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Abstract

Background: High-throughput experimental techniques have been dramatically improved and widely applied in
the past decades. However, biological interpretation of the high-throughput experimental results, such as differential
expression gene sets derived from microarray or RNA-seq experiments, is still a challenging task. Gene Ontology (GO) is
commonly used in the functional enrichment studies. The GO terms identified via current functional enrichment
analysis tools often contain direct parent or descendant terms in the GO hierarchical structure. Highly redundant
terms make users difficult to analyze the underlying biological processes.

Results: In this paper, a novel network-based probabilistic generative model, NetGen, was proposed to perform
the functional enrichment analysis. An additional protein-protein interaction (PPI) network was explicitly used to
assist the identification of significantly enriched GO terms. NetGen achieved a superior performance than the
existing methods in the simulation studies. The effectiveness of NetGen was explored further on four real datasets.
Notably, several GO terms which were not directly linked with the active gene list for each disease were identified.
These terms were closely related to the corresponding diseases when accessed to the curated literatures. NetGen has
been implemented in the R package CopTea publicly available at GitHub (http://github.com/wulingyun/CopTea/).

Conclusion: Our procedure leads to a more reasonable and interpretable result of the functional enrichment analysis.
As a novel term combination-based functional enrichment analysis method, NetGen is complementary to current
individual term-based methods, and can help to explore the underlying pathogenesis of complex diseases.

Keywords: Gene ontology, Enrichment analysis, Network-based probabilistic generative model, Integer programming,
Complex diseases

Background
High-throughput experimental techniques, such as micro-
array, mass spectrometry and next-generation sequencing,
have become indispensable tools for biological and med-
ical researches. These high-throughput experiments usu-
ally generate large interesting gene lists as their final
outputs, which share some certain characteristics. A large

fraction of the gene outputs specifies the key biological
functions underlying the studied samples. Therefore,
interpreting the biological meaning of the similar charac-
teristics and exploring the functional relationships among
the selected genes are one of the important and challen-
ging tasks in bioinformatics.
Gene Ontology (GO) project is a major bioinformatics

initiative to produce a structured, dynamic, controlled vo-
cabulary to describe key domains of molecular and cellu-
lar biology [1] and unify the representation of gene and
gene product attributes [2, 3]. Due to the hierarchical
structure of the GO, terms located at the top region often
have more general molecular and cellular interpretation,
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and cover larger genes. On the other hand, terms at the
bottom of the hierarchical structure represent more spe-
cific biological explanations. For example, ‘induction of
apoptosis’ is a part of ‘apoptosis’, and the former is the
most specific term. Therefore, genes annotated by the spe-
cific term are implicitly annotated by both its parent
terms. As consequence, we cannot clearly know that
which child term is a major reason to make the gene set
significant, if the term ‘apoptosis’ is determined to be sig-
nificantly enriched. So if the significant terms are chosen
based on enrichment p-values, such as commonly used
statistical methods, they may obscure other more import-
ant terms and make it hard to determine the most rele-
vant explanations.
For addressing this issue, a variety of methods, aiming

at finding the most involved functional relationships
among the selected genes, have been developed during
the past decades to perform the GO enrichment analysis.
Basing on the model input (type of gene list) and the
output (evaluation pattern of the identified GO terms),
these methods can be briefly categorized into three clas-
ses (See Additional file 1, Table S1, Class I-III). The first
class, represented by GOMiner [4], EASE [5], GOstat [6]
onto-express [7], EnrichNet [8], MAPPFinder [9], etc.,
used a gene set as model input and output the signifi-
cant level of each GO term, which was mainly based on
the Fisher’s exact test [10]. A preset threshold value was
usually selected by user to generate the gene list of inter-
est. The second class, represented by GSEA [11], GLO-
BALTEST [12], SIGPATHWAY [13], PAGE [14], SAFE
[15], EasyGO [16], etc., used a whole gene list with cor-
responding scores to evaluate each GO term. These
methods combined the selection of differential expres-
sion genes and the enrichment analysis, and no need to
preset a threshold for generating the gene list of interest.
The major disadvantage of class II methods is its lacking
of flexibility, for the scores are not easily accessible
under sophisticated biological experiments. Class I and
II both individually evaluated the terms, which brought
a higher similarity and redundancy of identified terms.
To make up this drawback, the third class, represented
by DAVID [17], MGSA [18], GenGO [19], MCOA [20],
eliminated the redundancy of enrichment analysis from
the perspective of term set. Given a gene list as model
input, one or more most enriched term sets were
returned as model outputs. The terms in a term set may
be similar or complementary. For example, DAVID [17]
reduces the redundancy in the result of enrichment ana-
lysis by grouping similar terms into functional clusters.
In this paper, a novel network-based probabilistic gen-

erative model, NetGen, was proposed to perform the
enrichment analysis. We followed the framework intro-
duced in GenGO [19] that the gene list of interest was
generated by some GO terms, which can retell the true

story beneath the biological experiment. Lu, et al., mainly
assumed that the active information of terms could passed
to the annotated genes. Therefore, they defined a prob-
abilistic model on the activation graph which contains
both gene and GO nodes. By maximizing the likelihood of
their model conditioned on the set of active genes, their
final results shown that GenGO is prone to directly identify
the combination of complementary (i.e. non-redundant)
terms, and GenGO has a good performance when com-
pared with other methods on both yeast and human GO
database. Particularly, we provided a brand new perspective
to consider this framework. In our model, an additional
protein-protein interaction (PPI) network was explicitly
used to assist the functional analysis. We assumed that
the effect of active terms not only passed to the directly
annotated genes, but also can affected the neighboring
genes of the annotated genes in the PPI network. This
supporting influence get weaker when the distances
from the annotated genes get larger. Our procedure
can lead to a more reasonable and explainable result of
the functional analysis. Maximizing the log-likelihood
estimation function can be formulated as a 0–1 integer
programming problem. We used a greedy algorithm to
identify the most enriched term combination.
During the past years, many methods that integrate

the information of biological network have been devel-
oped to improve the performance of the enrichment
analysis. For example, Wang, et al. [21] proposed a net-
work ontology analysis (NOA) method to perform the
GO enrichment analysis on biological networks. Net-
work enrichment analysis (NEA) [22] extends the trad-
itional overlap statistic in gene-set analysis to network
links between genes in experimental output list and
those in function terms. EnrichNet [8] first scores the
distances between the gene list and reference gene set in
the network using random walk with restart algorithm,
then compares these scores with a background model to
derive their final results. There are two reasons why we
added the network information to assist the functional
analysis. First, the GO annotation database is far from
complete. Due to the underlying incompletion of GO an-
notation, some annotation links between GO terms and
genes have not been established. Therefore, traditional
functional analysis cannot identify these candidate terms.
On the other hand, the interaction network was built
based on the physical contacts of proteins. Proteins are
prone to share a similar biological function, if their
distance is short in the PPI network, which can be
used to compensate for the incompletion of the GO
annotation. Second, with the additional network informa-
tion, our network-based generative model can simulate
the upstream-downstream regulatory mechanism. Specif-
ically, the neighboring genes and the directly annotated
genes can be viewed as the downstream targets and the
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upstream regulators, respectively. In many cases, up-
stream regulators have only subtle expression variation
therefore they may not be directly identified and emerge
in the gene list of interest. However, through the directly
annotated genes and network, the effect of active terms
passes to the downstream genes, which may be observed
and selected into the gene list of interest. The potential
terms can be identified with a more reasonable and
explainable result.
In this work, we first compared the performance of

NetGen and classic individual term-based or term
combination-based enrichment analysis methods in
the simulation studies. NetGen achieved a superior
performance than GenGO [19] and Fisher’s exact test
[10], when the active gene list was generated under
our assumption. We further explored the effectiveness
of NetGen on four real datasets. Notably, we identi-
fied several terms which were not directly linked with
the active gene list (Fisher’s exact test, p = 1) for each dis-
ease. These terms were closely related to the correspond-
ing diseases according to the literature. All these pieces of
evidence showed that NetGen is an efficient computa-
tional tool for functional enrichment analysis and can help
to explore the underlying pathogenesis of complex dis-
eases. NetGen has been compiled in the R package Cop-
Tea, which is available at GitHub (http://github.com/
wulingyun/CopTea/) for users.

Methods
Network-based probabilistic generative model
In our network-based probabilistic generative model, the
model input is the gene list of interest G (active gene
list). We would like to identify the most enriched GO
term set, which provides a reasonable biological explan-
ation to G. Here our model assumed that G is generated
by several unknown active GO terms, by which we can
investigate and gain the insights into the related bio-
logical experiments or problems. Under this assumption,
we completely modeled the generative process that
propagate the active information from terms to genes
and further through the biological network. In detail,
our generative model can be explicated as follows.
First, some related GO terms are activated under the

specific biological condition. The genes which are anno-
tated by these active GO terms are defined as the core
genes. Each core gene is activated (i.e. observed in bio-
logical experiments result G) with a relatively large prob-
ability p1. Second, we explicitly take the information
propagation in biological network into consideration. Two
genes with a relationship in biological network prone to
have the similar functions. Generally speaking, the larger
distance between two genes, the lower probability that
they share the same biological functions (i.e. they are an-
notated by the same term). Therefore, we assumed that

the genes which are close to the core genes in biological
network do have a small chance to be activated, and the
influences of core genes get weaker with the distances in-
crease. In this paper, we only consider the direct neighbors
of the core genes in biological network, which are defined
as the peripheral genes. Each peripheral gene is activated
with a relatively low probability p2. Last, due to the inevit-
able noises and errors in biological experiments, other
genes also have a very low probability q to be picked up
into the active gene list.
Intuitively, we can interpret this process in terms of a

tripartite graph, which can represent the relationship
between GO terms, core genes, peripheral genes and
other genes on the biological network (Fig. 1). Given
the set of active GO terms, the core genes (red nodes
in Fig. 1) can be identified immediately based on GO
annotation. According to the generative procedure men-
tioned above, by using the information of biological net-
work, the peripheral genes, represented as blue nodes in
Fig. 1, can also be found out. All the remaining genes are
other genes, which are represented as gray nodes in Fig. 1.
Three types of genes are selected into the active gene list
by probabilities, p1, p2, q, respectively, where p1 > p2≫ q.
Note that though we all use the nomenclature “active”

to describe the selected terms and genes, their underlying
meanings are different. As shown in Fig. 1 and Fig. 2, the
active genes are the model input whereas the active terms
are the variables which need to be inferred as model
output.

Maximum likelihood estimation problem
Given an active gene list G, we infer the unknown active
GO terms by maximizing the likelihood of observing the
data. First, we give the following definitions as illustrated
in Fig. 1:

(i) N1: Node set of active core genes.
(ii) E1: Edge set from active GO terms to inactive core

genes.
(iii)N2: Node set of active peripheral genes.
(iv)E2: Edge set from core genes to inactive peripheral

genes.
(v) OA: Node set of other active genes.
(vi)OI: Node set of other inactive genes.

Using these symbols, we defined the following log-
likelihood function:

L GjC; p1; p2; qð Þ ¼ N1j j logp1 þ E1j j log 1−p1ð Þ
þ N2j j logp2 þ E2j j log 1−p2ð Þ
þ OAj j logq þ OIj j log 1−qð Þ−α Cj j

where C denotes the set of inferred active GO terms and
G is the observed active gene list. This log-likelihood
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Fig. 2 The workflow of NetGen. The active gene list G is the model input. We want to identify the most enriched GO term set C, which has a
reasonable biological explanation to G, as the final output. A greedy-based heuristic algorithm was used to maximum the log-likelihood function

Fig. 1 The tripartite graph for an intuitive interpretation of the generative process. Rectangular nodes represent the GO terms, and rounded
nodes represent all genes annotated in one species. An edge is introduced between a GO term and a gene node, if and only if the gene is
annotated by that term. The edges between two gene nodes are the counterpart edges in a biological network. The different line types
represent different connection types: active-active, active-inactive, inactive-inactive
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function captures the generative property as we de-
scribed above. First, the core genes had a relatively
larger probability p1 to be active, and the peripheral
genes had a relatively lower probability p2 to be ac-
tive. Second, we penalized the inactive core genes and
the inactive peripheral genes using the size of edge
sets E1 and E2 instead of the size of node sets, re-
spectively. In this way, we can reduce the redundancy
of the active GO terms. Third, all the other genes
both had the smallest probability q to be activated by
external factors, such as noise, uncontrollable error in
experiments, the incompletion of GO annotation and
so on. In the end, a penalty term ∣C∣ was added in
the likelihood function, so that the model will prefer
a smaller set of active GO terms to facilitate the in-
terpretation of the active gene list, and the parameter
α was a positive number to balance the log-likelihood
and the penalization term. The maximum likelihood
estimation (MLE) approach was used for the functional
enrichment analysis to identify the most enriched terms.
In fact, maximizing the above log-likelihood function is
equivalent to minimize the difference between the active
gene list and the core and peripheral nodes activated by
inferred active terms.

Integer programming model and greedy algorithm
The above maximum likelihood estimation problem
for searching the best GO term set C can be formu-
lated as an integer quadratic programming (IQP)
model. Supposing there are M GO terms and N
genes, the annotations are denoted by an annotation
matrix A, with dimension M ×N. The element Aij = 1,
if the gene j is annotated by the term i, and Aij = 0
otherwise. An active gene list is given by the vector g
of length N. The element gi = 1, if the gene j is in the
active gene list, and gi = 0 otherwise. The N ×N
matrix B is the adjacent matrix of biological network.
The element Bij = 1, if the gene i is connected to the
gene j in network, and Bij = 0 otherwise. The IQP
model is formulated as follows:

max
x;y;z

X

j

yjgj logp1 þ
X

i;j

xiAij 1−gj
� �

log 1−p1ð Þ

þ
X

j

zjgj logp2

þ
X

i;j

yiBi;j 1−yj
� �

1−gj
� �

log 1−p2ð Þ

þ
X

j

1−yj
� �

1−zj
� �

gj logq

þ
X

j

1−yj
� �

1−zj
� �

1−gj
� �

log 1−qð Þ

−α
X

i

xi

s:t: yj≤
P
i
Aijxi j ¼ 1; 2;⋯;N

yj≥Aijxi i ¼ 1; 2;⋯;M; j ¼ 1; 2;⋯;N

zj≤
X

i

Bijyi j ¼ 1; 2;⋯;N

zj≥Bijyi i ¼ 1; 2;⋯;N ; j ¼ 1; 2;⋯;N

xi∈ 0; 1f g i ¼ 1; 2;⋯;M

yj; zj∈ 0; 1f g j ¼ 1; 2;⋯;N

The binary variable xi denotes whether the term i is
selected in the final output (i.e. active). xi = 1 means that
the term i is active, and xi = 0 otherwise. The binary vari-
able yj denotes whether the gene j is a core gene, i.e. an-
notated by at least one active term. yj = 1 if gene j is a
core gene, and yj = 0 otherwise. The binary variable zj
denotes whether the gene j is a peripheral gene. zj = 1 if
gene j is a peripheral gene, and zj = 0 otherwise. Using
these symbols, the sizes of N1 , E1 ,N2 , E2 ,OA ,OI de-
fined in MLE can be calculated as the corresponding
items in the objective function of IQP. Besides, the con-
straints imply the basic assumptions in our generative
model. yj≤

P
i Aijxi and yj ≥ Aijxi restrict that only the

genes linked with at least one active term can be a core
gene. zj≤

P
i Bijyi and zj ≥ Bijyi restrict that only the genes

linked with at least one core gene in network can be a
peripheral gene.
The above IQP is difficult to solve exactly since integer

programming generally is NP-hard, from the perspective
of computational complexity. It may not be applicable
for real annotation data analysis, which make us turn to
use a heuristic algorithm to seek for an approximate so-
lution. As in GenGO [19], we used a greedy algorithm
to find the near optimal set of GO terms. Briefly, the
algorithm first finds out a single term whose log-
likelihood function value is the highest. Then in each it-
eration, the algorithm considers all possible one-step
changes of the current set of active terms, i.e. adding or
deleting one term each time. It records the term that
make the largest improvement to the current log-
likelihood function value, and consequently updates the
current term set. The algorithm stops if the log-
likelihood function value cannot be further improved by
any one-step change.
In conclusion, the whole workflow of NetGen is shown

in Fig. 2. First, using the active gene list G and the
current active term set C0, determine the core and per-
ipheral genes and compute the related numbers N1 ,N2 ,
E1 , E2 ,OA ,OI. Second, compute the log-likelihood func-
tion value S of the current active term set C0. Third,
using a greedy-based heuristic algorithm to obtain an al-
ternative updated active term set C. Last, update the
current term set C0 iteratively until no improvement
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could be achieved by any one-step change and then out-
put the final term set.

Mixed parameter selection strategy
The selection of model parameters is important and dif-
ficult. When applying NetGen in practical applications,
in fact, the true parameters for generating the active
gene list is largely unknown, and the inappropriate par-
ameter selection may affect the performance of enrich-
ment analysis. To alleviate the effects of parameter
selection, parameter sensitivity analysis (see Additional
file 1) was performed first to test the robustness of Net-
Gen parameters. According to the helpful information
supplied from the sensitivity analysis, we designed a
mixed parameter selection strategy to facilitate the use
of NetGen in real data analysis.
Given a list of active genes, the following mixed par-

ameter selection strategy was performed to produce
multiple solutions, which can offer more information to
the biologist for downstream analysis.

1. The candidate values for model parameters were
fixed as p1 = 0.8 or 0.5, p2 = 0.1 or 0.05,
q = 0.01 or 0.001, α = 3.

2. Run NetGen algorithm using all eight combinations
of candidate parameter values. An active term set
was obtained for each parameter combination.

3. Union the genes annotated by at least one term in
the active term set to form a super pseudo term for
each parameter combination.

4. For each super pseudo term, compute the
enrichment p-value using the Fisher’s exact test.

5. Output the results of all eight parameter
combinations in ascending order of p-values.

As for GenGO, the model is unrelated to the param-
eter p2. All four parameter combinations (p1 = 0.8 or 0.5,
q = 0.01 or 0.001, α = 3) were used to perform the same
mixed parameter selection strategy. Ultimately, the re-
sults of four parameter combinations are output in as-
cending order of p-values.

Simulated datasets
In our study, we first tested the effectiveness of NetGen
via simulation studies, on the biological process (BP),
the molecular function (MF) and the cellular component
(CC) domains, respectively. Two other alternative
methods, GenGO [19] and Fisher’s exact test [10], were
also taken into consideration for comparison. Here, we
used the following four groups of simulation parameters
(generating parameters) to generate the related active
gene list:

1) p1 = 0.8,p2 = 0.3,q = 0.001, α = 3

2) p1 = 0.5,p2 = 0.3,q = 0.001, α = 3
3) p1 = 0.8,p2 = 0.1,q = 0.001, α = 3
4) p1 = 0.8,p2 = 0.3,q = 0.01, α = 3

The whole workflow of simulation studies is as
follows:

1. We restricted the terms in one domain (BP, CC or
MF), whose number of covered gene was 2 to 500
(to remove the terms too specific or too general),
and then randomly selected 500 terms 10 times
from this refined term set to obtain 10 annotation
sets.

2. In each annotation set, we randomly selected 5
terms 20 times as the target active term set. For
each target active term set, we generated the active
gene list using a fixed generating parameter
combination.

3. Each active gene list was used as the model input.
The solving parameter values of NetGen were the
same as the generating parameter values. Since
GenGO is unrelated to parameter p2, we only used
the values of p1 , q , α to obtain the output terms.

4. The 200 model outputs were combined to obtain a
2 × 2 contingency table. Besides, the Bonferroni
corrected hypergeometric test p-values were used as
the significant scores for these output terms.

5. The precision-recall curves were plotted to test the
performance of each method.

For each generating parameter combination, we plot a
precision-recall curve, on which each point corresponds
to a cutoff of corrected hypergeometric test p-value. The
precision and recall are defined as:

precision ¼ TP
TP þ FP

recall ¼ TP
TP þ FN

where TP, FP and FN are the abbreviations for true posi-
tive, false positive and false negative. TP is the number
of true active terms below the cutoff. FP stands for the
number of inactive terms below the cutoff. FN is the
number of active terms above the cutoff. We set the sig-
nificant scores of terms that are not in the model output
to 1, for ensuring the correct calculation of recall.

Real datasets
In our study, we used two kinds of data, GO annotation
and PPI network, to identify the active terms via
NetGen.
The GO annotation was extracted from R package org.H-

s.eg.db in Bioconductor project. The detailed information
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about the GO annotation data was summarized in
Additional file 1 Table S4.
PPI data was extracted from Human Protein Reference

Database (HPRD, http://www.hprd.org/) [23]. After re-
moving the multiple edges and the self-loops, the refined
PPI network contained 9453 genes and 36,867 inter-
actions. In our model, we did not restrict our analysis
on the overlapped genes (i.e. genes included in the
PPI network and annotated by at least one GO term).
Instead, we used the network information of the over-
lapped core genes to assist our model to identify the
enriched terms.
To test the performance of NetGen in real data ap-

plications, four microarray gene expression datasets
of human complex diseases were selected from the
Gene Expression Omnibus repository (accession number
GSE4115, GSE11223, GSE9750, GSE36895, respectively),
basing on several criteria (see Additional file 1). After the
preprocessing of the original datasets, we sorted the
microarray genes by ascending order of the p-values
derived by the Student’s t-test on the disease and
control samples. The top 100 genes were selected as
the differential expression gene set. The differential

expression gene set was then overlapped with the an-
notated genes, which were used as the final active
gene list to perform the enrichment analysis.

Semantic similarity based analysis
The GO semantic similarity has been widely used in the
field of bioinformatics. It provides a criterion to measure
the redundancy between the functional terms. Generally
speaking, a lower semantic similarity score indicates a
lower redundancy between two GO terms. In this paper,
we used the averaged GO semantic similarity score to
measure the redundancy of the identified terms. The
averaged GO semantic similarity score is defined as:

ASS Sð Þ ¼ n
2

� �−1 X

1≤i<j≤n

score Si; ; Sj
� �

where S = {S1, S2, ⋯ , Sn} is the identified term set and n
is the size of S. score(Si, Sj) is the semantic similarity
score between GO terms Si and Sj. To make the result
more comparable, a background distribution of the aver-
aged semantic similarity scores was derived on each
dataset, which was obtained by randomly resampling

Fig. 3 The performance of NetGen and alternative methods on biological process (BP) domain. Each panel stands for a setting of generating
parameters. The performance of NetGen, GenGO and Fisher’s exact test are shown in red, blue and orange respectively. The active gene lists
were simulated under the assumption of NetGen
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term sets with same size for 100,000 times. As for the
Fisher’s exact test, the most enriched top n terms were
selected. n is the term set size identified via NetGen. In
this work, the semantic similarity score was computed
using the R package GOSemSim [24], which is compiled
in Bioconductor [25].

Results
Simulation studies
We first test the performance of NetGen via simulation
studies. The detailed description of our simulation study
can be found in Methods. The results on biological process,
cellular component and molecular function domain are
shown in Fig. 3, Additional file 1 Fig. S5 and S6,
respectively.
From the results, we can see that NetGen outperformed

other alternative methods on both three domains, and
showed a more stable performance when using all kinds
of parameter combinations. Fisher’s exact test is independ-
ent of the term combinations and neglects the overlap of
parent or descendant terms. Consequently, an inferior
performance was observed since highly redundant terms
were identified. The performance of GenGO was closely
related to the selection of generating parameter p1 and p2,

when the true active gene list is explicable using network
information. In detail, the performance of GenGO signifi-
cant decreased, when the impact of network becomes
larger, i.e. p2/p1 increased (Fig. 3, Fig. S5-S6 B). A compar-
able performance was observed, if the original active gene
list was less impact by the network information, i.e. p2/p1
decreased (Fig. 3, Fig. S5-S6 C). Besides, increasing prob-
ability q, the influence of noise or other uncontrollable
error in experiment, can improve the performance of
GenGO (Fig. 3, Fig. S5-S6 D), which was accordance with
the sensitivity analyses of q (see Fig. S3). This may be
explained by that the noise itself can offset the effect of
active genes generated via network propagation.
In addition to the above simulation procedure, we also

simulated another alternative circumstance. We wonder
how the performance of NetGen behaved, if the active
gene lists were actually unrelated to the network infor-
mation. Therefore, active gene lists were generated
under the assumption of GenGO model, i.e. p2 = 0. The
performance and discussion can be found in Additional
file 1 (Figure S7-S9), which showed that NetGen with
small p2 can successfully handle both cases of simulated
datasets generated by GenGO model and NetGen
model.

Table 1 The enrichment analysis result of NetGen on lung cancer dataset

Rank GO ID Description p-value

1 GO:0006491 N-glycan processing 1.32e-3

2 GO:0006662 glycerol ether metabolic process 1.93e-3

3 GO:0006175 dATP biosynthetic process 5.54e-3

4 GO:0060149 negative regulation of posttranscriptional gene silencing 5.54e-3

5 GO:0006043 glucosamine catabolic process 5.54e-3

6 GO:0035772 interleukin-13-mediated signaling pathway 5.54e-3

7 GO:2000832 negative regulation of steroid hormone secretion 1.11e-2

8 GO:0021648 vestibulocochlear nerve morphogenesis 1.11e-2

9 GO:0072318 clathrin coat disassembly 1.11e-2

10 GO:1900748 positive regulation of vascular endothelial growth factor signaling pathway 1.65e-2

11 GO:0015014 heparan sulfate proteoglycan biosynthetic process, polysaccharide chain
biosynthetic process

1.65e-2

12 GO:0000710 meiotic mismatch repair 1.65e-2

13 GO:0030070 insulin processing 1.65e-2

14 GO:0072190 ureter urothelium development 1.65e-2

15 GO:0034154 toll-like receptor 7 signaling pathway 2.20e-2

16 GO:2000195 negative regulation of female gonad development 1

17 GO:0016082 synaptic vesicle priming 1

18 GO:2000370 positive regulation of clathrin-dependent endocytosis 1

19 GO:0002143 tRNA wobble position uridine thiolation 1

20 GO:0060978 angiogenesis involved in coronary vascular morphogenesis 1

Best parameter setting: p1=0.5, p2=0.05, q=0.001. Term combination p=1.50e-24
An appropriate parameter combination identified via a mixed parameter selection strategy was shown at the bottom of the table. The Fisher’s exact test p-values
for single term and term combination were listed. The GO terms in bold were particularly identified by NetGen
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Real data studies
To test the efficiency of NetGen in real datasets, we used
four GEO microarray gene expression profiles of human
complex diseases to execute real data analysis. More de-
tails about the data description and the preprocessing
can be found in Additional file 1.
For each dataset, the dataset-specific active gene list

was generated as introduced in the Methods section.
Since the true parameter combination for generating
active gene list from real datasets is unknown, we per-
formed a mixed parameter selection strategy to obtain
multiple solutions (see Methods). The evaluation of the
mixed parameter selection strategy on the simulation
studies showed that the generating parameters are not
necessarily the best solving parameters (see Additional
file 1 Figure S10-S11). Instead to infer the true values of
the generative parameters, which is very difficult and
may be meaningless, the mixed parameter selection
strategy intends to produce multiple solutions in real
applications, and reveal more information of the under-
lying biological processes for the downstream analysis.
Due to the space limit, we only analyzed the enriched
term set with the lowest combination p-value. The
results of enrichment analysis are shown in Table 1, 2, 3
and 4. The GO terms that were not identified by GenGO

with same mixed parameter selection strategy are shown
in bold.
As for lung cancer dataset, we obtained a significantly

enriched term set, whose combination p-value computed
by Fisher’s exact test was 1.5 × 10−24, including 20 lung-
related terms (Table 1). Notably, five terms (GO:2000195,
GO:0016082, GO:2000370, GO:0002143, GO:0060978)
with p-value equal to 1 were particularly identified by Net-
Gen, i.e. these terms are not directly annotated to the
active genes. However, these five terms discovered when
taking the supplementary role of network information into
consideration actually showed a closely relationship with
lung tumorigenesis. For examples, mutations in clathrin
and several of its associated proteins and adaptors (EPS15,
HIP1, CALM, endophilin and β-arrestin 1) were identified
via systematic characterization of somatic mutations in
breast, renal and lung cancers [26, 27], which is the main
function in term GO:2000370 (positive regulation of
clathrin-dependent endocytosis). As for GO:0016082 (syn-
aptic vesicle priming), exosome is closely related to synap-
tic vesicle cycle. In pathological states, such as cancer, a
number of key proteins and microRNAs are expulsed due
to the exosome-mediated abnormal activity of the export
machinery [28, 29]. For GO:0002143 (tRNA wobble pos-
ition uridine thiolation), the aberrant expression of tRNA

Table 2 The enrichment analysis result of NetGen on ulcerative colitis dataset

Rank GO ID Description p-value

1 GO:0032968 positive regulation of transcription elongation from RNA polymerase II promoter 1.10e-3

2 GO:0018874 benzoate metabolic process 3.83e-3

3 GO:0010900 negative regulation of phosphatidylcholine catabolic process 3.83e-3

4 GO:1900402 regulation of carbohydrate metabolic process by regulation of transcription from RNA
polymerase II promoter

3.83e-3

5 GO:0006294 nucleotide-excision repair, preincision complex assembly 3.83e-3

6 GO:0038193 thromboxane A2 signaling pathway 3.83e-3

7 GO:0031119 tRNA pseudouridine synthesis 7.65e-3

8 GO:0007439 ectodermal digestive tract development 7.65e-3

9 GO:0009240 isopentenyl diphosphate biosynthetic process 1.15e-2

10 GO:0045196 establishment or maintenance of neuroblast polarity 1.15e-2

11 GO:0006154 adenosine catabolic process 1.15e-2

12 GO:0002254 kinin cascade 1.15e-2

13 GO:2000681 negative regulation of rubidium ion transport 1.15e-2

14 GO:0035701 hematopoietic stem cell migration 1.52e-2

15 GO:0008612 peptidyl-lysine modification to peptidyl-hypusine 1.52e-2

16 GO:1901299 negative regulation of hydrogen peroxide-mediated programmed cell death 1

17 GO:1901841 regulation of high voltage-gated calcium channel activity 1

18 GO:0043547a positive regulation of GTPase activity 1

Best parameter setting: p1=0.5, p2=0.05, q=0.001. Term combination p=1.33e-27
aGO:0032850 updated to alternate term GO:0043547
An appropriate parameter combination identified via a mixed parameter selection strategy was shown at the bottom of the table. The Fisher’s exact test p-values
for single term and term combination were listed. The GO terms in bold were particularly identified by NetGen

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):75 Page 69 of 119



modification plays an important role in complex diseases
[30]. Besides, thiolation-based chemotherapy has been
proposed for lung cancer [31].
The combination p-value of identified term set for ul-

cerative colitis dataset was 1.33 × 10−27, including 18
disease-related terms (Table 2). Adding the network infor-
mation assisted our model to identify three terms
(GO:1901299, GO:1901841, GO:0043547, Fisher’s exact
test p-value = 1), which have no directly connections with
the active genes. These three terms showed closely rela-
tionships with carcinogenesis. For example, as for term
GO:1901841 (regulation of high voltage-gated calcium
channel activity), substantial researches showed that
calcium channel intimately connected with cancer cells
proliferation and metastasis [32, 33]. For GO:1901299
(negative regulation of hydrogen peroxide-mediated
programmed cell death), hydrogen peroxide (H2O2)
plays a key role in tumorigenesis. Superfluous increas-
ing of H2O2 generated by cancer cell may lead to sev-
eral pivotal changes, such as DNA alteration, cell

proliferation, apoptosis and angiogenesis, during
tumorigenesis [34, 35].
For cervical carcinogenesis dataset, a set of 23

disease-related terms, whose combination p-value was
1.10 × 10−37, were identified (Table 3). Among these
identified terms, four terms (GO:0000741, GO:2000656,
GO:0032848, GO:0090158), which had no directly overlap
with the active genes, were recovered when adding the
network information. Particularly, GO:2000656 is related
to the regulation of apolipoprotein binding. Many studies
showed that apolipoprotein took part in the tumor pro-
gression [36, 37]. The function of GO:0032848 (negative
regulation of cellular pH reduction) is mainly connected
with the regulation of intracellular acid-base. The particu-
lar mechanisms of pH sensing and regulation in tumor
can be a common physical hallmark of solid tumors [38].
As for renal cell carcinoma dataset, the combination

p-value of identified term set, including 27 terms, was
8.68 × 10−50 (Table 4). Similar phenomena were also ob-
served for the p-values of three terms (GO:0002542,

Table 3 The enrichment analysis result of NetGen on cervical carcinogenesis dataset

Rank GO ID Description p-value

1 GO:0006271 DNA strand elongation involved in DNA replication 3.42e-11

2 GO:0090224 regulation of spindle organization 1.78e-3

3 GO:0001927 exocyst assembly 6.43e-3

4 GO:0038016 insulin receptor internalization 6.43e-3

5 GO:0070676 intralumenal vesicle formation 6.43e-3

6 GO:0086042 cardiac muscle cell-cardiac muscle cell adhesion 6.43e-3

7 GO:0014738 regulation of muscle hyperplasia 1.28e-2

8 GO:2000393 negative regulation of lamellipodium morphogenesis 1.28e-2

9 GO:0010993 regulation of ubiquitin homeostasis 1.28e-2

10 GO:0006050 mannosamine metabolic process 1.28e-2

11 GO:0046602 regulation of mitotic centrosome separation 1.92e-2

12 GO:0072708 response to sorbitol 1.92e-2

13 GO:0001992 regulation of systemic arterial blood pressure by vasopressin 1.92e-2

14 GO:1902498 regulation of protein autoubiquitination 1.92e-2

15 GO:0048388 endosomal lumen acidification 1.92e-2

16 GO:0048280 vesicle fusion with Golgi apparatus 2.55e-2

17 GO:0097264 self proteolysis 3.18e-2

18 GO:0045329 carnitine biosynthetic process 3.18e-2

19 GO:0051382 kinetochore assembly 7.45e-2

20 GO:0000741 karyogamy 1

21 GO:2000656 regulation of apolipoprotein binding 1

22 GO:0032848 negative regulation of cellular pH reduction 1

23 GO:0090158 endoplasmic reticulum membrane organization 1

Best parameter setting: p1=0.5, p2=0.05, q=0.001. Term combination p=1.10e-37
An appropriate parameter combination identified via a mixed parameter selection strategy was shown at the bottom of the table. The Fisher’s exact test p-values
for single term and term combination were listed. The GO terms in bold were particularly identified by NetGen
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GO:0014858 and GO:0010766) were equal to 1, which
revealed the function of network information. For ex-
ample, the function of GO:0010766 (negative regulation
of sodium ion transport) is related to the transportation
of sodium ion. The control of the ionic equilibrium is
the major function of kidney [39]. The similar term was
also identified by Tun HW et al., when using the differ-
ent expression profiles of clear cell renal cell carcinoma
[40]. For GO:0002542 (Factor XII activation), the ac-
tivity of Factor XII is closely connected with the
phenomenon, known as the enhanced permeability
and retention (EPR) effect, which has been observed
to be universal in solid tumors for lipid and macro-
molecular agents [41].
The identified enriched terms with a higher similarity

and redundancy often makes the researchers harder to

obtain the underlying biological interpretations. In
addition to the above enriched analysis, we test the re-
dundancy of the enriched terms identified via NetGen.
Here, the averaged semantic similarity score was used to
measure the redundancy of the identified terms (see
Methods). The results can be found in Figure 4, which
showed that the averaged semantic similarity scores of
NetGen and GenGO, two combination-based approaches,
were far below than the scores of the Fisher’s exact test on
four datasets. Besides, the score of NetGen was around
the mean score of the random distribution, which indi-
cates the redundancy of these identified terms were nearly
minimized. In conclusion, NetGen can effectively reduce
the redundancy of the identified terms, which is helpful in
the exploration of the underlying pathogenesis of complex
diseases.

Table 4 The enrichment analysis result of NetGen on renal cell carcinoma dataset

Rank GO ID Description p-value

1 GO:0090259 regulation of retinal ganglion cell axon guidance 7.56e-7

2 GO:0033572 transferrin transport 1.05e-6

3 GO:0072017 distal tubule development 3.03e-5

4 GO:2000054 negative regulation of Wnt signaling pathway involved in dorsal/ventral axis specification 3.34e-5

5 GO:0072015 glomerular visceral epithelial cell development 1.17e-3

6 GO:2000287 positive regulation of myotome development 5.81e-3

7 GO:0006113 fermentation 5.81e-3

8 GO:0051460 negative regulation of corticotropin secretion 5.81e-3

9 GO:0060720 spongiotrophoblast cell proliferation 5.81e-3

10 GO:0043438 acetoacetic acid metabolic process 5.81e-3

11 GO:0032972 regulation of muscle filament sliding speed 5.81e-3

12 GO:0090038 negative regulation of protein kinase C signaling 1.16e-2

13 GO:0035425 autocrine signaling 1.16e-2

14 GO:0010760 negative regulation of macrophage chemotaxis 1.16e-2

15 GO:0060161 positive regulation of dopamine receptor signaling pathway 1.73e-2

16 GO:0097411 hypoxia-inducible factor-1alpha signaling pathway 1.73e-2

17 GO:0060435 bronchiole development 1.73e-2

18 GO:0051933 amino acid neurotransmitter reuptake 1.73e-2

19 GO:0046598 positive regulation of viral entry into host cell 2.31e-2

20 GO:0015015 heparan sulfate proteoglycan biosynthetic process, enzymatic modification 2.87e-2

21 GO:0006572 tyrosine catabolic process 2.87e-2

22 GO:0019532 oxalate transport 2.87e-2

23 GO:0072171 mesonephric tubule morphogenesis 3.44e-2

24 GO:0051156 glucose 6-phosphate metabolic process 5.12e-2

25 GO:0002542 Factor XII activation 1

26 GO:0010766 negative regulation of sodium ion transport 1

27 GO:0014858 positive regulation of skeletal muscle cell proliferation 1

Best parameter setting: p1=0.5, p2=0.05, q=0.001. Term combination p=8.68e-50
An appropriate parameter combination identified via a mixed parameter selection strategy was shown at the bottom of the table. The Fisher’s exact test p-values
for single term and term combination were listed. The GO terms in bold were particularly identified by NetGen
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Discussion
The innovative component of NetGen is the integration
of network information to extend the generative model
of functional enrichment analysis. The framework of
NetGen enables the users to exploit not only the PPI
network but also various other distinct biomolecular
networks, such as gene regulatory network, metabolic
network and signal transduction network. Since different
types of biomolecular networks reveal different levels
and essential biological mechanisms in biological system,
the selection of biomolecular network does have an in-
fluence on the performance of NetGen. Here, we did not
compare the performance of NetGen with different
biomolecular networks. One can select an appropriate
network to assist the functional enrichment analysis ac-
cording to the studied biological problem and available
datasets. Another important point is the completeness
or quality of the used network. The performance of
NetGen would be greatly affected by the highly-noisy
biological network since the wrong peripheral nodes due
to noisy edges in the network will mess the results of

enrichment analysis. Relatively speaking, the influence of
the incomplete network may be small because the Net-
Gen model will degenerate to some extent into the
GenGO model. According to the parameter sensitivity
analysis (see Additional file 1), it is better to choose a
smaller p2 when using a network with low quality.
The generative model is a computational model that as-

sumes that the observed data was generated under certain
probabilistic model and some distributions. The observed
data was then used to estimate the parameters of the
probabilistic model and distributions, and to infer values
that could not be directly observed. Through maximizing
a log-likelihood function, NetGen can identify the most
likely significant terms. In this paper, we used a greedy ap-
proximation algorithm to seek for a near-optimal solution
of the 0–1 integer programming problem. Based on this
greedy algorithm, the running time of NetGen, depending
on the size of input annotation matrix, is acceptable for
large datasets in real applications. On the other hand, the
solution quality of functional enrichment analysis is also
affected by the approximation algorithm. In this work, the

Fig. 4 Comparison of the averaged semantic similarity score in the identified term set. The light green distribution represents the semantic similarity
score at the random level. The blue, orange and red bar represent the NetGen, GenGO and Fisher’s exact test, respectively. The semantic similarity
score was computed using the GOSemSim package [24] in R
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performance of NetGen using different approximation al-
gorithm was not compared, which will be one of the goals
in our future research.
There are three main parameters, p1 , p2 , q, in our

model, which were explained in the generative
process. We executed the parameter sensitivity ana-
lysis (see Additional file 1) to test their robustness in re-
lated enrichment analysis. The sensitivity analysis result
can be a reference to help the user selecting an appropri-
ate parameter combination. Besides, one can obtain a
more explicit and intuitive explanation from some special
cases. If the parameters are set as p1 = 1 , p2 = 0 , q = 0, the
model is equivalent to identify the term set that the union
of their directly annotated genes has the most overlap
with the active gene list. Similarly, if the parameters are
set as p1 = 1 , p2 = 1 , q = 0, the annotated genes in one
term should add the corresponding neighbor genes in bio-
logical network. From this perspective, NetGen is a
generalization to the above simple enrichment strategy
and unifies these model into one framework.
Usually the biologists will obtain one ranked gene list

for functional enrichment analysis. For example, the
differential expression genes are often ranked by the t-test
p-value. The rank information of gene list is not exploited
in NetGen. It will be useful if the rank information of gene
list can be considered and the outputs of functional en-
richment analysis may become more precise. However, it
is very difficult to integrate the rank information into the
current term combination-based approaches. To the best
of our knowledge, such kind of methods has not been
studied in literature (see Additional file 1 Table S4). This
will be one of the directions in our future research.

Conclusions
In this paper, a novel network-based probabilistic genera-
tive model, NetGen, was proposed to perform the enrich-
ment analysis. An additional protein-protein interaction
network was explicitly used to assist the functional enrich-
ment analysis. NetGen achieved a superior performance
than other compared methods in the simulation studies.
Besides, several important GO terms, which were not
directly linked with the active gene list, were exclusively
identified by NetGen on real datasets.
In real applications, NetGen was not restrict on Homo

sapiens but can also be applied on any other species.
Our procedure leads to a more reasonable and explain-
able result of the functional enrichment analysis. As a
novel term combination-based functional enrichment
analysis method, NetGen is complementary to current
individual term-based methods. We believed that Net-
Gen is an efficient computational tool for functional
enrichment analysis and can help to explore the under-
lying pathogenesis of complex diseases.

Additional file

Additional file 1: Supplementary materials including the classification of
enrichment analysis methods, the parameter sensitivity analysis, the
additional simulation results, and the description of gene expression
datasets, GO annotation data, and active gene lists used in real data
applications. (PDF 1385 kb)
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