high confidence. It can be found that DIE2 is not connected with CWH41 directly, because there is not the protein interaction in
current database. And almost of all genes are on the correct place. (c) The structure from APN
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interaction data for SWR complex are not complete, our
approach still pools the existing genes together (Fig. 3a).
It precisely reconstructs the known functional depend-
encies of ERAD pathway (Fig. 3b).

We compared N-Glycan biosynthesis pathway sub-
structure reconstructed by our model with the result of
APN (Fig. 4). The detailed structures of the pathway
from our model (Fig. 4b) and APN (Fig. 4c) [26] are very
similar. Both of them are similar to the true one in
Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.kegg.jp). One obvious difference is the place
of OST3 that is incorrectly placed in APN (Fig. 4c). It
may be due to the scoring function of APN based on
edge score that strengthens the confidence of edge
(ALG3, OST3). The edge from ALG3 to OST3 has a high
confidence, 0.65, indicating that APN really cannot in-
terpret some edges in its result. Moreover, the orders of
genes from our model and APN may be reverse to the
true one [31] because the mechanisms of genetic inter-
action dependency are represented by phenotype (the
unfolded protein response or fitness). Intriguingly, the
OSTS3 position is correctly predicted in our method. It
indicates the power of our developed method by integra-
tion of protein interaction data. However, we still found
the limitation of the protein interaction data. The edge
(CWH41, DIE2) is not presented in our result, because
the corresponding protein interaction is not found in
currently used protein interaction databases. In future,
we are planning to include more predicted protein
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interaction data from STRING, and design parallel com-
puting in high-performance computers to improve the
performance.

We also applied our model to infer pathways from an-
other available data set of a global genetic interaction
profiles [30]. From about 5.4 million gene pairs, we only
selected coherent subsets in which the gene pairs have
the high Pearson correlation coefficients, for our method
based on annealed importance sampling is not suitable
for so large data set. Using our model, we reconstructed
three substructures, that is Urmylation pathway (Fig. 5¢),
Elongator complex (Fig. 3c), and Retromer complex (Fig.
3d). In Fig. 5, we compared our developed method with
APN. The edge (NFS1, NCS2) presented in results of
APN, as shown in Fig. 5b is difficult to interpret. How-
ever, our result in Fig. 5¢ is consistent with protein infor-
mation from BioGrid as shown in Fig. 5a. The
interactions of UBA4, NFS4, and NCS2 were predicted
by our method. The edge (UBA4, AHP1) in Fig. 5d is
not inferred by these two methods. For our model, the
reason may be the incompleteness of protein interaction
network that is the main weakness of our model.

Conclusions

In this paper, we propose a Bayesian network model to
identify pathway structures by integrating protein inter-
action with genetic interaction data. Our approach
makes use of the complementarity between protein
(physical) and genetic (functional) interaction data to
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Target protein

Fig. 5 Comparison of Urmylation pathways. (@) The protein interaction network of the pathway from BioGRID. (b) The substructure of the
pathway from APN. (c) The substructure of the pathway reconstructed by our model with high confidence. (d) The true ordering of the pathway
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refer the biological pathway structures. We define a
scoring function by which the sampling algorithm of
annealed importance can draw some pathway networks
and their weights that are used to evaluate the candidate
pathway structures. The results show that our model
can predict the pathway structures more accurately.
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