The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83
DOI 10.1186/512918-017-0458-5

BMC Systems Biology

@ CrossMark

Accelerated parallel algorithm for gene
network reverse engineering

Jing He!2T, Zhou Zhou?T, Michael Reed? and Andrea Califano?”

From The 10th International Conference on Systems Biology (ISB 2016)
Weihai, China. 19-22 August 2016

Abstract

Background: The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) represents one of the
most effective tools to reconstruct gene regulatory networks from large-scale molecular profile datasets. However,
previous implementations require intensive computing resources and, in some cases, restrict the number of samples
that can be used. These issues can be addressed elegantly in a GPU computing framework, where repeated
mathematical computation can be done efficiently, but requires extensive redesign to apply parallel computing
techniques to the original serial algorithm, involving detailed optimization efforts based on a deep understanding of
both hardware and software architecture.

Result: Here, we present an accelerated parallel implementation of ARACNE (GPU-ARACNE). By taking advantage of
multi-level parallelism and the Compute Unified Device Architecture (CUDA) parallel kernel-call library, GRU-ARACNE
successfully parallelizes a serial algorithm and simplifies the user experience from multi-step operations to one step.

Using public datasets on comparable hardware configurations, we showed that GPU-ARACNE is faster than previous

implementations and is able to reconstruct equally valid gene regulatory networks.

Conclusion: Given that previous versions of ARACNE are extremely resource demanding, either in computational
time or in hardware investment, GPU-ARACNE is remarkably valuable for researchers who need to build complex
regulatory networks from large expression datasets, but with limited budget on computational resources. In addition,
our GPU-centered optimization of adaptive partitioning for Mutual Information (M) estimation provides lessons that

are applicable to other domains.

Keywords: GPU-ARACNE, Parallel computing, Regulatory networks, Mutual information, Gene expression dataset,

CUDA

Background

Accurate and systematic reconstruction of gene regula-
tory networks (reverse engineering) represents a crucial
step in the revealing of drivers and mechanisms pre-
siding over both physiologic and pathologic phenotypes.
Many computational approaches have been proposed
for the reverse engineering of gene regulatory networks
from large-scale gene expression profiles. Most of these
require repetitively evaluating gene-gene interactions

*Correspondence: ac2248@cumc.columbia.edu

TEqual contributors

2Department of Systems Biology, 1130 St Nicholas Street, 10032 New York, NY,
USA

Full list of author information is available at the end of the article

(BioNed Central

using mathematical methods such as Pearson/Spearman
correlation [1], linear/LASSO regression [2], Bayesian
dependence [3], Mutual Information/Conditional mutual
informaiton [4, 5] and topological patterns [6]. Among
them, ARACNE [7, 8] serves as one of the most widely
applied reverse engineering algorithms by the scientific
community and has been broadly experimentally vali-
dated. Regulatory network inferred by ARACNE is calcu-
lated based on information theory, further refined by a
network pruning process called data processing inequal-
ity (DPI) theorem, which is to infer direct regulatory
relationships between transcriptional factors and their
target genes. ARACNE has been shown to be useful in
reconstructing context-specific transcriptional networks

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-017-0458-5&domain=pdf
mailto: ac2248@cumc.columbia.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

in multiple tissue types [7, 9]. The inferred network and
its further interrogation have stimulated several new algo-
rithms, successfully unveiling key regulatory mechanisms
in cancer [10, 11], as well as drug mechanism of action [12].

However, the explosion of available RNA-Seq datasets
drives increasing demand of efficient network reconstruc-
tion algorithms. There is a call for algorithm optimization
and alternatives of implementation on different platforms.
The development of parallel computing systems based
on multi- and many-core GPUs and cloud computing
offers the promise to massively accelerate bioinformatics
algorithms, especially the compute-intensive ones such
as ARACNE, whose repetitive estimation of gene-gene
functional relationship could be elegantly parallelized by
utilizing multi-grid, multi-block and multi-thread GPU
computing structure. The core calculation of ARACNE
can follow the single instruction, multiple data (SIMD)
paradigm, further exploiting current GPU architecture
advancement. Previous works have shown great efforts
to re-implement sequential computational algorithms
into parallel versions. Lachmann et al. redesigned
ARACNE using JAVA massive multithreading [13], but
the algorithm requires very large memory usage. Misra
et al. showed an Intel Xeon Phi coprocessor based
implementation of network inference algorithm using
fixed bandwidth [14]. This effort uncovered the promise
of future parallel implementation of bioinformatics
algorithm, whereas the requirement of specific Intel
Xeon coprocessor limited its availability to scientific
community.

Yet, successful parallelized optimization while main-
taining original estimation accuracy demands careful
investigation of the algorithm, accurate approximation
of data volume, proper estimation of hardware parallel
capacity, and striking a fine balance between hardware
and cross-platform applicability of the implementation.
In view of this, a meticulous and thorough analysis of
ARACNE was preformed to determine the possibility

Page 86 of 119

and magnitude of parallelism one can achieve by using
the current GPU computing framework. In principle,
ARACNE includes three major components: 1) Establish-
ing the null model; 2) Computing a candidate network; 3)
Pruning the network. Among them, computing the candi-
date network is the most computationally intensive step,
requiring all potential pairs between transcriptional fac-
tors (TFs) and genes being calculated using MI, which
is an information theory measurement of mutual depen-
dence between two random variables. Thus, candidate
interactions are identified by estimating Mutual Informa-
tion (MI) of pairwise gene expression profiles I(g;; gj) =
Ij). I;j is zero if and only if joint probability density
is the product of marginal probability densities, that is
P(gi,g) = P(g)P(g) MI exceeds other similar methods
in its capacity to capture non-linear associations. Pre-
cisely, ARACNE uses an adaptive partitioning approach to
estimate the joint probability, considering each partition’s
statistical significance of providing enough information
for further calculation, as outlined in Fig. 1. Based on
this original design, current GPU computing framework
could increase algorithm speed by orders of magnitude
though largely parallelizing edge computing and MI esti-
mation using multi-level threading. In addition, the null
model building step would also likely be executed in
parallel on separate GPU threads without costing addi-
tional time while the candidate network is being built.
Furthermore, the availability of massively parallel threads
in GPU could facilitate simultaneous pruning of candi-
date networks using thresholding and the Data Processing
Inequality process (DPL, Eq. (1)) [7, 8].

1(g1;83) < min(I(g1;82), 1(g2;43)) (1)

Here, we present a complete redesign of ARACNE using
GPU computing framework (GPU-ARACNE), mainly
leveraging the performance of repeated MI estimation,

Ranked Input

First Partition

Second Partition

Fig. 1 Adaptive partitioning schema to estimate mutual information. Each blue point represents one gene expression in one sample after ranking.
X-axis and Y-axis represent 2 different genes. Boundaries are possible partitioning. Left plot shows the input data, middle plot shows the first

partition, right plot shows a second partition

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

network pruning using DPI, and statistics-based thresh-
olding [15]. Our work shows a way to apply GPU intrin-
sic parallel capabilities to accelerate adaptive partitioning
Mutual Information (apMI) calculation and simultane-
ously discovering pairwise interactions. GPU-ARACNE
illuminates the potentiality of applying parallel comput-
ing techniques to solve computational or systems biology
problems. We benchmarked the performance improve-
ments of GPU-ARACNE using published TCGA breast
carcinoma dataset [16] and prostate adenocarcinoma [17],
and compared to previous versions [7, 13]. We recon-
structed whole genome regulatory network using the
NVIDIA CUDA framework, taking advantage of multi-
core and multi-level parallelism, in which a hardware
accelerator was designed to estimate apMI, innovatively
exploiting concurrent access to GPU block shared mem-
ory to assist the estimation process. Furthermore, GPU-
ARACNE encapsulates the three sequential steps once
executed one after another into one step, simplifying
overall workflow. GPU-ARACNE is attractive in its wide
availability to researchers having GPU or having access to
Amazon Web Service (AWS), and the generalizability of
its optimization techniques (such as random shuffle and
mutual information computation).

Methods

This section starts with an overview of GPU-ARACNE
workflow. Then we present how we implement the
adaptive partition Mutual Information (apMI) estimation
using GPU computing framework. In addition, we will dis-
cuss parallelized null model computation and parallelized

Page 87 of 119

network pruning respectively. Finally, the datasets used
and hardware configuration will be listed.

GPU-ARACNE workflow

We provided GPU-ARACNE, an accelerated parallel
implementation to build regulatory networks on GPU
computing frameworks. Based on GPU computing capa-
bility differences, two separate implementations were
provided: GPU-ARACNE-V1 for GPU card with a 3.5
or higher compute capability and GPU-ARACNE-V2
for those with less than 3.5. For both versions, GPU-
ARACNE was based on intrinsic parallelism of the orig-
inal network reconstruction algorithm, ARACNE [7, 8]
or ARACNE-AP [13]. All performance sensitive parts of
the algorithm, including null model computation, apMI
estimator, and the DPI process, were parallelized using
GPU multi-core and multi-threading computing frame-
work. We depicted the GPU-ARACNE workflow, crafted
to illustrate the parallelism and our optimization efforts,
in Fig. 2. At least three optimization efforts were achieved
in this workflow: a). Using parallel computing to replace
serial computing of all edges. Computing candidate edges
in a network were independent events, which were highly
paralleled in GPU-ARACNE instead of serial looping
through all potential pairs one by one for both null
model and real model in original version (Fig. 2a). b).
Parallel thresholding. Pruning the network edges, includ-
ing thresholding edges and pruning triangles, are mutu-
ally independent events, which could be processed by
different computing units in GPU, instead of by wait-
ing to be sequentially processed in the serial version

— CPU ¢

GPU

-

—— _—
——p—> Rank data ——————>
B _—

Compute all edges

Real
Data
v
E ‘o Compute ~ Cutrandom | p
B) —> Rank data —> fake edges cdaes
Randomized
Data
y
@ .
L:—— Integrate graph = Prune triangles c
Network

Fig. 2 GPU-ARACNE workflow. Left box represents data/operations on host, and right blue box covers data/operations on GPU device. Arrows
represent data flow. In left box, heat-map represents gene expression matrix and permuted matrix

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83 Page 88 of 119

(Fig. 2b—c). c). Parallelized apMI estimator was designed Optimized MI computing Subsequently, a 2D kernel
to replace the original MI estimation which was based on indexed by TF-target pairs was launched to compute pair-
recursions. wise MI (Fig. 3b). Strictly, one thread was responsible for

one data point in partitioning, executing one binary com-
Paralleled adaptive partition mutual information estimation ~ parison to decide which quartz the data point belongs in
All candidate edges are calculated using adaptive parti- current partitioning, and then storing the results in an
tioning MI (apMI, Eq. (2)) [13], a non-linear measurement imbalanced tree data structure in block shared memory
of mutual dependence between two random variables. x; (Figs. 1, 3b—c). However, this imbalanced tree structure
is the expression of gene x in sample i, y; is the expres- shared by different threads brought up threads divergence
sion of gene y in sample i , N is the MI normalization within one block, severely harming parallelism. Thus,
factor. f(x;,y; denotes the joint density, while f(x;) and we innovated a breadth-first-searched tree using a queue
f(yi) represents the marginal probability density before structure, minimizing threads divergence (Fig. 3c), keep-

normalization, respectively. ing the queue in block shared memory to record the state
of adaptive partitioning and to count data points, respec-

MLy, = I(x%;y) = 1 Z log S @) tively. As an intrinsic innovation, this design speeded up

N = “fx)f o) overall performance by leveraging the fast access and ever-

increasing size of GPU block shared memory. In practice,

we ensure that the calculation would be done in a way
Optimized ranking As shown in Fig. 2, after data that once an observation vector G; is loaded in the global
was transferred to the GPU, threads were immediately memory of a GPU, all (G;, G; pairs would be processed
launched, with each of them responsible for ranking one on the same GPU block. As the hyper-threads on a GPU
gene, similar to what has been done in previous work [18]. share one global memory, we assign them to work on
Precisely, each thread called a specific rank function from the same G; and different G; observation vectors using
thrust, a library for CUDA computing framework [19]. different block, along with different shared memory.
This ranking process was optimized by splitting all data Analytically, the computation required for each (G;, Gj)
points into tablets, saving the ranked data on GPU global pair is independent, thus, we employ coarse-grained par-

memory (Figs. 2a and 3a). allelism with each 2D block processing one TF-Target
e e e B PP PP PP
memory |« [1__[1__[]._[].1 A O Y O o O A g O e O s
mek I IV [V VYV VNNV WV

shared
memory i i i i i i i i
C
Adaptive
partition
inblock |leebe 600 6 & % % Il odh\e 2N &2 \N " mmmmme

Final
network

Fig. 3 GPU multi-threading structure schema. a Data/operations on GPU global memory. Dotted boxes represent virtual warps. b In GPU block
shared memory, each blue shaded box represents one GPU block. Each curved line represents one thread. ¢ Stored data-structure to compute mutual
information for each pair of genes. One node in the tree represents un-normalized Ml calculated from one quartz after each partitioning, stored in
each block shared memory. d Network after collecting all pairwise mutual information

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

pair. This parallelism is even boosted in GPU-ARACNE-
V1, where dynamic parallelism is available, allowing more
threads being called by the threads in current GPU block
using fine-grained parallelism. Practically, for each reg-
ulatory genes, its mutual information with all the other
genes are calculated simultaneously based on the num-
ber of blocks and block-wise threads available for specific
GPU card.

To be noticed, as the queue data structure is located
in block shared memory, a careful calculation is essential
for an optimal parallel execution. Theoretically, the queue
structure is upper-bounded by sample size M - 3, and
the maximum sample size this optimization can handle is
bounded by the number of threads allowed to launch for
each block, 1024 for the GPUs we used in this work.

Null model for Ml thresholding

Null model was built by computing MI using random-
ized expression matrix G, which was permuted on CPU
and then transferred to the GPU global memory (Fig. 2a).
Following, Ny MI values (default 100,000) were calculated
as the baseline Mls, resulting in an empirical cumulative
mass function which was then used to computed a null
model MI cutoff at a given p-value level.

Paralleled thresholding and data processing inequality

All candidate edges computed in apMI step were sub-
jected to two network pruning approaches: null model
thresholding and DPI process. In null model thresholding
step, Nif X Niarget threads were invoked simultaneously
where Ny is the number of transcription factors and
Ntarget is the number of target genes, masking all candi-
date edges instantly using MI threshold. Thresholding all
candidate edges was implicitly applied to previous apMI
result. The resulted candidate network was then saved in
a Boolean matrix mask. In our practice, this step was done
efficiently without a noticeable cost of memory.

While applying DPI on each TF-TF-Target triangle, a 2D
kernel function indexed by an adjacency network matrix
was launched. Explicitly, each thread operated on triangle
to label the retaining edges, resulting in a Boolean matrix.
This network mask was then saved in a Boolean matrix
and subject to later operation. Technically, a total of
Nif X Nearget threads were launched on GPU to process all
possible triangles. Here, we ignored all self-interactions,
aka. The degenerated triangle was left without special
consideration to reduce thread divergence.

Paralleled bootstrapping and consolidation

Bootstrapping was integrated into the overall workflow
except being specified to run without bootstrapping. We
achieved paralleled bootstrapping by initiating two addi-
tional matrices on CPU: one for the sum of all MIs for
all bootstraps, the other for counts of occurrence of edges

Page 89 0of 119

across all bootstraps. Final edges identity and occurrences
were calculated by using parallel reduce function pro-
vided by thrust library [19]. These two bootstrap-related
matrices along with the total edges and occurrence were
shipped back to CPU after each bootstrapping.

Using the edge and occurrence information, a Poisson
model was used to calculate the statistical significance of
an edge to be claimed in the final network on CPU. Finally,
after Bonferroni correction, an edge would be claimed
and its corrected Poisson p-value would be output. This
whole bootstrapping process was mostly done by leverag-
ing data parallelism using different instance of randomly
bootstrapped matrix G'.

Datasets and parameters

Gene expression datasets were downloaded from The
Cancer Genome Atlas (TCGA) [20], including Breast
Invasive Carcinoma profiles (BRCA, n = 1152) and
prostate adenocarcinoma expression profiles (PRAD, n =
550). TCGA gene expression was originally measured
using RNA-seq and then normalized by the standard
pipeline [16]. The data was subjected to standard TCGA
quality control, cross-experimental normalization, etc.

We used two datasets to benchmark GPU-ARACNE-
V1, 200 random BRCA samples expression and all 550
PRAD samples expression. A list of Ny = 1788 genes
annotated as TFs by previous work was used [7, 8].
A p-value threshold of was set for all runs of GPU-
ARACNE-V1 and comparative algorithms.

For both BRCA and PRAD samples, we sub-selected
samples and genes (1100 genes) to measure different
algorithms run-time. For BRCA, we sampled expression
matrix with 100, 200, 300, 400 and 500 samples. For
PRAD, we sampled expression matrix from 100 to 550
samples, increasing by 50 samples, resulting in matrices
of 1100 x Ngample; Wwhere Ngample is the number samples.
We chose a small set of genes to make it practical to reveal
the time complexity difference among algorithms. The-
oretically, the speed changing trend should hold at any
given gene number. We used 10 bootstraps and a p-value
threshold of 1072 for all runs of GPU-ARACNE-V2 and
comparative algorithms.

System configuration

GPU configurations to run GPU-ARACNE-V1 and GPU-
ARACNE-V2 were shown in Table 1. The source code is
available from [Additional file 1]. CPU configuration to
run all other implementations was listed in Table 2. Dur-
ing benchmark, GPU-ARACNE-V1 was compared with
stand-alone CPU, which was the best CPU configuration
we had access to. GPU-ARACNE-V2 was compared with
AWS g2 instance CPU, which had the comparable config-
uration as for GPU-ARACNE-V2. Admittedly, given that
the GPU and CPU are fundamentally different hardware

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

Table 1 GPU configuration

Parameter GPU-ARACNE V1 GPU-ARACNE V1 GPU-ARACNE V2
(AWS g2) (AWS p2)

GPU card GeForce GTX 780 K80 Kepler GK104

name

CUDA cores 1536 (192x8 MP) 2496 2304 (192x 12 MP)

GPU clock 0.9 0.72 0.8

rate (GHz)

Memory 3004 2500 2500

clock

rate(MHz)

Global 3072 12288 4096

memory

(MB)

Shared 48 48 48

memory per

block (KB)

Max. No. 1024 1024 1024

threads per

block

systems, the configurations to run GPU-ARACNE-V1
might not be the best comparable setting, but they do
resemble the computing resources of wide accessibility,
which still matches of each other.

Result

Time complexity analysis

Accounting for compute capability difference between
GPU computing frameworks, we provide GPU-ARACNE-
V1 for GPU card with 3.5 or higher compute capabil-
ity, GPU-ARACNE-V2 for GPU card with 3.5 or lower.
GPU-ARACNE-V1 runtime was measured using both
NVIDIA GeForce GTX 780 (stand-alone card) and K80
card installed on AWS p2.xlarge EC2 instance. GPU-
ARACNE-V2 performance was measured using Kepler
GK104 card deployed on AWS g2.xlarge EC2 instance.

GPU-ARACNE-V1 runs faster than other implementations

GPU-ARACNE-V1 was developed on a high-end GPU
card supporting Dynamic Parallelism, enabling additional
threads launching in current kernels. In this work, we
had access to two such high-end NIVIDIA GPU cards:
GTX-780 and K80 deployed on AWS p2.xlarge GPU

Table 2 CPU configuration

Parameter Stand-along CPU (V1) AWS CPU (V2)

CPU model number Intel Core i5 Intel Xeon
E5-2670
Processors

Memory (GB) 8 15

Max. memory bandwidth (GB/s) 25.6 512

The number of CPU cores 2 8

The number of threads 4 16

Page 90 of 119

instance. Performance of GPU-ARACNE-V1 was mea-
sured on both GPUs, using BRCA and PRAD datasets. As
a comparison, we also ran ARACNE [7, 8] and ARACNE-
AP [13] using the same data with comparable CPU con-
figuration. GPU-ARACNE-V1 was shown as the fastest
implementation compared to ARACNE and ARACNE-
AP for both BRCA and PRAD datasets (Fig. 4a). In either

a I ARACNE []ARACNE-AP [GPU-ARACNE-V1
>5000 a BRCA >5000 PRAD
4000 4000
2 3000 2 3000 29025
= c
] 8
[0} [0}
@ 2000 9 2000 -
1000 ~ 6473 1000 765.2
191.3 64.7 180
O {fmw T 1 1 1 =] 0 -
1 core 4 core 1 core 4 core
b —e— ARACNE ARACNE-AP GPU-ARACNE-V2
6000 BRCA
4000
B 100
=
Q
]
@ 50
2000
100 200 300 400 50
0
100 200 300 400 500
C Sample size
750
(2]
2 500
Q
[s]
)
(%}
250
0

100 200 300 400 500
Sample size

Fig. 4 GPU-ARACNE speed benchmarking. a GPU-ARACNE-V1
performance. X-axis represents different algorithms/setting. Y-axis
represents runtime in seconds. ARACNE runtime is truncated to show
ARACNE-AP and GPU-ARACNE-V1 running time. Left plot shows result
using 200 breast cancer samples, right plot shows result using 550
prostate cancer samples. b-c¢ GPU-ARACNE-V2 performance. X-axis

represents sample size; Y-axis shows the running time in seconds

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

case, ARACNE, the first implementation, took more than
a day. ARACNE-AP achieved at least 8X improvement by
using JAVA multi-threaded parallelism, 1-core or 4-core.
In addition to JAVA parallelization, GPU-ARACNE-V1
further reduced the running time by a factor of at least 3,
reducing runtime to 1 min for BRCA dataset, to 3 m
for PRAD dataset. This advancement of GPU-ARACNE-
V1 comparing to ARACNE-AP was shown to be further
extended to 4.2X in PRAD dataset where sample size was
increased to 550. Thus, we could conclude that GPU-
ARACNE-V1 is relatively faster compared to all available
ARACNE implementations.

There is possibility that using more CPU cores would
boost ARACNE-AP performance over GPU-ARACNE-
V1. In our work, given the same memory, ARACNE-AP
ran on 4 cores overused CPU memory such that we did
not observe a 4 times speed increase comparing to 1
CPU core run. Thus, it’s fair to assume ARACNE-AP run
with 4 CPU cores already reaches its high performance
at given memory size. With increased memory, CPU
with additional cores would definitely help ARACNE-AP
achieve faster speed, but more advanced GPU card can
also improve GPU-ARACNE performance. Another prac-
tically challenge for ARACNE-AP is that, most machines
using CPU for other works whereas running ARACNE-
AP would exhaust available system memory, making it
impossible to work simultaneously with other tasks. This
is not the case for GPUs who are mostly idle for system
tasks, making it economical to run GPU-ARACNE.

GPU-ARACNE-V2 runs relatively faster than other
implementations
To further take advantage of idle GPU resource, we
provided GPU-ARACNE-V2 for GPUs with compute
capability less than 3.5. We used NVIDIA GPU Kepler
GK104 installed on AWS g2.xlarge instance to benchmark
GPU-ARACNE-V2 performance. To reveal the time com-
plexity difference among ARACNE, ARACNE-AP, and
GPU-ARACNE-V2, we used subsets of BRCA and PRAD
dataset for all runs, with same p-value and bootstrapping
number. As a result, GPU-ARACNE-V2 and ARACNE-
AP showed an overall superiority to ARACNE for both
BRCA and PRAD data, with at least 30X runtime decreas-
ing in BRCA and minimal 10X decline in PRAD (Fig. 4b).
In between the two parallel algorithms, GPU-ARACNE-
V2 was at least comparable to ARACNE-AP. Executing
on BRCA dataset, their runtimes were similar. GPU-
ARACNE-V2 performed better than ARACNE-AP at
start, then was surpassed by it when sample size climbed
over 300. However, ARACNE-AP’s occasional superior-
ity was gained without considering the system memory
usage, which was a big factor for most JAVA programs.
Naturally, we speculated that this runtime difference
might lie in the available memory difference between GPU

Page 91 of 119

and CPU. In this case, the AWS g2 instance had 8G CPU
memory but only 4G GPU memory. The stable grow-
ing of ARACNE-AP runtime might take advantage of
polynomial increased CPU memory usage. This assump-
tion was then experimentally proved when we controlled
the available CPU memory for ARACNE-AP when run-
ning PRAD dataset, showing that GPU-ARACNE-V2 was
always superior to ARACNE-AP. Even though both GPU-
ARACNE-V2 and ARACNE-AP employed a linear run-
time increasing as sample size growing up from 100 to
550, GPU-ARACNE-V2 did grow slower than that of
ARACNE-AP. One point to be noticed was that, as the
sample size for all datasets tested in this work were smaller
than 1024, which is the GPU hardware limitation for
optimal parallelism, we would expect the above men-
tioned runtime growth trend being held. Thus, we could
conclude that ARACNE-GPU-V2 ran faster compared to
other implementations with no more than 1024 samples.

We further explored algorithm scalability regarding null
model p-value and bootstrapping number. As regula-
tory network reconstruction was usually done in whole
genome, it is legitimate to compare regulatory network
reconstruction algorithms while fixing gene number as
a constant. With sample size being held, varying null
model p-value would influence network reconstruction
network pruning steps. For example, a larger p-value
would result in more edges being kept as candidate edges,
accumulating more triangles in DPI step. While in GPU-
ARACNE, as all triangles were evaluated concurrently by
different threads, a larger p-value and its consequences
would not harm overall performance, in contrast to all the
previous implementations [7, 13], whose runtime would
be increased as a result of sequential cutting and serial
DPI. However, increased bootstrap number does degrade
the performance of all algorithms. In GPU-ARACNE,
the increased run time was mostly due to data transfer
between host and GPU device. The serial data shipping
could be solved when multiple GPU devices are available,
such as in GPU cluster in Amazon Elastic Compute Cloud,
where different bootstraps could be executed in parallel
on different GPUs. Otherwise, the limited availability of
GPU devices will force the algorithm to revert to serial
mode with bootstraps. Such was the case for almost all
algorithms in this kind.

Another factor in evaluating algorithm performance
is memory usage. Theoretically, the memory require-
ment of GPU-ARACNE is proportional to the size of
data matrix. While for ARACNE-ADP, besides that larger
dataset requires more memory to hold, the number of
threads needed in JAVA Virtual Machine (JVM) also scale
up with data size. Therefore, since JAVA threads need
basic stack memory (typically 1024 KB per thread), larger
data size would require significantly more memory to be
allocated to JVM. Taking a simple example, an allocation

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

of 2 GB memory size for JVM can support maximally 2000
threads, indeed limiting the level of parallelism during
execution.

In summary, GPU-ARACNE-V2 definitely ran faster
than ARACNE, and at least comparable to multi-
threading ARACNE-AP. Within the hardware limitations,
the runtime scaled linearly regarding to samples size in
our experiments.

Accuracy analysis
We evaluated GPU-ARACNE accuracy by demonstrating
consistency of estimated MI, and then showed network
structure validity.

MI consistency

As Lachmann et al. had shown that ARACNE-AP MIs
were consistent with that from ARACNE [13], we chose
to focused on comparison between GPU-ARACNE MIs
and ARACNE-AP MIs to evaluate GPU-ARACNE esti-
mated MI accuracy. The networks used in this comparison
were reconstructed using identical p-value and bootstrap-
ping settings for both ARACNE-AP and GPU-ARACNE

Page 92 of 119

(p-value: 1078, no bootstrapping). In general, MIs from
GPU-ARACNE were significantly correlated with that
from ARACNE-AP (p 0.984, for BRCA and PRAD,
Fig. 5a-b), indicating consistent edge weights computed
from both algorithms.

Still, there were cases where the two algorithms’ MI
inference showed deviance (Fig. 5a—b, black dots). For
some gene pairs, ARACNE-AP predicted lower MI, while
GPU-ARACNE over-estimated it. For example, one inter-
esting observation was the edge between gene pair LEF1
(Lymphoid Enhancer Binding Factor 1, the transcription
factor [21]) and LRRC15 (Leucine Rich Repeat Contain-
ing 15 [22]) (Fig. 5a, red arrow). LEF1 enhancer facili-
tated Wnt pathway in tumor invasion [23], while LRRC15
protein, which was usually over-expressed in tumor, par-
ticularly breast tumors [24], was reported as a potential
drug target for virus based cancer therapy [25]. This
interaction provides valuable information for molecular
mechanism to understand LRRC15 related treatment. In
this work, GPU-ARACNE detected such regulation con-
fidently, contrasting to ARACNE-AP where the inferred
interaction strength was only at borderline. On the other

BRCA
| Rho: 0.984

0.8

0.6

GPU-ARACNE MI

0.4

PRAD
Rho: 0.984

15

GPU-ARACNE MI
1.0

0.5

T T
0.4 0.6

ARACNE-AP MI
C BRCA
X °
ot ¥ g 2
i
oo 0 Vonmet,
S v ;ﬁ
@ L 3 s
W, IR g
o * ®s & o2
{] . 2ls °
& 9545, 0. 8% 9,
ave, °
. ° ° A
Yo /N & L4
o0 §

Mlin corresponding gene regulatory network. The blue shades correspo

0. IS 1.‘0
ARACNE-AP MI

d

PRAD

TF
Target

Fig. 5 Estimated mutual information and networks. a-b Density plot of Ml calculated from GPU-ARACNE and ARACNE-AP for breast cancer and
prostate cancer dataset, respectively. X-axis represents ARACNE-AP MI; Y-axis represents GPU-ARACNE MI. Each black points represent one pairwise

nd to density of points representing pairwise Mls. ¢-d Subnetwork of breast

cancer and prostate cancer gene regulatory network of top 100 most connected transcription factors and their targets

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

hand, GPU-ARACNE tends to underestimate the MIs
when their values become larger (Fig. 5a, top right). This
might result from two factors: 1) a deeper searching tree
in the GPU apMI estimator where more information was
calculated comparing to other implementations; 2) a dif-
ferent arithmetic approximation of floating point in GPU
comparing with CPU. Despite of all those differences,
GPU-ARACNE network employed a structure that was
almost identical to that from ARACNA-AP. Moreover, as
all network pruning process was based on lower bound MI
value, which was not affected by the underestimation of
higher MI pairs. GPU-ARACNE reconstructed network
was at least as accurate as ARACNE-AP, with a possibility
of slightly increased sensitivity.

Analysis of the sub-network composed of the top 100
most connected TFs and their targets in both BRCA and
PRAD data showed densely connected context-specific
networks (Fig. 5¢c—d). In BRCA sub-network, TFs had an
average degree of 53.95, while the top connected TFs such
as Forkhead box protein M1 (FoxM1), SOX10, had more
than 100 inferred targets. The sub-network connectivity
was even increased in PRAD, whose top 100 connected
TFs sub-network had an average degree of 178.21. The
increased connectivity might be resulted from larger sam-
ples size that enabling more perturbations of gene regula-
tion, also the context specific property of GPU-ARACNE
networks.

Page 93 of 119

FoxM1 regulon

To further understand the biological meaning of GPU-
ARACNE inferred gene regulatory network, we focused
on breast cancer regulatory network, specifically FoxM1
(Forkhead box protein M1) transcriptional network (regu-
lon) as FoxM1 was predicted to have the largest regulon by
GPU-ARACNE (Fig. 6), supporting previous findings that
it was highly activated in breast cancer tumors [26, 27].
Moreover, FoxM1 was reported as a master regulator and
a biomarker in breast cancer by multiple studies [28—31].
The function of FoxM1 was believed to be widely asso-
ciated with cell proliferation [32], mitosis [33], and DNA
damage [34]. Also, previous work in lab has experimen-
tally validated the regulatory role of FoxM1 in different
contexts [9, 10]. To validate the prediction accuracy of tar-
gets of TFs, we focused on finding biological meaning of
FoxM1 interactions.

A total of 121 FoxM1 transcriptional targets were iden-
tified (Fig. 6), with 14 targets being reported to be experi-
mental validated (p-value = 2.33720, Odds ratio = 75.95).
Among the reported validated targets, 10 were reported
to be involved in the curated FoxM1 transcriptional factor
network according to the National Center of Bioinfor-
matics Institute (NCBI) Biosystem Database (a source
of all publication associated intersections in a specific
biosystem). The other 4 targets were manually searched
and identified in recent publications [7, 26, 35, 36].

FoxM1, the stronger the interaction is

Fig. 6 FoxM1 breast cancer regulon. GPU-ARACNE predicted FoxM1 breast cancer specific regulon, centered by FoxM1 as the transcription factor,
connecting to its predicted transcriptional gene targets (other circles). FoxM1 targets were color coded according to the evidence validating their
biological relevance. NCBI curated database reported targets were colored as pink ones; Literature reported by experiments were colored as orange
ones. All edge length and thickness were weighted by the estimated Mutual information between targets and FoxM1. The closer one target is to

/»
/ y,
//M//

BRCE

|

CCNE1.

AN

N

Targets: GPU-ARACNE
Targets: NCBI bioSystem
Targets: Literature

@® TF

— Edge weighted by MI

CHEK2

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

Wonsey et al. used time-lapse microscopy to show that
depletion of FoxM1 in basal cell carcinoma cells would
generate cells that enter mitosis but were unable to com-
plete cell division, resulting in either mitotic catastrophe
or endoreduplication, confirming their hypothesis that
FoxM1 might regulate genes essential for faithful chromo-
some segregation and mitosis, including NEK2, CENPA
and KIF20A [35]. Lefebvre et al. showed experimentally
that Aurora B Kinase (AURKA) functions by associat-
ing with the spindle poles to regulate entry into mitosis,
centrosome maturation and spindle assembly as a FoxM1
target [7, 8].

Again, Wang et al. demonstrated that introducing
FoxM1 siRNA resulted in reduction in both protein and
mRNA level of AURKA and M-phase inducer phos-
phatase 1 (CDC25A), thus reinforcing the hypothesis that
AURKA might be a direct transcriptional target of FoxM1
in breast cancer cell lines [36]. In another study, Mar-
tin et al. reported that Aurora A is tentatively associate
with prognosis in ER+ tumors, which is different from the
potential prognostic role of FoxM1 in ER- tumors [26].
Based on the inferred regulatory associations by GPU-
ARACNE, it is feasible to speculate that the function of
FoxM1 in ER+ might be compensated by the play-up of
one of its direct targets, such as AURKA. To sum up, the
FoxM1 regulon inferred by GPU-ARACNE was generally
biologically validated according to the literature.

Other GPU based implementations
There are at least three other implementations of gene
regulatory network construction algorithms using GPU
by Ramirez et al. [37], Borelli et al. [38], and Misra et al.
[14], respectively. This signifies the trends and importance
of parallelizing existing sequential algorithms for regula-
tory networks reconstruction. All of them were different
from GPU-ARACNE in some aspects. Ramierz-Chavez
et al. [37] inferred network using differential evolution
algorithm, a genetic algorithm without using probability
density function, achieving significantly time reduction.
In Borelli et al. study [38], a feature selection procedure
was used in the exhaustive search GPU paralleled algo-
rithm, obtaining encouraging speedup. The most recent
and so far the best performing parallel implementation
was reported by Misra et al. [14]. In their work, they
were able to estimate MI by fixed bandwidth, reporting
that only hundreds of seconds were needed to compute
pairwise MI values using Intel R Xeon Phi multiprocessor.
All those work contributed in different ways, varied
greatly in terms of accuracy and computational complex-
ity, making it difficult to directly compare their optimized
implementations. Here, GPU-ARACNE is unique in that
it highly optimizes adaptive partitioning in MI computa-
tion in CUDA framework. In our work, apMI estimator
usually took less than a hundred seconds for one round of

Page 94 of 119

pairwise estimation. But, it should be noted that Misra et
al. implemented on a different computing framework and
on an old device. The upgraded GPU computing capac-
ity aided the gain of speed in both GPU-ARACNE-V1
and GPU-ARACNE-V2. Besides, other large-scale tech-
nology such as MapReduce and Online database optimiz-
tion can also be implemented to facilitate bioinformatics
tasks [39, 40].

Discussion

Here, we provide GPU-ARACNE, an accelerated par-
allel algorithm for reverse engineering of gene reg-
ulatory networks. GPU-ARACNE runs significantly
faster than ARACNE and was comparably faster than
the recently published multi-threaded JAVA version,
ARACNE-AP. We provide two versions of GPU-ARACNE
to ensure brand-agnostic compatibility with CUDA. GPU-
ARACNE-V1 is applicable to any GPU with compute
capability of 3.5 or higher. GPU-ARACNE-V2 is applica-
ble to any GPU with compute capacity of lower than 3.5.
The current Amazon Web Service provides readily usable
platforms for those 2 versions, p2 instances for V1 and g2
instance V2.

The optimized GPU-based design of adaptive partition-
ing MI estimator provides valuable lessons that are appli-
cable to other domains, such as higher order interactions
or epigenome interactions. For example, besides tran-
scriptional regulation, transcriptional modulation is also
a very important biological process in cells. The interac-
tions between transcriptional factor, transcriptional mod-
ulator, and gene target can be reconstructed based on
mRNA expression using methods such as conditional
mutual information (CMI [41]) and partial correlation.
In the case of CMI estimation, one can extend the cur-
rent splitting of 2D square into partitioning of 3D cube.
Given the computational intensity of CMI estimation,
GPU based re-design might be a very valuable attempt.
Application of apMI to Chromatin binding factors and
their targets would also bring merits to current field. For
example, customizing apMI estimator to different data
type, we might be able to largely improve the speed for
algorithms [42].

By fully using GPU computation power (compute capa-
bility less than 3.5 or not), GPU-ARACNE was able to
process a dataset up to 1024 samples without significantly
degenerating the performance. In GPU-ARACNE imple-
mentations, SIMD instructions were used for parallel
counting to optimize thread synchronization by reduc-
ing thread divergence. But still, computation will become
very slow for datasets with sample size reaching hardware
limit, possibly due to overuse of block-wise shared mem-
ory. Further explorations are needed to overcome this
issue. For example, we can use mini-batch strategy, split-
ting original datasets into small ones to run, or splitting

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

all regulators into sub-sets to run. Besides, using virtual
warp in between GPU thread and block is also possi-
ble [43]. In this case, instead of using one thread for one
data point, we can design a middle layer, so that one
thread can process multiple data points, thus, the hard-
ware limitation of thread number per block is going to be
resolved.

Besides the hardware restriction, there is one caveat
in applying GPU-ARACNE. If sample size is larger than
the available blocks on GPU, GPU stream multiproces-
sors (SM) can only execute on a limited number of blocks
according to GPU configuration, other blocks will be held
for serialized executions. Thus, a careful calculation of
GPU card theoretical upper bound is essential to mini-
mize GPU sequential operation so that SM can execute a
kernel in a greater parallel fashion. As we stored data for
computing each edge in GPU block shared memory, the
sample size is bounded by the stored data structure length
(sample size - 3 in our case).

Also, a null model with closed-form solution is possi-
ble according to previous work [44] in which the author
hypothesized connectivity matrix for inter dataset regu-
latory networks. Beyond current ARACNE framework,
there are many other ways to achieve further parallelism,
such as data level parallelism.

To explore further parallelism optimization possibil-
ities on current GPU, we tried one thread per block
so that SM can handle more blocks in computing each
pairwise MI, hopefully increasing parallelism. However,
it turned out slowing it down instead of accelerating
up. This is possibly due to the fact that this re-design
requires one thread to sequentially go through all sam-
ples before complete one apMI partition. Contrasting to
the attempt, GPU-ARACNE wants each thread to be
responsible only for one sample point, facilitating simul-
taneously counting for one apMI partition. It seems that
we encountered a "two bottlenecks trade-off" situation
in which either design is equivocally less ideal in some
aspect. Practically, the sample size bottleneck seems to
be less harmful for performance. First, it is promising
that the block size limitation (threads limit in one block)
might be mitigated with hardware improvement in the
very near future. Also, in many cases GPU-ARACNE is
used to construct regulatory networks using RNA-seq
samples, for which sample size barely reaches the upper
limit. Meanwhile, other optimization effort could help
to improve GPU block usage, with more blocks taking
advantage of fast memory access. Currently, each element
in the node is 20 bytes in size, but by exploring the data
we might possibly squeeze the informative bits of many
numbers into one 64-bit number. Alternatively, instead
of using one thread per point, one thread could poten-
tially handle more points, and therefore increasing the
throughput.

Page 95 of 119

Conclusions

ARACNE is one of most important algorithms for infer-
ence of regulatory networks from gene expression data,
but it requires intensive computation. To achieve short
execution time, researchers need to have access to expen-
sive high-performance computing clusters, which are
usually not readily available. GPU-ARACNE solved this
problem by significantly reducing the computing time
using GPU framework without losing the inference accu-
racy. Moreover, GPU-ARACNE exemplifies one of the
first attempts to handle large-scale bioinformatics prob-
lems by parallel computing systems. It is characterized by
exploiting different types of parallelism, including fine-
grained and thread-level parallelism as well as data-level
parallelism. The design and use of advanced parallel com-
puting illustrated by GPU-ARACNE not only exhibit new
possibilities to accelerate bioinformatics algorithms but
also provide useful insights for importing other applica-
tions which might be beyond the scope of systems biology.

Additional file

Additional file 1: Source code. The source code developed are available
in the Bitbucket repository: https://github.com/califano-lab/GPU- ARACNE.
(ZIP 25 kb)

Abbreviations

apMI: Adaptive partitioning mutual information; ARACNE: Algorithm for the
reconstruction of accurate cellular networks; ARACNE-AP: ARACNE using JAVA;
AWS: Amazon Web Service; BRCA: Breast carcinoma; CMI: Conditional mutual
information; CUDA: Compute unified device architecture; GPU: Graphics
processing unit; GPU-ARACNE: GPU based ARACNE; JVM: JAVA virtual
machine; MI: Mutual information; Nearger: Number of target genes; Nis: Number
of transcription factors; Nsample: Number of samples; PRAD: Prostate
Adenocarcinoma; SIMD: Single instruction multiple data; SM: Stream
Multiprocessor

Acknowledgements

The authors would like to thank Jiguang Wang, Alex Lachmann, and Federico
Giorgi for their insights to this work. Thanks to Columbia, and to NVIDIA, for
the hardware support.

Funding

This work was supported by the National Cancer Institute (NCI) Cancer Target
Discovery and Development program (1U01CA168426), NCI Outstanding
Investigator Award (R35CA197745-02) for AC and the NCI Research Centers for
Cancer Systems Biology Consortium (1U54CA209997).

Availability of data and materials

The original datasets analysed during the current study are available in the
TCGA repository [https://portal.gdc.cancer.gov/]. The datasets used and/or
analysed during the current study are available from the corresponding author
on reasonable request.

About this supplement

This article has been published as part of BMC Systems Biology Volume 11
Supplement 4, 2017: Selected papers from the 10th International Conference
on Systems Biology (ISB 2016). The full contents of the supplement are
available online at https://bmcsystbiol.biomedcentral.com/articles/
supplements/volume-11-supplement-4.

Authors’ contributions

JH and ZZ conceptualized and implemented this work, JH and ZZ wrote the
manuscript. MR and AC conceptualized the algorithm and directed this work.
All authors read and approved the final manuscript.

http://dx.doi.org/10.1186/s12918-017-0458-5
https://github.com/califano-lab/GPU-ARACNE
https://portal.gdc.cancer.gov/
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-11-supplement-4
https://bmcsystbiol.biomedcentral.com/articles/supplements/volume-11-supplement-4

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

1Departmem of Biomedical Informatics, Columbia University, 168th Street,
10032 New York, NY, USA. 2Department of Systems Biology, 1130 St Nicholas
Street, 10032 New York, NY, USA. 3Departmem of Computer Science, 10027
New York, NY, USA.

Published: 21 September 2017

References

1. Mutwil M, Klie S, Tohge T, Giorgi FM, Wilkins O, Campbell MM, Fernie AR,
Usadel B, Nikoloski Z, Persson S. Planet: combined sequence and
expression comparisons across plant networks derived from seven
species. Plant Cell. 2011;23(3):895-910.

2. LicausiF, Giorgi FM, Schmalzlin E, Usadel B, Perata P, van Dongen JT,
Geigenberger P. Hre-type genes are regulated by growth-related
changes in internal oxygen concentrations during the normal
development of potato (solanum tuberosum) tubers. Plant Cell Physiol.
2011;52(11):1957-72.

3. LiuF, Zhang SW, Guo WF, Wei ZG, Chen L. Inference of gene regulatory
network based on local bayesian networks. PLoS Comput Biol. 2016;12(8):
1005024.

4. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information:
detecting and evaluating dependencies between variables.
Bioinformatics. 2002;18(suppl 2):231-40.

5. Zhang X, Zhao J, Hao JK, Zhao XM, Chen L. Conditional mutual inclusive
information enables accurate quantification of associations in gene
regulatory networks. Nucleic Acids Res. 2015;43(5):31-1.

6. Nair A, Chetty M, Wangikar PP. Improving gene regulatory network
inference using network topology information. Mol BioSyst. 2015;11(9):
2449-63.

7. Margolin AA, Nemenman |, Basso K, Wiggins C, Stolovitzky G,

Dalla Favera R, Califano A. Aracne: an algorithm for the reconstruction of
gene regulatory networks in a mammalian cellular context. BMC
Bioinforma. 2006;7(1):7.

8. Floratos A, Smith K, Ji Z, Watkinson J, Califano A. geWorkbench: an open
source platform for integrative genomics. Bioinformatics. 2010;26(14):
1779-80.

9. Lefebvre C, Rajbhandari P, Alvarez MJ, Bandaru P, Lim WK, Sato M,
Wang K, Sumazin P, Kustagi M, Bisikirska BC, et al. A human b-cell
interactome identifies myb and foxm1 as master regulators of
proliferation in germinal centers. Mol Syst Biol. 2010;6(1):377.

10. Chen JC, Alvarez MJ, Talos F, Dhruv H, Rieckhof GE, lyer A, Diefes KL,
Aldape K, Berens M, Shen MM, et al. Identification of causal genetic
drivers of human disease through systems-level analysis of regulatory
networks. Cell. 2014;159(2):402-14.

11. Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M,
Zheng T, Eastham JA, Gopalan A, Pienta KJ, Shen MM, et al.
Cross-species regulatory network analysis identifies a synergistic
interaction between foxm1 and cenpf that drives prostate cancer
malignancy. Cancer Cell. 2014;25(5):638-51.

12. Woo JH, Shimoni Y, Yang WS, Subramaniam P, lyer A, Nicoletti P,
Martinez MR, Lépez G, Mattioli M, Realubit R, et al. Elucidating
compound mechanism of action by network perturbation analysis. Cell.
2015;162(2):441-51.

13. Lachmann A, Giorgi FM, Lopez G, Califano A. Aracne-ap: gene network
reverse engineering through adaptive partitioning inference of mutual
information. Bioinformatics. 2016;32(14):2233-5.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33
34

35.

36.

Page 96 of 119

Misra S, Pamnany K, Aluru S. Parallel mutual information based
construction of genome-scale networks on the intel® xeon phi™
coprocessor. I[EEE/ACM Trans Comput Biol Bioinforma. 2015;12(5):
1008-20.

Liang KC, Wang X. Gene regulatory network reconstruction using
conditional mutual information. EURASIP J Bioinforma Syst Biol.
2008;2008(1):253894.

Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A,

Zhang H, McLellan M, Yau C, Kandoth C, et al. Comprehensive molecular
portraits of invasive lobular breast cancer. Cell. 2015;163(2):506-19.
Network CGAR, et al. The molecular taxonomy of primary prostate cancer.
Cell. 2015;163(4):1011-25.

Bansal M, BelcastroV, Ambesi-Impiombato A, DiBernardo D. How to
infer gene networks from expression profiles. Mol Syst Biol. 2007;3(1):78.
Hwu W-m. GPU Computing Gems. Amsterdam: Elsevier; 2011.

The Cancer Gemone Atlas. http://cancergenome.nih.gov/. Accessed 16
June 2015.

Milatovich A, Travis A, Grossched| R, Francke U. Gene for lymphoid
enhancer-binding factor 1 (lef1) mapped to human chromosome 4
(923-g25) and mouse chromosome 3 near egf. Genomics. 1991;11(4):
1040-8.

Satoh K, Hata M, Yokota H. A novel member of the leucine-rich repeat
superfamily induced in rat astrocytes by B-amyloid. Biochem Biophys Res
Commun. 2002;290(2):756-62.

Kestutisplanutis BS, Chaiwun B, Lin F, Ashrafimam S, Marsh JL,
Holcombe RF. Wnt pathway component lefl mediates tumor cell invasion
and is expressed in human and murine breast cancers lacking erbb2
(her-2/neu) overexpression. Int J Oncol. 2005;27:949-56.

Satoh K, Hata M, Yokota H. High lib mrna expression in breast
carcinomas. DNA Res. 2004;11(3):199-203.

O'Prey J, Wilkinson S, Ryan KM. Tumor antigen Irrc15 impedes adenoviral
infection: implications for virus-based cancer therapy. Int J Virol.
2008;82(12):5933-9.

Martin KJ, Patrick DR, Bissell MJ, Fournier MV. Prognostic breast cancer
signature identified from 3d culture model accurately predicts clinical
outcome across independent datasets. PloS one. 2008;3(8):2994.

Saba R, Alsayed A, Zacny JP, Dudek AZ. The role of forkhead box protein
m1 in breast cancer progression and resistance to therapy. Int J Breast
Cancer. 2016;9768183.

Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, TanV,
Ackerson T, Costa RH. Forkhead box m1 regulates the transcriptional
network of genes essential for mitotic progression and genes encoding
the scf (skp2-cks1) ubiquitin ligase. Mol Cell Biol. 2005;25(24):10875-94.
Ahn SG, Lee HM, Lee HW, Lee SA, Lee SR, Leem SH, Jeong J, Chu IS.
Prognostic discrimination using a 70-gene signature among patients
with estrogen receptor-positive breast cancer and an intermediate
21-gene recurrence score. Int J Mol Sci. 2013;14(12):23685-99.

Mencalha AL, Binato R, Ferreira GM, Du Rocher B, Abdelhay E. Forkhead
box m1 (foxm1) gene is a new stat3 transcriptional factor target and is
essential for proliferation, survival and dna repair of k562 cell line. PloS
ONE. 2012;7(10):48160.

Al-Ejeh F, Simpson P, Sanus J, Klein K, Kalimutho M, Shi W, Miranda M,
Kutasovic J, Raghavendra A, Madore J, et al. Meta-analysis of the global
gene expression profile of triple-negative breast cancer identifies genes
for the prognostication and treatment of aggressive breast cancer.
Oncogenesis. 2014;3(4):100.

Grant GD, Brooks L, Zhang X, Mahoney JM, Martyanov V, Wood TA,
Sherlock G, Cheng C, Whitfield ML. Identification of cell cycle-regulated
genes periodically expressed in u20s cells and their regulation by foxm1
and e2f transcription factors. Mol Biol Cell. 2013;24(23):3634-50.

Costa RH. Foxm1 dances with mitosis. Nat Cell Biol. 2005;7(2):108-10.
ZonaS, Bella L, Burton MJ, de Moraes GN, Lam EW-F. Foxm1:an
emerging master regulator of dna damage response and genotoxic
agent resistance. Biochim et Biophys Acta (BBA)-Gene Regul Mech.
2014;1839(11):1316-22.

Wonsey DR, Follettie MT. Loss of the forkhead transcription factor foxm1
causes centrosome amplification and mitotic catastrophe. Cancer Res.
2005;65(12):5181-9.

Wang M, Gartel AL. The suppression of foxm1 and its targets in breast
cancer xenograft tumors by sirna. Oncotarget. 2011;2(12):1218-26.

http://cancergenome.nih.gov/

The Author(s) BMC Systems Biology 2017, 11(Suppl 4):83

37.

38.

39.

40.

42.

43.

44,

Ramirez-Chavez LE, Coello CC, Rodriguez-Tello E. A gpu-based
implementation of differential evolution for solving the gene regulatory
network model inference problem. In: Proc. of the 4th International
Workshop on Parallel Architectures and Bioinspired Algorithms
(WPABA'2011). Galveston Island; 2011. p. 21-30.

Borelli FF, de Camargo RY, Martins DC, Rozante LC. Gene regulatory
networks inference using a multi-gpu exhaustive search algorithm. BMC
Bioinforma. 2013;14(18):5.

Zou Q, LiXB, Jiang WR, Lin ZY, Li GL, Chen K. Survey of mapreduce
frame operation in bioinformatics. Brief Bioinform. 2013;15(4):637-647.
ChengL, Zhang S, Hu Y. Blat2dolite: An online system for identifying
significant relationships between genetic sequences and diseases. PloS
ONE. 2016;11(6):0157274.

Giorgi FM, Lopez G, Woo JH, Bisikirska B, Califano A, Bansal M. Inferring
protein modulation from gene expression data using conditional mutual
information. PloS ONE. 2014;9(10):109569.

Duren Z, Wang Y. A systematic method to identify modulation of
transcriptional regulation via chromatin activity reveals regulatory
network during mesc differentiation. Sci Rep. 2016:p6.

Hong S, Kim SK, Oguntebi T, Olukotun K. Accelerating cuda graph
algorithms at maximum warp. In: Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming. New
York: ACM; 2011. p. 267-76.

XiaoF, Gaol, YeY, HuY, He R.Inferring gene regulatory networks using
conditional regulation pattern to guide candidate genes. PloS ONE.
2016;11(5):0154953.

Page 97 of 119

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

® Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

¢ Convenient online submission

® Thorough peer review

¢ Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central

	Abstract
	Background
	Result
	Conclusion
	Keywords

	Background
	Methods
	GPU-ARACNE workflow
	Paralleled adaptive partition mutual information estimation
	Optimized ranking
	Optimized MI computing

	Null model for MI thresholding
	Paralleled thresholding and data processing inequality
	Paralleled bootstrapping and consolidation
	Datasets and parameters
	System configuration

	Result
	Time complexity analysis
	GPU-ARACNE-V1 runs faster than other implementations
	GPU-ARACNE-V2 runs relatively faster than other implementations

	Accuracy analysis
	MI consistency
	FoxM1 regulon

	Other GPU based implementations

	Discussion
	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

