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Abstract

Background: Predicting protein structure from amino acid sequence is a prominent problem in computational
biology. The long range interactions (or non-local interactions) are known as the main source of complexity for
protein folding and dynamics and play the dominant role in the compact architecture. Some simple but exact model,
such as HP model, captures the pain point for this difficult problem and has important implications to understand the
mapping between protein sequence and structure.

Results: In this paper, we formulate the biological problem into optimization model to study the
hydrophobic-hydrophilic model on 3D square lattice. This is a combinatorial optimization problem and known as
NP-hard. Particle swarm optimization is utilized as the heuristic framework to solve the hard problem. To avoid
premature in computation, we incorporated the Tabu search strategy. In addition, a pulling strategy was designed to
accelerate the convergence of algorithm based on the characteristic of native protein structure. Together a novel
hybrid method combining particle swarm optimization, Tabu strategy, and pulling strategy can fold the amino acid
sequences on 3D square lattice efficiently. Promising results are reported in several examples by comparing with
existing methods. This allows us to use this tool to study the protein stability upon amino acid mutation on 3D lattice.
In particular, we evaluate the effect of single amino acid mutation and double amino acids mutation via 3D HP lattice
model and some useful insights are derived.

Conclusion: We propose a novel hybrid method to combine several heuristic strategies to study HP model on 3D
lattice. The results indicate that our hybrid method can predict protein structure more accurately and efficiently.
Furthermore, it serves as a useful tools to probe the protein stability on 3D lattice and provides some biological insights.
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Background
Protein is the substantial basis of biological activity. The
function of protein is determined by its structure which
is believed to be decided by the amino acid sequence
according to Anfinsen’s experiments. So the research on
protein structure prediction (also called protein folding
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problem) is very significant and fundamental in explor-
ing the fundamental principle to map sequence, structure,
and function.
To capture the backbone of protein structure prediction,

Dill and his collaborators introduced HP lattice model
to simplify real world complexity in 1995 [1]. HP lattice
model is an abstracted scaffold, and eventually convert
the protein structure prediction problem to an optimiza-
tion problem on lattice. The aim is to find the optimal
structure with the lowest energy. Computationally, solving
this problem is NP-hard. For this reasonmany researchers
have been attracted to study this problem by proposing
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many heuristic algorithms. In recent years, for 2DHP pro-
tein folding problem, many methods have been proposed,
e.g. , PSO (Particle Swarm Optimization) [2], ACO (Ant
Colony Algorithm) [3], ABO (Artificial Bee Colony) [4]
and SOM (Self-Organizing Mapping) [5] etc.
One issue for 2D lattice model is that it’s too simpli-

fied to constrain the amino acid sequence on a 2D plane.
One step forward is to fold the sequence on 3D lattice and
make it a better and native approximation. So far, several
algorithms have been applied for 3D HP protein structure
prediction problem, such as UEGO (Universal Evolution-
ary Global Optimization) [6], GA (Genetic Algorithms)
[7], TS (Tabu Search) [8], EA (Evolutionary Algorithm)
[9] and so on. Each method has its advantage to capture
some special structure in the problem. In this paper, we
aim to propose a hybrid method and improve the effi-
ciency to solve the 3D HP protein structure prediction
problem.
PSO was introduced by Kennedy and Eberhart [10].

It is a swarm intelligence optimization algorithm which
imitates the foraging behaviors of birds and fish. As a
simple meta-heuristic, it has been used to solve opti-
mization problem with nonlinear, non-differentiable, and
multi-modal function. Originally, this algorithm was
designed for solving continuous optimization problem.
Here, we started from the basic PSO framework and
firstly extend the algorithm to the combinatorial opti-
mization, into which we formally formulate the HP
model on 3D lattice. In addition, we improved PSO
as follows: a) redefined velocity for discrete model; b)
employed modified Tabu search strategy to avoid prema-
ture convergence; c) designed pulling strategy to speed up
convergence.
We showed that our hybrid algorithm can predict struc-

tures of amino acid sequences with different length effi-
ciently. With this useful tool, we simulated the effects
after single amino acid mutation and double amino
acids mutation, respectively. Some biological insights
are obtained.
The remainder of this paper is organized as follows.

Firstly, a mathematical model was established for 3D
HP problem. Secondly, we explained the PSO algorithm
and proposed modified Tabu search method and pulling
strategy. Thirdly, the performance of our algorithm was
validated. Fourthly, the amino acid mutation result
was obtained and analyzed. Finally, conclusions were
presented.

Methods
Combinatorial optimization formulation for 3D HP lattice
model
In HP model, every amino acid sequence is abstracted as
an alphabetic string with H (hydrophobic amino acid) and
P (hydrophilic amino acid). The protein conformation is

a self-avoiding path on a 2D lattice. It is assumed that
the main driving forces of the formation of the ter-
tiary structure are the interactions among hydrophobic
amino acids which are adjacent on lattice but not adja-
cent in the sequence, denoted as H-H interactions. The
free energy of a protein conformation (X) is expressed
by the number of H-H interactions. Based on Anfin-
sen’s assumption [11], the configuration tends to form a
core in the spatial structure shield from the surround-
ing solvent by hydrophilic amino acids with the min-
imal free energy. So the more H-H interactions, the
lower the free energy. We assumed that the free energy
equals to the minus number of H-H interactions. HP
lattice model has been used for solving protein struc-
ture prediction problem on 2D and 3D lattices widely.
In this paper, we focused on the 3D HP square lattice
model.
At present, relative coordinates and space coordinates

have been used to denote the protein conformation. For a
sequence S with L amino acids, X is a string of length L−1
over the symbols {r(ight), l(eft), f (orward), d(own),u(p)}
in relative coordinates, these five symbols reflect the
relative location of contiguous amino acids on lattice.
In space coordinates, X records the 3D coordinates
of L amino acids, namely, X = (X(1),X(2) · · ·X(L))

and X(l) ∈ N3 (l = 1, 2 · · ·L) is the coordinate of
the lth amino acid. In this paper, we chose the space
coordinates. For example, Fig. 1 showed a con-
formation with 7 H-H interactions on 3D square
lattice. Its conformation was denoted as X =
((2, 3, 2), (3, 3, 2), (3, 4, 2), (3, 4, 3), (3, 3, 3), (2, 3, 3), (2, 2, 3),
(3, 2, 3), (3, 2, 2), (3, 1, 2), (2, 1, 2), (2, 2, 2)).
Based on the abstraction and minimum energy prin-

ciple, we established the optimization model (OM) for
protein structure prediction problem on 3D square lattice
as following:

Fig. 1 The structure of sequence (H2P2H5P2H) on 3D square lattice



The Author(s) BMC Systems Biology 2017, 11(Suppl 4):93 Page 101 of 119

min E(X) (1)

s.t.
I∑

i=1

J∑

j=1

K∑

k=1
xi,j,k(l) = 1 l = 1, 2 · · ·L (2)

0 ≤
L∑

l=1
xi,j,k(l) ≤ 1 l = 1, 2 · · ·L (3)

3∑

d=1
|X(l + 1)d − X(l)d| · ‖X(l + 1) − X(l)‖ = 1

l = 1, 2 · · ·L − 1 (4)

Here,

E(X) = − M(X) (5)

M=
I∑

i=1

J∑

j=1

K∑

k=1

L∑

l=1
xi,j,k(l)f (l)

L∑

r=1
f (r)[xi,j,k+1(r)+xi,j+1,k(r)

+ xi+1,j,k(r)]−h (6)

h =
L−1∑

l=1
f (l)f (l + 1) (7)

xi,j,k(l) =
{
1 if the X(l) = (i, j, k)
0 else

(8)

f (l) =
{
1 if the lth amino acid is H
0 if the lth amino acid is P

(9)

Where, E(X) is the free energy of protein conformation
X, X(l)d is the dth component of X(l), M(X) is the num-
ber of H-H interactions in conformation X, r expresses
the number of adjacent hydrophobic pairs in amino acid
sequence and ‖ · ‖ is Hamming distance. Equations (2),
(3) and (4) constrain that every amino acid occupies only
one lattice point, each lattice point cannot be used more
than once and adjacent amino acids in the chain occupy
the adjacent points on the lattice. Equation (8) presents
whether the lth amino acid occupies point (i, j, k). In
Eq. (9), f (l) translates the lth H (or P) of the amino acid
sequence into 1 (or 0).
Solving the simplified HP model is NP-complete even

on two dimensional lattice. Then we have to seek help
from heuristic algorithms. Particle swarm optimization,
one of the stochastic algorithm, serves as a powerful
approximation method.

Hybrid algorithm
The basic PSO algorithm
Particle swarm optimization (PSO) is a heuristic frame-
work that optimizes an objective function by iteratively

improve a candidate solution. The motivation is to have a
population of candidate particles, and move these parti-
cles around in the search-space according to simple math-
ematical formulae over the particle’s position and velocity.
Each particle’s movement is influenced by its local best
known position, but is also guided toward the best known
positions in the search-space, which are updated as bet-
ter positions are found by other particles. Finally it is
expected tomove the swarm toward the best solution. The
advantage of PSO is that it makes no assumptions about
the problem and can search very large spaces of candidate
solutions.
In basic PSO algorithm (See Table 1),m particles search

the optimal position simultaneously with dynamic veloc-
ity. Particle velocity is affected by iteration, own cogni-
tion, and social cognition of particle. Particularly, each
particle can remember not only its own flight expe-
rience, but also the trajectories of all particles. In n
dimensional search space, the position and velocity of
the ith particle are represented as Xi ∈ Rn and Vi ∈
Rn, respectively. They are updated by the following two
equations:

Vt+1
i = ωVt

i + c1r1
(
Ptib − Xt

i
) + c2r2

(
Ptgb − Xt

i

)
(10)

Xt+1
i = Xt

i + Vt+1
i (11)

Where Ptib and Ptgb are the best position of the ith parti-
cle and the best position of all particles in the tth iteration,
respectively. Inertia weight (ω), self confidence (c1) and
swarm confidence (c2) are input parameters, r1, r2 are
two separately generated uniformly distributed random
numbers in the range [0,1].

Themodified PSO algorithm
Definitions To solve the optimization model, we rede-
fined position and velocity of PSO on 3D lattice. Par-
ticle position was orderly expressed by protein con-
formation (X). Velocity of particle was defined as a
series of shift (j1, j2), which means that the jth1 com-
ponent of particle position becomes the jth2 compo-
nent, then the jth1 component and the jth2 compo-
nent (including the jth2 component) were changed sub-
sequently. In addition, position X1 was obtained by
the sum of position X2 and a series of shift, namely

Table 1 The process of basic PSO algorithm

Step 1 To initialize {X0i |i = 1, 2 · · ·m} and {V0i |i = 1, 2 · · ·m};
Step 2 To calculate E(Xti ) , find Ptib and Ptgb ;

Step 3 To update Xti and Vti ;

Step 4 To output Pgb .
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X1 = X2 + {(jp, jq)}. For example, V = {(2, 4), (3, 1)} and
X = (X(1),X(2),X(3),X(4)), then

X + V = (X(1),X(2),X(3),X(4)) + {(2, 4), (3, 1)}
= (X(1),X(3),X(4),X(2)) + {(3, 1)}
= (X(4),X(1),X(3),X(2)).

Clearly, X + V is a new position. Nevertheless, the
new position may not satisfy the constraints in the OM
model. An adjustment strategy is needed to ensure the
new position was valid.

Modified Tabu search strategy Premature convergence
is one of the major difficulty to solve OM model by
PSO algorithm. To further improve the modified PSO, we
adopted the idea of Tabu search which was proposed by
Glover [12]. This method was briefly described as follows.
Tabu search is a meta-heuristic method that maintains

only one solution in the iteratively searching process.
Given an initial solution X, the idea is to calculate and
compare its neighboring solutions N(X). The best solu-
tion is chosen as candidate solution Xc. If Xc is satisfied
with the aspiration rule, it will replace the current solu-
tion X and be added to tabu list Tlist ; Otherwise, the
current solution X will be replaced by the best one X′
(E(X′) = min{E(X)|X ∈ N(X),X /∈ Tlist}) and X′ will
be added to Tlist . Generally, Tlist is a first-in first-out
(fifo) memory with limited length. So particles would not
search the solutions which have been found for a while,
simultaneously, the better solutions would not always be
taboo.
Neighbourhood of solution and aspiration rule are the

key components of Tabu search. In our 3D HP problem,
feasible solution is a 3D self-avoiding path. It was not
easy to figure out its neighboring solutions from a given
solution. According to Eqs. (10) and (11), we got simi-
lar solutions by changing r1, r2 at the same iteration for
the same particle in PSO, then these solutions constituted

Fig. 2 The flow of pulling strategy. Left figure is for structure before
pulled. Right figure is for structure after pulled

Table 2 The algorithm outline of TPPSO2

Step 1 To initialize {X0i |i = 1, 2 · · ·m}, {V0i |i = 1, 2 · · ·m} and
Tlist = Ø;

Step 2 To calculate E(Xti ) , find Ptib and Ptgb ;

Step 3 To update {Vtij|j = 1, 2 · · · s} and {Xtij|j = 1, 2 · · · s};
Step 4 To adjust and pull {Xtij|j = 1, 2 · · · s} ;
Step 5 To calculate E(Xtic) = min{E(Xtij)|j = 1, 2 · · · s};
Step 6 If E(Xtic) ≤ E(Xti ) then Xti = Xtic ;

Step 7 To calculate E(Ptgbc) = min{E(Xti )|i = 1, 2 · · ·m};
Step 8 If E(Ptgbc) < E(Xtgb) then Xti = Xtic , Tlist = Ø;

Step 9 If E(Ptgbc) = E(Xtgb) and Ptgbc /∈ Tlist then

Tlist = Tlist + Xtgb , X
t
gb = Xtgbc ;

Step 10 To output Pgb .

a neighbourhood. When candidate solution was better
than the current solution, we would ignore whether the
candidate solution was taboo or not.

Pulling strategy The convergence rate of modified PSO
with Tabu search strategy is not fast enough and the con-
formations obtained by this modified PSO may be too
loose. The following strategy was designed in order to
improve the algorithm.
In native protein structure, hydrophobic amino acids

concentrate inside of conformation and they were sur-
rounded by hydrophilic amino acids. If hydrophilic amino
acids were pulled out of the central of protein structure,
the structure will be more compact and more stable.
Without changing structure’s legitimacy, this strategy was
defined as pulling strategy. In order to make pulled
structure to satisfy the self-avoiding constraints, only
one amino acid could be pulled to its vacant diagonal
position once. Figure 2 showed the move and result of
one pulling.

Table 3 Sequences with 27 amino acids used in our study

Sequence ID Amino acids sequence

A1 PHPHPH3P2HPHP11H2P

A2 PH2P10H2P2H2P2HP2HPH

A3 H4P5HP4H3P9H

A4 H3P2H4P3HPHP2H2P2HP3H2

A5 H4P4HPH2P3H2P10

A6 HP6HPH3P2H2P3HP4HPH

A7 HP2HPH2P3HP5HPH2PHPHPH2

A8 HP11HPHP8HPH2

A9 P7H3P3HPH2P3HP2HP3

A10 P5H2PHPHPHPHP2H2PH2PHP3

A11 HP4H4P2HPHPH3PHP2H2P2H
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Table 4 Comparing four algorithms in eleven sequences with 27
amino acids

Sequence ID EN hELP TPPSO1 TPPSO2

A1 -9 -9(18009) -9(1983) -9(177)

A2 -10 -10(9447) -10(1304) -10(439)

A3 -8 -8(1420) -8(1249) -8(44)

A4 -15 -15(2125) -15(795) -15(19)

A5 -8 -8(2877) -8(104) -8(61)

A6 -11 -12(2610) -11(940) -12(812)

A7 -13 -13(3967) -12(721) -13(805)

A8 -4 -4(1070) -4(6) -4(3)

A9 -7 -7(363) -7(389) -7(14)

A10 -11 -11(416) -11(2784) -11(83)

A11 -14 -16(285) -14(957) -16(2672)

The number in parentheses is the iteration number before the lowest free energy
values are found. TPPSO2 can find the optimal results of all sequences. TPPSO1 can’t
obtain the minimal free energies for sequence A6, A7, and A11 (highlighted in bold)

Hybrid method A novel hybrid method was proposed
by combining modified PSO with modified Tabu search
strategy algorithm, denoted as TPPSO1. Another hybrid
method was taken as TPPSO2, which combined TPPSO1

with pulling strategy. Both methods employed Tabu
search strategy and were applied to solve protein struc-
ture prediction problem. In TPPSO1 and TPPSO2,
when Pib and Pgb were found, s alternative particles
would be produced by Eqs. (10) and (11) for each
particle.
We selected different r1 and r2 for finding alterna-

tive particles. These alternative particles might not sat-
isfy the constraints, therefore they should be adjusted.
Then the best alternative particle would replace the

Fig. 3 This is one of structures for sequence A6. This optimal
conformation was simulated by TPPSO2 with 12 H-H interactions.
Squares are for hydrophobic amino acids, and circles are for
hydrophilic amino acids. In this structure all hydrophobic amino acids
are surrounded in center. It is stable with minimal free energy

Fig. 4 This is one of structures for sequence A7. This optimal
conformation was simulated by TPPSO2 with 13 H-H interactions.
Squares are for hydrophobic amino acids, and circles are for hydrophilic
amino acids. In this structure almost all hydrophobic amino acids are
surrounded in center. It is stable with minimal free energy

previous particle and Pgb would be taboo in a period
of time. Differently, pulling strategy has been used
in TPPSO2, so each particle could be closer to opti-
mal position. Table 2 showed the detailed procedures
of TPPSO2.

Results
Numerical simulations
In order to test the feasibility of the hybrid algorithms
(TPPSO1 and TPPSO2) and explore the properties of
algorithms, we calculated two groups of amino acids
sequences, respectively.

Fig. 5 This is one of structures for sequence A11. This optimal
conformation was simulated by TPPSO2 with 16 H-H interactions.
Squares are for hydrophobic amino acids, and circles are for hydrophilic
amino acids. It is stable and compact with minimal free energy
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Fig. 6 The average CPU time of our methods and hELP. The abscissa is the number of sequence, and the ordinate is CPU time. Because TPPSO1 can’t
obtain the minimal free energy of sequence A6, A7 and A11, we chose smaller CUP time with minimal free energy for all sequences, denoted as
TPPSO. In the figure, the CPU time of TPPSO1 and TPPSO2 are stable with respective optimal structure. CPU time of TPPSO also is stabler. But CPU
time of hELP is fluctuant

Simulation of sequences with 27 amino acids
We selected 11 sequences with 27 amino acids (See
Table 3) which were also computed by EN [13] and hELP
[14]. These sequences were used to test the performances
of TPPSO1 (without pulling strategy) and TPPSO2 (with
pulling strategy), respectively. In TPPSO1 and TPPSO2,
the inertia weightωwas updated by the following formula:

ω = 0.1 − 0.05
Time

Maxtime
(12)

The Time is the circular times and Maxtime is the
maximum number of iterations which is 3000 in our
implementation. For each particle, we chose c1 =
c2 = 1, r11 = rand(0.9, 1), r12 = rand(0.82, 0.92),
r13 = rand(0.74, 0.84), r21 = rand(0.9, 1), r22 =
rand(0.85, 0.95), r23 = rand(0.8, 0.9) to produce three
similar but not identical alternative particles. In this test,
Tlist only contained ten particles.
According to Table 4, we knows that all the sequences

in Table 3 were simulated by EN, hELP, and our method
TPPSO1 and TPPSO2. hELP and TPPSO2 can obtain
the minimal free energy of every sequence, but EN
and TPPSO1 can’t find the minimal free energies of
sequence A6, A7, and A11 which are bigger. It illus-
trated our method can successfully predict the protein

structure on 3D square lattice. The number in paren-
theses is the iteration number when the lowest free
energy values are found. By comparing the results of
hELP with TPPSO1 and TPPSO2, TPPSO1 is superior to
hELP, and TPPSO2 can fold stable structures earlier than
TPPSO1.
Especially, TPPSO2 found the lowest free energies

of sequences A6, A7, and A11, while TPPSO1 or EN
did not. So we enumerated the structures of these
sequences (See Figs. 3, 4, and 5), which were computed
by TPPSO2. It can be seen that these conforma-
tions were more native, furthermore, the hydropho-
bic amino acids were concentrated and surrounded by
hydrophilic amino acids. Because pulling strategy of
TPPSO2 has not been employed in TPPSO1, it is under-
standable that pulling strategy was able to accelerate
the convergence of algorithm and optimize the protein
structure.
The average CPU time of hELP was summarized in ref-

erence [14]. We also computed the average CPU time of
TPPSO1 and TPPSO2. The average CPU time of all meth-
ods were shown in Fig. 6. It is obvious that the average
CPU time of every sequence of TPPSO1 is the shortest,
and that of TPPSO2 is longer, because TPPSO2 added the
pulling strategy. For every sequence, the average CPU time

Table 5 IBE number of TPPSO2

Sequence ID A8 A9 A3 A5 A1 A2 A10 A6 A7 A4 A11

H-Ha 4 7 8 8 9 10 11 12 13 15 16

IBE numberb 3 14 44 61 177 439 83 812 805 19 2672

aH-H means the number of hydrophobic-hydrophobic amino acid interactions for optimal structure
biteration numbers before the lowest free energy values are found
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Fig. 7 The fitting figure of IBE number and H-H interaction for sequences in table 1 by TPPSO2. The abscissa is H-H interaction of every sequence,
and the ordinate is IBM number. Almost all sequences are satisfied with this fitting figure. IBE number will increase with H-H interaction for
sequences with the same length. The three stars is the IBE number of test sequence with the same length 27. Their fitting function values are almost
matched to computed IBE numbers

of TPPSO1 and TPPSO2 are stable and vary around 0.4
and 0.8 s respectively. However, the average CPU time of
hELP is not stable. Since TPPSO1 can’t obtain the low-
est free energy of sequence A6, A7, and A11, we made
TPPSO as the method which can fold the optimal struc-
tures of all sequences by PSO. The average CPU time of
TPPSO was taken as less average CPU time of TPPSO1

and TPPSO2,which was also showed in Fig. 6. We know
that the average CPU times of all sequences of TPPSO and
hELP are 0.475 and 1.41 s respectively. It indicated that
our method TPPSO is faster.
Table 5 summarized the number of H-H interactions

and iteration number before the lowest free energy values
are found by TPPSO2 (denoted as IBE number) for eleven
sequences with 27 amino acids in the Table 3. It is obvious
that the more H-H interactions, the more IBE numbers.
The fitting function of the number of H-H interactions
and IBE number was given as follows.

y = 2307 ∗ e−
(x−19.37)2

5.3772 + 524.5 ∗ e−
(x−3)2
1.904 (13)

where x is the number of H-H pairs, and y is the IBE
number.

Table 6 Test sequences

Sequence
ID

Amino acids
sequence

H-H IBE number Relative error

Test 1 H4P5HP5H3P8H 8 51 (52.3829) 0.0271

Test 2 H4P5HP5H3P4HP3H 9 167 (177.8417) 0.0649

Test 3 (HP2HP)5HP 14 956 (921.1219) 0.0365

IBE number is the iteration number of every sequence by TPPSO2 before the
minimal free energy was found. The number in parentheses is IBE number
calculated by fitting function

The figure of fitting function was exhibited in Fig. 7.
Except for sequences A4 and A10, the IBE number of oth-
ers are all close to the fitting function. The IBE number
of sequence A4 and A10 are not satisfied with the fitting
function, because in these sequences H amino acids and
P amino acids are very dispersive, but in other sequences
H segments or P segments are longer. We believed that
IBE number of TPPSO2 is mainly affected by the number
of H-H interactions for sequences with the same length.
It tends to be larger with more H-H interactions. More-
over, the length of H or P segments will affect the IBE
number.
In order to further verify the above conclusion, we sim-

ulated three test sequences with the same length (See
Table 6). It is obvious that H segments and P segments
of these test sequences are longer. IBE numbers for test
sequences are close to the fitting curve (See Fig. 7) and all
relative errors were showed in Table 6. It means that our
inference about IBE number of TPPSO2 is reasonable.

Table 7 Sequences with different lengths

Sequence
ID

Amino acids sequence Length H-H IBE number

B H4P2H7P3H 17 9 2

C HPHP2H2PHP2HPH2P2HPH 20 11 11

D P2HP2H2P4H2P4H2P4H2 25 9 139

E P3H2P2H2P5H7P2H2P4H(HP2)2 36 17 432

F P2H(P2H2)2P5H10P6(H2P2)2HP2H5 48 29 976

H-H interactions were the same by TPPSO1 and TPPSO2. IBE numbers were
computed by TPPSO2. These sequences were simulated by different methods, and
every method only folds a part of sequences. TPPSO2 found the minimal free energy
of all sequences
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Fig. 8 These figures are the structures of sequence B with 20 amino acids. a is one of structures by TPPSO1 with 11 H-H interactions. b is one of
structures by TPPSO2 with 11 H-H interactions. By comparing, left structure is more compact, right structure is looser

Simulation of sequences with different length
We also computed several sequences with different length
which have not been solved by EN and hELP. More-
over, Table 7 recorded the H-H interactions and IBE
number of TPPSO2. These sequences were simulated by
TPPSO1 and TPPSO2 respectively. The results of two
methods are the same (See Table 7). They have the same
H-H interactions. But we knows that the CPU time of

TPPSO2 is shorter than one of TPPSO1, because TPPSO2

includes pulling strategy. For this reason, the structure
obtained by TPPSO2 is more compact. It is illustrated
in Fig. 8.
These results shows that: a) TPPSO2 is able to solve

sequences with different length and the obtained charac-
teristic of protein structure is significant. b) pulling strat-
egy improved the performance. c) Tabu search strategy

Fig. 9 These figures are H-H interactions of sequences after single amino acid mutation. The abscissa is the location of mutated amino acid, and the
ordinate is the number of H-H interaction for mutated sequence. The horizonal line is the number of H-H interaction of original sequence. Two
vertical lines spit sequence into three equal parts. a is mutational results of sequence B. In this figure, 100% pivotal amino acids locate at beginning
or ending of sequence B. b is mutational results of sequence C. In this figure, 100% pivotal amino acids locate at beginning or ending of sequence C.
c is mutational results of sequence D. In this figure, 71.4% pivotal amino acids locate at beginning or ending of sequence D. d is mutational results of
sequence A8. In this figure, 50% pivotal amino acids locate at beginning or ending of sequence A8
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Table 8 The single amino acid mutation results for sequence B

D-value -3 -2 -1 0 1 2 3

Q-value 0 1 5 7 2 2 0

R-value 0% 6% 2% 41% 12% 12% 0%

There are 9 H-H interactions by TPPSO2 for original sequence B. Every amino acid
would be mutational, namely H (P) was changed into P (H). D-value is the deviation
of H-H interactions between new sequence and original sequence when single
amino acid was mutated. Q-value is the number of amino acids caused the
deviation. R-value is the ratio of amino acids. The ratio of amino acids which caused
the maximal deviation is 18% (summarization of the numbers highlighted in bold)

avoided prematurity effectively. d) For TPPSO2, the longer
the sequence, the more the IBE number.

Probing protein stability upon amino acid mutation
Protein stability determines whether a protein will be
in its native folded conformation or a denatured state.
The folded, biologically active conformation of a pro-
tein is believed more stable than the unfolded, inactive
conformations [15]. Thus, making proteins more stable
is important in medicine and basic research. Amino acid
mutations are widely used in protein design and anal-
ysis techniques to increase or decrease stability. These
mutations are carried out experimentally using site-
directedmutagenesis and similar techniques. This is time-
consuming and often requires the use of computational
prediction methods to select the best possible combina-
tions [16–19]. With the efficient hybrid method at hand,
we aim to probe the protein stability on 3D lattice. Par-
ticularly, we will simulate how single-site or double amino
acid mutation affects protein stability. i.e., predicting the
protein stability changes upon amino acid mutations with
TPPSO2.

Single amino acidmutation
The hybrid method TPPSO2 has been tested to solve pro-
tein structure prediction problem. Now, we focused on
single amino acid mutation, whether and which amino
acid affects the stability of protein structure. The experi-
ments is designed as follows. We firstly calculate the opti-
mal H-H interactions of original sequence by TPPSO2.
Then we choose one amino acid to mutate, i.e., we change
it from H (P) into P (H). Then we calculate the opti-
mal H-H interactions of mutated sequence by TPPSO2.
Finally the deviation of H-H interactions betweenmutated
sequence and original sequence was recorded.

Table 9 The single amino acid mutation results for sequence C

D-value -3 -2 -1 0 1 2 3

Q-value 0 5 5 4 6 0 0

R-value 0% 25% 25% 20% 30% 0% 0%

There are 11 H-H interactions by TPPSO2 for original sequence C. Every amino acid
would be mutational, namely H (P) was changed into P (H). The ratio of amino acids
which caused the maximal deviation is 25% (summarization of the numbers
highlighted in bold)

Table 10 The single amino acid mutation results for sequence D

D-value -3 -2 -1 0 1 2 3

Q-value 0 7 1 6 11 0 0

R-value 0% 28% 4% 24% 44% 0% 0%

There are 9 H-H interactions by TPPSO2 for original sequence D. Every amino acid
would be mutational, namely H (P) was changed into P (H). The ratio of amino acids
which caused the maximal deviation is 28% (summarization of the numbers
highlighted in bold)

Sequences with different length In order to probe the
stability of amino acid mutation, we chose four sequences
with different lengths. These sequences were mentioned
in the above section. They are sequence B, C, D and A8.
Figure 9 recorded the H-H interactions of every sin-

gle amino acid mutational sequence. From the results,
we found that some mutational amino acids will result
in a bigger deviation. We call those pivotal amino acids.
The ratios of pivotal amino acids are 100%, 100%, 71.4%
and 50% respectively for the four sequences. Also we
deduced that those pivotal amino acids tend to locate at
the beginning or end of sequence.
Tables 8, 9, 10 and 11 recorded the characters of

mutated sequences including the deviation between
mutated sequence and original sequence, the quantity of
amino acid which mutated to cause the deviation and the
ratio of every deviation. According to the results, we found
that single amino acidmutation has themaximal andmin-
imal deviation 2 and -2. The results also indicated that the
ratio of maximal deviation is around 22%.
Table 12 summarized the effect of hydrophobic

(hydrophilic) amino acid mutation on H-H interactions.
We know that hydrophobic amino acid mutation would
not make the H-H interactions increase and hydrophilic
amino acid mutation would not lead the H-H interactions
decrease. It means that hydrophilic amino acid mutation
will result in more compact structure, while hydrophobic
amino acid mutation will result in the looser structure. By
comparing the results of H2 and P2 in the Table 12, we
suppose that hydrophobic amino acid is more impressible
than hydrophilic amino acid to reflect stability of protein
structure for sequence with different lengths.
The structures of sequence B before and after muta-

tion are showed in Fig. 10. Since the 14th amino acid
was changed from P to H, the number of H-H interac-
tion increases and the deviation is 2, which is the maximal

Table 11 The single amino acid mutation results for sequence A8

D-value -3 -2 -1 0 1 2 3

Q-value 0 5 3 7 11 1 0

R-value 0% 19% 11% 26% 41% 3% 0%

There are 8 H-H interactions by TPPSO2 for original sequence A8. Every amino acid
would be mutational, namely H (P) was changed into P (H). The ratio of amino acids
which caused the maximal deviation is 22% (summarization of the numbers
highlighted in bold)
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Table 12 Summary of the single mutation results

Sequence ID H0 P0 H1 P1 H2 P2

B 12 5 12 5 1 2

C 10 10 10 10 5 0

D 9 9 16 16 7 0

A8 6 21 6 21 5 1

H0 and P0 are the number of hydrophobic and hydrophilic in the original sequence.
H1 is the number of mutational hydrophobic amino acid whose H-H interactions is
not more than the original one. P1 is the number of mutational hydrophilic amino
acid whose H-H interactions is not less than the original one. H2 is the number of
hydrophobic amino acid which caused the maximal deviation with original H-H
pairs. P2 is the number of hydrophilic amino acid which caused the maximal
deviation with original H-H pairs

deviation. It is obvious that optimal structures of 14th
amino acid mutation is more compact.
The structures of sequence D before and after muta-

tion are showed in Fig. 11. Since the 6th amino acid was
changed from H to P, the number of H-H interaction
decreases and the deviation is 2 which is the maximal
deviation. It is obvious that optimal structure of original
sequence is more compact.

Sequences with the same length We selected five
sequences from Table 3 to test what kind of protein
structures are more stable upon single amino acid muta-
tion by TPPSO2. We changed every amino acid of these
sequences, then recalculated and recorded the H-H inter-
actions of every mutated sequence.
Table 13 showed that: 1) For the sequences with the

same length, UC number is likely larger with more mass
number. The exception might be caused by the fact that
UC number reflected the stability of protein structure.
Namely, sequence with larger UC number was susceptible

to single amino acid mutation. 2) According to H-H inter-
actions and the number of hydrophobic amino acids, the
sequence with more hydrophobic amino acid usually had
more H-H interactions. 3) From P→H and H→P, most
of mutational hydrophobic amino acids made the H-H
interactions changed. Relatively, only a part of hydrophilic
amino acids affect the number of H-H interactions. We
conclude that hydrophobic amino acid is more impress-
ible than hydrophilic amino acid to reflect stability of
protein structure for sequence with the same length.
All these results illustrated that: a) the more hydropho-

bic amino acids, the more H-H interactions; b) sequence
with more H-H interactions tends to be more sta-
ble when single amino acid is mutated; c) hydrophobic
amino acid mutation tends to alter the protein structure
largely.
According to the above observations, we summarize

that the sequence withmore hydrophobic amino acids will
be less susceptible to single amino acid mutation.

Double neighbouring amino acidsmutation
Amino acid does not work alone and multiple amino
acids coordinate to maintain stability and perform func-
tion. Our in-silicon simulation allows us to go beyond
single amino acid mutation and explore the combinatorial
effect of amino acid mutation. In this section, we explore
the effect of double neighbouring amino acids mutation
(two adjacent amino acids are mutated) in protein fold-
ing. Double neighbouring amino acids mutations were
classified as HH → PP, PP → HH, HP → PH, PH → HP.
We simulated three sequences (B, C, D) with different

length when adjacent amino acids mutated. The maximal
deviation and locations of pivotal amino acids were con-
served (See Tables 14, 15, 16).

Fig. 10 These figures are the structures of sequence B before mutating and after mutating respectively. a is the optimal structure with 9 H-H
interactions predicted for original sequence B by TPPSO2. b is one of optimal structures predicted for mutated sequence B by TPPSO2, in which the
14th amino acid was mutated. The mutated amino acid is denoted by arrow in figures. Since the 14th amino acid was changed from P to H, the
number of H-H interaction increases and the deviation is 2. It is obvious that right structure is more compact
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Fig. 11 These figures are the structures of sequence D before mutating and after mutating respectively. a is the optimal structure with 9 H-H
interactions predicted for original sequence B by TPPSO2. b is one of optimal structures predicted for mutated sequence C by TPPSO2, in which the
6th amino acid was mutated. The mutated amino acid is denoted by arrow in figures. Since the 6th amino acid was changed from H to P, the
number of H-H interaction decreases and the deviation is 2. It is obvious that left structure is more compact

Tables 14, 15 and 16 recorded the variation of H-H
interactions and the position of pivotal double amino
acids . According to these tables, we concluded that: a)
If double amino acids mutation was HH → PP or PP →
HH, the H-H interactions must be changed. But PH→HP
and HP→PH maybe have variation. b)HH → PP and PP
→ HH must make the H-H interactions decrease and
increase, respectively. c) The effect of double adjacent
amino acids mutation which belongs to HP → PH or PH
→ HP was finite. d) The position of pivotal double adja-
cent amino acids mutation tend to locate be at the head or
tail of sequence.

Double arbitrary amino acidsmutation
We continued to explore the combinatorial effect of
amino acid mutation. In this section, we check the
effect of double amino acids mutations with arbitrary
distance in protein folding. The amino acid muta-
tions were classified ed as HH → PP, PP → HH, HP

Table 13 Single amino acid mutation of sequences with 27
amino acids

Sequence ID H-H mass number UC number H P P→H H→P

A8 4 9 4 6 21 19 4

A3 8 7 2 9 18 17 8

A5 8 8 7 9 18 12 8

A10 11 17 7 11 16 9 11

A4 15 13 10 14 13 3 14

H-H is the number of H-H pairs of original sequence. The same continuous amino
acids were taken as a mass. Mass number is for original sequence. UC number is the
number of mutational amino acid which does not change the H-H interactions. H
(P) is the number of hydrophobic (hydrophilic) amino acids in the original sequence.
P→H (H→P) is the number of mutational hydrophilic (hydrophobic) amino acid
which affected the H-H interactions

→ PH, PH → HP. We simulated the sequence B in
Table 7 with 20 amino acids. There are 10 hydrophobic
amino acids and 10 hydrophilic amino acids in sequence
B. We folded the conformations of all of mutation
sequences.
Form Table 17, we knew that combinations of H+H

and P+P are more sensitive and easier to affect
the stability of protein structure. We simulated every
mutational sequence. The results showed that a) all
HH→PP mutations will decrease HH interactions,
namely HH interactions won’t increase; b) 43 PP→HH
mutations will increase HH interactions, 2 PP→HH
mutations won’t change HH interactions, in other words,
HH interactions won’t decrease; c) HP→PH or PH→HP
mutations will not influence HH interactions.
The simulation results in Table 18 indicated that a)

closer H and H (or P and P) can result in D-value; b)
amino acid H18 respectively matches amino acid H20 and
amino acid P10 to obtain maximal deviation of structure,
so amino acid H18 is the most sensitive amino acid, which

Table 14 Double amino acids mutation results for sequence B

D-vale HH → PP (9)a PP → HH (3)a HP → PH (2)a PH → HP (2)a

-2 4(H,M,T)b 0 0 0

-1 5 0 1 0

0 0 0 0 0

+1 0 1 1 1

+2 0 2(T) 0 1(T)

aThe number in parentheses is the number of adjacent amino acids in sequences.
D-value is the deviation of minimal free energy caused by neighboring mutational
amino acids
bThe position of mutational double amino acids. H (M,T) means that the mutational
double amino acids is at head (middle, tail) of the sequence
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Table 15 Double amino acids mutation results for sequence C

D-vale HH → PP (2) PP → HH (3) HP → PH (7) PH → HP (7)

-3 1(H) 0 0 0

-2 1(T) 0 0 0

-1 0 0 3 3

0 0 0 4 4

+1 0 2 0 0

+2 0 1(H) 0 0

is at the tail of sequence; c) amino acid H3 will cause
D-value with hydrophilic (P), so amino acidH3 is very sen-
sitive to polar, it is at the head of sequence; d) matching
amino acid H7 with arbitrary amino acid P, HH interac-
tions are invariable, so H7 is obtuse, but by combining
H7 with arbitrary H, it is sensitive, this amino acid is in
the middle of sequence; e) H1 and H20 are impressible for
other H, but they are stable for arbitrary P, the mutations
of H1 and H20 with all of P lead to decrease one more
HH interaction, H1 and H20 are at the head and tail of
sequence, respectively.
According to the above observations, we summarized

that a) double arbitrary amino acidsmutation will bemore
sensitive to affect protein stability; b) double amino acids
mutation with the same hydrophilic or hydrophobic prop-
erty is more unstable than double amino acids mutation
with different property; c) most of sensitive combinations
are at the head or tail of sequence.

Discussion
Asmany research results indicate, HPmodel is very useful
for modelling protein properties though it is simple and
has many disadvantages. It captures the main difficulty of
the real world problem. HP model has been applied in
investigation of ligand binding to proteins [20]. The dis-
tinct influences of function, folding, and structure on the
evolution of HP model are studied, by exhaustive enu-
meration of conformation and sequence space on a two
dimensional lattice, which costs four week’s computation
[21]. These research all show that our effort to fold the HP
chain by a hybrid method on 3D lattice is necessary and
important.
Also we propose to use HP model to probe the protein

stability. HPmodel serves as a very efficient tool here. The

Table 16 Double amino acids mutation results for sequence D

D-vale HH → PP (4) PP → HH (11) HP → PH (4) PH → HP (5)

-2 4(H,M,T) 0 0 0

-1 0 0 0 3

0 0 0 2 1

+1 0 5 1 1

+2 0 6(M,T) 1(T) 0

Table 17 Double arbitrary amino acids mutation results for
sequence B

Combination O-num V-num V-rate

H+H 45 45(↓) 100%

P+P 45 43(↑) 96%

H+P 50 29(↑↓) 58%

P+H 50 18(↑↓) 38%

H+H(P+P) means that arbitrary double hydrophobic(hydrophilic) amino acids will
be mutated. H+P(P+H) means that hydrophobic(hydrophilic) will match with
hydrophilic(hydrophobic) behind of it to mutate. O-num is original combination
number in sequence. V-num is the number of combinations with which minimal
free energy were altered after mutating. V-rate is the rate of V-num. The arrows in
parentheses indicate increase or decrease of the free energy

simplification of 20 amino acids to H, and P types dramat-
ically reduce the possible mutation pattern. Especially we
can easily perform the double mutation only considering
four combinations. Those insights from the HPmodel can
serve as novel hypothesis to guide experiments. We also
need to point out that the protein stability results and con-
clusions are heavily depending on the optimal solution of
3D HP model. We demonstrate the results in some small
scale problems. When we want to generalize the study, we
need to further improve the hybrid algorithm.
In our study, the computational experiments show that

the new hybrid algorithm is efficient for short sequences.
When the input space is bigger, there will be some sub-
optimal solutions and more difficult to find the minimal
energy configurations. It’s really a challenge for large scale
HP model. The conformation space grows rapidly as the
chain length increases. A possible method is to intro-
duce divide-and-conquer strategy.We can also consider to
combine with other algorithms or start from a good ini-
tial point from biological view. It will be our future work
in devising such an algorithm for large protein.

Conclusion
In this paper, we studied protein structure prediction
problem on 3D square lattice. We summarize the find-
ings of this work as follows. Firstly, we formulated the

Table 18 Combination D-value and pivotal amino acids results
for sequence B

Combination D-value and pivotal amino acids

H+H -4 H1H3,H18H20

P+P +2 P4P5, P4P13, P5P8, P8P17, P10P13, P11P16, P13P16, P16P19

H+P -2 H3P10,H3P16,H3P19,H6P19

P+H -3 P10H18

H+H(P+P) means that arbitrary double hydrophobic(hydrophilic) amino acids will
mutate. H+P(P+H) means that hydrophobic(hydrophilic) will match with
hydrophilic(hydrophobic) behind of it to mutate. D-value is the maximal deviation
of H-H interactions between new sequence and original sequence when double
arbitrary amino acids mutation. HiHj means that the ith animo acid matches the jth

amino acid to mutate, in which two mutational amino acids are hydrophobic
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protein structure prediction problem on 3D lattice into a
combinatorial optimization problem; secondly, basic PSO
algorithm has been enhanced to deal with discrete opti-
mization problem; thirdly, we proposed a novel hybrid
method (TPPSO2) and proved its feasibility by simulating;
fourthly, we derived some interesting insights for pro-
tein stability via single and double amino acid mutation
perturbation.
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