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Abstract

Background: High resolution images of Drosophila embryos in their developmental stages contain rich spatial and
temporal information of gene expression. Automatic extraction of the contour of an embryo of interest in an
embryonic image is a critical step of a computational system used to discover gene-gene interaction on Drosophila.

Results: We propose a geometric method for contour extraction of Drosophila embryos. The key of the proposed
geometric method is k-dominant point extraction that is a generalization of 3-dominant point extraction proposed in
our previous work. Based on k-dominant point extraction, we can approximate a connected component of edge
pixels by a polygon that can be either convex or concave. The test on BDGP data shows that the proposed method
outputforms two existing methods designed for contour extraction of Drosophila embryos.

Conclusions: The main advantage of the proposed geometric method in the context of contour extraction of
Drosophila embryos is its ability of segmenting embryos touching each other. The proposed geometric method can
also be applied to applications relevant to contour extraction.
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Background
High resolution images of Drosophila embryos in their
developmental stages contain rich spatial and tempo-
ral information of gene expression. They have become a
valuable instrument for micro-biologists to discover gene-
gene interaction [1]. Automatic extraction of the contour
of an interest embryo in an image is a critical step of
a computational system for the discovery of gene-gene
interaction on Drosophila [2].

In general, Drosophila embryonic images contain sub-
stantial amount of variations [3, 4]: i) imaging conditions,
such as contrasts, scale, orientation, and neighboring
embryos, ii) gene expression patterns, and iii) develop-
mental stages. Most existing methods were developed
upon low-level image features, such as edge pixels or pix-
els with a high deviation of grayvalues in a local window

*Correspondence: qi.li@wku.edu
1Western Kentucky University, 1906 College Blvd., 42101 Bowling Green, KY,
USA
Full list of author information is available at the end of the article

[3–10]. Peng and Myers [5] proposed a method that uses
the standard deviation of the local windows of a pixel to
classify the pixel as a foreground or background pixel.
Their method applies a 8-neighbor-connectivity region-
growing method to extract the contour of an embryo.
Pan et al. [6] applied a variant of Marquardt-Levenberg
algorithm to estimate an optimal affine transformation
to register localized embryos into an ellipsoidal region.
Puniyani et al. [7] proposed an edge detection based
method that assumes a number of heuristic constraints,
including object size, convexity, shape features (e.g., ratio
of the major over minor axis of an object), and the per-
centage of overlapping regions. Frise et al. [8] developed
the method of Peng and Myers [5] by adding three mor-
phological operations on a binary image: i) removal of
isolated pixels, ii) dilation, and iii) majority processing.
Futhermore, Frise et al. [8] proposed a heuristic algo-
rithm to separate the embryo of interest from multiple
touching embryos, with the assumption that the cen-
ter of the embryo of interest is the image center. Mace
et al. [9] proposed an eigen-embryo method to extract
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the contour of embryos, where a particle swarm optimizer
was used to reduce the computational cost of search-
ing optimal eigen parameters. Li and Kambhamettu [3]
proposed a quadratic curve model to initialize the con-
tour of the embryo of interest based on edge pixels, and
applied an active contour model to refine embryo con-
tours. Bessinger et al. [10] proposed criteria to select the
optimal connected component of edge pixels in the scale
space of an input image. Li [4] proposed algorithms to
detect and restore deficiencies and faults of primal sketch
tokens that occur when a targeting object is surrounded
by a complex background.

In this paper, we propose a geometric method for con-
tour extraction of Drosophila embryos, and the key of
the proposed method is k-dominant point extraction. In
the context of rectangular shape detection [11], we have
proposed 3-dominant point extraction that can be used
to analyze the geometric structure of licence plates. Note
that the contour of a license plate is relatively simple—
first of all, it is piecewise linear; second, it is convex.
We propose to generalize 3-dominant point extraction to
k-dominant point extraction in order to adapt to the com-
plex geometric structure of the contour of a Drosophila
embryo. The complexity of these geometric structures
mainly lies in the following two aspects: i) the contour of
a Drosophila embryo may be concave and ii) the contour
of two Drosophila embryos that touch to each other may
be concave (see Fig. 1). The proposed method is able to
segment embryos touching to each other. Note that many
methods on contour extraction, including an active con-
tour model, can not segment two objects that touch to
each other. The proposed geometric method can also be
applied to other tasks relevant to contour extraction.

Methods
3-dominant point extraction
Given a set of points, such as a connected component of
edge pixels, Li et al. [12] proposed a recursive method
to extract three dominant points v1, v2 and v3. The first
two points (v1 and v2) maximize the Euclidean distance
of an arbitrary pair of points in C, and the third point v3
maximizes the sum of distances between a p ∈ C and
vi, i = 1, 2, i.e.,

max
p∈C

(∥∥p − v1
∥
∥ + ∥

∥p − v2
∥
∥)

. (1)

Given a point and a line segment v1v2, we call ‖p−v1‖+
‖p − v2‖ a point-line-segment distance to distinguish the
common point-line distance that is defined by the distance
between p and its vertical intersection with a line passing
v1 and v2.

Based on v1, v2, and v3, the piecewise linearity of C is
then verified, i.e., where each point p ∈ C falls on either
the line segment v1v3 or v2v3. If yes, the recursion is

a

b
Fig. 1 Two circumstances for the introduction of k-dominant points.
a the contour of a Drosophila embryo forms a concave shape, and
b the contour of two Drosophila embryos that touch to each other
forms a concave shape

stop. Otherwise, C is partitioned into two subsets, and the
above 3-dominant point extraction method is then applied
to the two subsets recursively.

K-dominant point extraction: basic concepts
In this section, we first generalize the approach for
locating the 3rd dominant point, given two dominant
points, from a set of unordered points P to a formula
for locating the i-th dominant point, given i number of
dominant points, from P. Then, we propose a simple
method to insert a new dominant point into a sequence
of geometrically-ordered dominant points so that domi-
nant points are ordered geometrically. Last, we proposed
a solution to address the challenge of concave polygons.

The basic idea of k-dominant point extraction is to iter-
atively insert a new dominant point into a set of k − 1
dominant points that have been found, under certain geo-
metric constraint. For the convenience of illustration, we
now introduce several basic concepts. First of all, the k −1
dominant points are expected to be a geometric sequence
that is consistent with a given set of 2D points.

Denote 〈r(1), . . . r(k)〉 is a permutation of 1, . . . , k. A
geometric sequence of k − 1 dominant points is denoted
as Sk−1 = 〈vr(1), vr(2), . . . , vr(k−1)〉. A valid geometric
sequence is expected to be a polyline, i.e., vr(1)vr(2) is the
first line segment passing a subset of points, and vr(2)vr(3)
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is the second line segment passing a subset of points, etc.
The initial geometric sequence contains two dominant
points, ideally representing a line segment (also called
1-piece polyline).

A closed tag is introduced with respect to a consecu-
tive pair of dominant points (vr(i), vr(i+1)) in a geometric
sequence with the motivation of speeding up the inser-
tion of a new dominant point. A consecutive pair with
(vr(i), vr(i+1)) a closed tag indicates that a new dominant
point is not allowed to be inserted between vr(i) and vr(i+1)

in the associated geometric sequence.
Insertability is introduced with respect to a new domi-

nant point in order to tell whether the new dominant point
is allowed to insert to a geometric sequence of dominant
points. Insertability of a point is essentially introduced as
a condition to stop the “global” search of dominant points.
Imagine that we have a set of points forming a rectan-
gle. After we find out four dominant points associated
with the four vertices of a rectangle, the insertability of
the fifth dominant point is expected to be NO in order
to avoid inserting a non-vertex point into the sequence.
Given a geometric sequence S = 〈v1, v2, . . . , vk−1〉 and a
point vk , the point vk is called (S, ε)-insertableif the point-
line-segment distance between vk to every pair (vi, vi+1) is
less than or equal to (1 + ε) times the length of the line
segment vivi+1, i.e.,

‖vk − vi‖+‖vk − vi+1‖ ≤ (1+ε) ‖vi − vi+1‖ , ∀i, (2)

where ε is a parameter to tolerate the distortion of a
straight line. ε is not a sensitive parameter, and it can be
set from 0.01 to 0.05. In this paper, we fix it to be 0.02.
Thus, we sometime simply call a point vk S-insertable, or
just insertable.

Initialization
Similar to 3-dominant point extraction, k-dominant point
extraction starts from locating two points v1 and v2, given
a point set, such that their Euclidean distance is a maximal
distance among distances of all pairs of points in P, i.e.,

(v1, v2) = argmaxp1∈P,p2∈P
∥
∥p1 − p2

∥
∥ . (3)

The closed tags for v1 and v2 are both initialized as 0
(i.e., false).

Searching a new dominant point
Given a set of points P and k − 1 dominant points
v1, . . . , vk−1, k > 2, we propose the following formula to
search the k-th dominant point:

max
p∈P

k−1∑

i=1

∥
∥p − vi

∥
∥ . (4)

For k = 3, we have an initial geometry sequence S2 =
〈v1, v2〉. Based on Eq. 2, we can test the insertability of the

new dominant point v3. For k > 3, we can assume that
a geometry sequence Sk−1 has been iteratively built, as
described in the following section.

It is worth noting that the time complexity of search-
ing a new dominant point depends on the point set P, i.e.,
�(|P|). However, testing the insertability of the new dom-
inant point depends on the geometry sequence S only, i.e.,
in the cost of �(|S|). With closed tags, the computational
cost can be further reduced.

Upon an insertable dominant point: growing Sk−1

Given an S-insertable dominant point, we will insert the
point into an open “slot” of the geometric sequence S.
Given a sequence Sk−1 of k − 1 dominant points with a
geometric order, i.e., Sk−1 = 〈vr(1), vr(2), . . . , vr(k−1)〉, each
open pair (vr(i), vr(i+1)) of S offers a space for an insertable
vk to insert, as follows:

Sk−1,i = 〈
vr(1), . . . , vr(i), �, vr(i+1), . . . , vr(k−1)

〉
, (5)

where � indicates a possible space where vk may
be inserted. Here the notation Sk−1,i represents an
abstract geometric sequence that contains a placeholder
� between the pair (vi, vi+1). Furthermore, we denote
〈Sk−1,i, vk〉 a concrete geometric sequence by replacing the
placeholder � in the abstract sequence Sk−1,i by vk .

For convenience, we introduce r(k) = r(1) and augment
the sequence 〈vr(1), vr(2), . . ., vr(k−1)〉 to 〈vr(1), vr(2), . . .,
vr(k−1), vr(k)〉.

We propose two criteria to measure the confidence of a
sequence of dominant points Sk = 〈vr(1), vr(2), . . . , vr(k)〉.
The first one is:

conf (Sk) = ∣
∣{p ∈ C : p ∈ vr(i)vr(i+1)

}∣∣ , (6)

where ‖ · ‖ denotes the cardinality of a set.
The second criterion is based on overall length of the

polyline formed by the sequence Sk , i.e.,

conf (Sk) =
k∑

i=1

∥
∥vr(i) − vr(i+1)

∥
∥ . (7)

The second criterion can be applied if C forms a sim-
ple curve (no self intersection). It is also easy to see that
the computational cost of the second type of confidence is
much lower than the first type.

By maximizing the confidence of each derived sequence,
we can decide the optimal insertion of a new dominant
point in order to maintain the geometric order.

Figure 2 illustrates an example of assigning a geomet-
ric order of k dominant points. Given the first dominant
points v1 and v2. Without lose of generality, we start
from the geometric sequence 〈v1, v2〉. After v3 is com-
puted by Eq. 4, there are two possible options to insert
v3: i) 〈v1, �, v2〉 and 〈v1, v2, �〉. The first option brings
us the sequence 〈v1, v3, v2〉, where closed tag assignment
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Fig. 2 Illutration of open and closed tags. Open and closed tages on a
consecutive pair of dominant points in a geometric sequence of
dominant points

is (1, 1, 0), meaning that v1v3 and v3v2 are closed, and
v2v1 is open. The second option brings us the sequence
〈v1, v2, v3〉, where closed tag assignment is (0, 1, 1), mean-
ing that v1v2 is open, and v2v3, v3v1 are both closed. Based
on the confidence measure, these two options are both
optimal. Without lose of generality, we choose the first
option for following illustration. Consecutively, the pro-
posed method grows the geometric sequence as follows: i)
〈v1, v3, v2〉 with closed tags (1, 1, 0); ii) 〈v1, v3, v2, v4〉 with
closed tags (1, 1, 1, 0); iii) 〈v1, v3, v2, v4, v5〉 with closed tags
(1, 1, 1, 0, 1).

Upon a non-insertable dominant point: reduce P
If a new dominant point vi computed by Eq. 4 is non-
insertable, we will stop growing the geometric sequence
and start to reduce the input point set P. The basic idea of
reducing P is to remove all points that lie in one of closed
line segments such that we obtain a subset of points that
have a simpler topology. A point remained in P must be
associated with a certain open pair of dominant points.
So the above method can be recursively applied to each
subset of points, and in turn each output (a sequence of
dominant points from a subset of points can be correctly
inserted into a higher level output). Simply speaking,
a non-insertable dominant point activates a divide-and-
conquer strategy that can handle the concavity of a data
set shaped by a concave polygon.

Figure 3 illustrates the basic idea on how to reduce P
when a new dominant point is tested to be non-insertable.
After reduction, there are two subsets of points since there
are two open pairs of dominant points in the geometric
sequence. K-dominant point extraction method is then
recursively applied to these two point sets, respectively.

Algorithm 1 summarizes the procedure of testing the
closedness of a pair of dominant points (v, w), given a
point set P. Note that if closedness is true, P will be
updated by removing all points near the line segment
vw. The time complexity of the algorithm is dominated
by Step 5 (sorting) that is O(|P| log(|P|)). Algorithm 2

Fig. 3 Reduction of a point set. Reducing the input point set P if a
new dominant point (that is some point in one of four closed line
segments) is not insertable. A red dot represents an “old” dominant
point, a circle represents a point removed from P, and a black dot
represents a point in P̄ (point set after reduction)

summarizes the recursive implementation for k-dominant
point extraction. The time complexity of the algorithm
is dominated by two non-recursive steps: i) Step 4 (the
initialization of S) that is O(|P|2), and ii) Step 13 (closed-
ness) that is O(|P| log(|P|), in addition to the recursive
step, i.e., Step 16. In many cases, the concavity is not very
complicated and the depth of recursion won’t be over 2.
Therefore, the overall time complexity of the Algorithm is
O(|P|2(1 + log(|P|)2)) with an assumption that the num-
ber of vertices of a polygon is a constant and points in P
can be uniformly projected to S.

Limitation of max-sum-distance measure
Figure 4 shows three scenarios of point sets after the
first three dominant points have been located. Figure 4a
shows a scenario where the fourth dominant point is
non-insertible with respect to the sequence 〈v1, v2, v3〉,
however a point set is non-reducible. More specifically,

Algorithm 1 Closedness of a pair of dominant points
input: (v, w) a pair of dominant points

P a point set
output: closedTag true/false

P updated P
1. P′ = {p ∈ P : ‖p − v‖ + ‖p − w‖ ≤

(1 + ε)‖v − w‖}
2. d = w−v

‖w−v‖ // unit directional vector
3. Pproj = {(p − v) · d : p ∈ P′}
4. Pp = {p ∈ Pproj : p ≥ 0 ∧ p ≤ ‖v − w‖}
5. Ps = sort Pp in an increasing order
6. Gap = {pi+1 − pi : pi ∈ Ps}
7. if max(Gap) ≤ √

2 // based on 8-connectivity
8. closedTag = true
9. P = P \ P′ // remove points on line segment vw
10. else
11. closedTag = false
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Algorithm 2 k-dominant point extraction (kdp)
input: a 2D point set P = {pi}i=1,...,n
output: a geometric sequence S

1. if P is empty // base case
2. return S = ∅
3. else // recursive case
4. initiate S = 〈v1, v2〉 by Eq. 3
5. i = 3; // start from the third dominant point
6. while P is not empty
7. compute vi
8. if vi is insertable for S
9. S = insert(vi, S)

10. i++
11. else
12. break; // stop growing sequence
13. for each consecutive pair (vi, vi+1) ∈ S
14. (closedTagi, P) = closedness((vi, vi+1), P)

15. clustering P based on open pairs, i.e.,
P = P1 ∪ . . . ∪ Pm,where Pi ∩ Pm = ∅, ∀i �= j

16. return S = 〈S1, kdp(P1), . . . , Sm, kdp(Pm)〉

given a point set (a number of black dots) as illustrated
in the figure, assume that the first three dominant points
have already been located according to the proposed kdp
method. Since the max function in Eq. 4 is a convex func-
tion, the fourth dominant point is expected to be near to
the boundary of the convex hull of the point set (which
is equivalent to the triangle with vertices v1, v2 and v3).
In other words, the four dominant point must be a point
nearest to either v1, v2 or v3. Based on the definition of
“insertible”, the fourth point is non-insertible with respect
to the geomtric sequence v1, v2 and v3. According to the
above algorithm, we now stop growing the sequence, and

a

c

b

Fig. 4 Different scenarios on dominant points and point sets. a A
scenario where the fourth dominant point is non-insertible, and the
point set is non-reducible with respect to vi , i = 1, . . . , 3; b A scenario
where the fourth dominant point is non-insertible, and the point set
is reducible with respect to vi , i = 1, . . . , 3; c A scenario where the
fourth dominant point is insertible with respect to vi , i = 1, . . . , 3, and
the algorithm will continue to locate the fifth dominant point

start to reduce the given point set P. However, it turns
out that P is not reducible. This scenario shows a limita-
tion of using max-sum-distance in computing k-dominant
points. Note that this scenario is a representative formua-
tion of two objects who have smooth boundaries and are
touching to each other.

Figure 4b shows a scenario where the fourth dominant
point is non-insertible and the point set is reducible with
respect to vi, i = 1, . . . , 3. The fourth dominant point is
expected to be a point on the line segment v2v3. Precisely
speaking, the fourth dominant point is the point nearest
to v2 as ‖v2 − v1‖ > ‖v3 − v1‖. Note that for any point
p on the line segement, the sum of distances v2v3, ‖p −
v2‖ + ‖p − v3‖ is a constant. If ‖v2 − v1‖ = ‖v3 − v1‖, the
fourth dominant point can be an arbitray point on the line
segment v2v3. Unlike the scenario Fig. 4a where all pairs
of dominant points are open, the point set in Fig. 4b is
reducible because (v2, v3) forms a closed pair.

Figure 4c shows a scenario where the fourth dominant
point is insertible. Therefore, the algorithm will continue
to locate the fifth dominant point. Reducibility is thus not
applicable in this scenario.

The rationale of introducing a min-sum-distance can
also be found by a Fermat point and its generalization
called a geometric median. Given three points in a plane,
the Fermat point is the point in the plane that minimizes
the sum of distances from itself to the three points. The
Fermat point can be computed analytically, as illustrated
in Fig. 5. Specifically, we first construct an equilateral tri-
angle (in dash lines) for each edge of the given triangle
(in solid lines), and then connect the outmost vertex of
each equilateral triangle to a given vertex outside the equi-
lateral triangle by a red line. The Fermat point must be
the intersection of three red lines. Given m points in a
plane, the geometric median is the point in the plane that
minimizes the sum of distances from itself to the m points.

A subtle difference between computing a geometric
median and computing a dominant point under the min-
sum-distance scheme is that the search space in the for-
mer problem is a continous and infinite plane, while the
search space in the latter problem is a discrete and finite
point set. For convenience, we call the problem of comput-
ing a dominant point under a min-sum-distance scheme
discrete geometric median.

Max/min-sum-distance measure
The three scenarios illustrated in Fig. 4 show that a
max-sum-distance scheme is not able to handle various
structures of a point set to extract dominant points. A
min-sum-distance scheme is expected to be integrated
with a max-sum-distance scheme adaptively. In other
words, we have to compare both schemes, a max-sum-
distance and a min-sum-distance, and select a better
scheme under some criterion to extract the next dominant
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Fig. 5 The Fermat point. Given three points (the black dots) in plane,
the Fermat point (the red dot) is the point in the plane that minimizes
the sum of distances from itself to the three points. The Fermat point
can be computed analytically

point during the stage of growing the geometric sequence
of dominant points. For convenience, we call the problem
as max/min-sum-distance measure problem.

To solve the max/min-sum-distance problem, we pro-
pose a balance-oriented criterion to select an opti-
mal measure between max-sum-distance and min-sum-
distance measure as follows: balance the distance from
a new dominant point to its two neighboring dominant
points in the new geometric sequence. Specifically, given
a point set P and a geometric sequence of dominant
points Sk−1 = 〈v1, . . . , vk−1〉, we have two candidates of a
new dominant point: i) vmax

k according to the max-sum-
distance measure, and ii) vmin

k according to the min-sum-
distance measure. For each candidate, vmax

k or vmin
k , we

first compute the optimal location to insert by maximizing
the confidence of a derived sequence, i.e.,

i∗,max = argmaxiconf
(〈

Sk−1,i, vmax
k

〉)

i∗,min = argmaxiconf
(〈

Sk−1,i, vmin
k

〉)

We then compute a distance ratio with respect to vmax
k ,

vmin
k and their neighboring dominant points as follows:

rmax = min
(∥∥vmax

k − vi∗,max
∥
∥ ,

∥
∥vmax

k − vi∗,max+1
∥
∥)

max
(∥∥vmax

k − vi∗,max
∥
∥ ,

∥
∥vmax

k − vi∗,max+1
∥
∥)

rmin = min
(∥∥vmin

k − vi∗,min
∥
∥ ,

∥
∥vmin

k − vi∗,min+1
∥
∥)

max
(∥∥vmin

k − vi∗,min
∥
∥ ,

∥
∥vmin

k − vi∗,min+1
∥
∥)

Fig. 6 A scenario where a point set contains an inflection point v4′′′ .
v4′ and v4′′ are two candidates for the 4th dominant point based on
max/min-sum-distance. However, the inflection point v4′′′ has a more
balanced distance ratio to its neighboring dominant points v1 and v2

than v4′ and v4′′

a

b
Fig. 7 A concave-shape embryo vs. touching embryos. a A scenario
where the contour of a Drosophila is a bean shape that contains two
inflection points. The angles of two inflection points are obtuse. b A
scenario where the two hollow dots represent the two intersections
between the contours of two touching Drosophila embryos, and their
angles are acute
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Note that both rmax and rmin range from 0 to 1. A larger
value indicates more balanced distance from a candidate
to its optimal neighbors. So, if rmax ≥ rmin, the candidate
vmax

k is selected. Otherwise, vmin
k is selected.

It is intuitive that dominant points selected by a balance-
oriented criterion have a better description of the global
structure of a point set, and thus they can provide more
reliable estimation of geometric properties of a point set,
such as curvature. In contrast, if a dominant point has an
imbalanced distance ratio to its two neighbors, the esti-
mation of a geometric property at this dominant point will
be very sensitive to the localiation error of itself and its
neighbors.

It is easy to see that the balanced-oriented criterion on
distance measure can address the above-mentioned three
scenarios very well. It is also not difficult to show that
the max/min-sum-distance measure can be consistently
selected if a point set forms a convex polygonal shape.

Limitation of max/min-sum-distance measure
Figure 6 shows a scenario where a point set contains an
inflection point v4′′′ . Since an inflection point is neither
a local maximum or a local minimum, the max/min-
sum-distance measure fails to extract such a point as a
dominant point at an “early” round. (It is possible that an
inflection point can be eventually extracted after a few
more rounds.) More specifically, three dominant points
v1, v2 and v3 are first extracted without any problem.
Based on max/min-sum-distance measure, there are two
candidates for the 4th dominant point: i) v4′ according
to max-sum-distance measure, and ii) v4′′ according to
min-sum-distance measure. However, the inflection point

v4′′′ has a more balanced distance ratio to its neighboring
dominant points v1 and v2 than v4′ and v4′′ . Thus, a inflec-
tion point, intuitively, can have a better description of the
global structure of a point set, say, a sequence of dominant
points that can response to inflection points can cover a
larger number of points in a given point set than an equal-
length sequence of dominant points that cann’t response
to inflection points.

Max/min/median-sum-distance measure
We now generalize the max/min-sum-distance measure
to a max/min/median-sum-distance measure. We follow
a balance-oriented criterion to select an optimal measure
among three measures: i) max-sum-distance, ii) min-sum-
distance measure, and iii) median-sum-distance as fol-
lows: balance the distance from a new dominant point to
its two neighboring dominant points in the new geometric
sequence. Specifically, given a point set P and a geomet-
ric sequence of dominant points Sk−1 = 〈v1, . . . , vk−1〉,
we have two candidates of a new dominant point: i)
vmax

k according to the max-sum-distance measure, ii) vmin
k

according to the min-sum-distance measure, and iii) vmdn
k

according to the median-sum-distance measure. For each
candidate, vmax

k , vmin
k or vmdn

k , we first compute the opti-
mal location to insert by maximizing the confidence of a
derived sequence, i.e.,

i∗,max = argmaxiconf
(〈

Sk−1,i, vmax
k

〉)

i∗,min = argmaxiconf
(〈

Sk−1,i, vmin
k

〉)

i∗,mdn = argmaxiconf
(〈

Sk−1,i, vmdn
k

〉)

Fig. 8 The longest subsequence output by Algorithm 3. To enhance the intuition, the subsequence is drawn over the corresponding subset of
input points that are, however, not involved in Algorithm 3
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Fig. 9 A comparison between Li’s method [4] (the first row) and the proposed method (the second row)

We then compute a distance ratio with respect to vmax
k ,

vmin
k , vmdn

k , and their neighboring dominant points as
follows:

rmax = min
(∥∥vmax

k − vi∗,max
∥
∥ ,

∥
∥vmax

k − vi∗,max+1
∥
∥)

max
(∥∥vmax

k − vi∗,max
∥
∥ ,

∥
∥vmax

k − vi∗,max+1
∥
∥)

rmin = min
(∥∥vmin

k − vi∗,min
∥
∥ ,

∥
∥vmin

k − vi∗,min+1
∥
∥)

max
(∥∥vmin

k − vi∗,min
∥
∥ ,

∥
∥vmin

k − vi∗,min+1
∥
∥)

rmdn = min
(∥∥vmdn

k − vi∗,mdn
∥∥ ,

∥∥vmdn
k − vi∗,mdn+1

∥∥)

max
(∥∥vmdn

k − vi∗,mdn
∥
∥ ,

∥
∥vmdn

k − vi∗,mdn+1
∥
∥)

Note that rmax, rmin and rmdn range from 0 to 1. The
largest value indicates the most balanced distance from a
candidate to its optimal neighbors. For example, if rmax is
the largest value, the candidate vmax

k will be selected.

Sequence subdivision
We propose a sequence subdivision method for the seg-
mentation of touching embryos. The basic idea of our
method is based on the detection of nonsmooth domi-
nant points from a given geometric sequence. To build up
an intuition, let us start from Fig. 7 that shows a com-
parison between a scenario of a concave-shape embryo
and a scenario of touching embryos. Given a domi-
nant point vi, denote vi−1vi = vi−1 − vi and vi+1vi =
vi+1 − vi are two directional vectors centered at vi. The
cross angle between these two vectors that can be com-
puted by acos vi−1vi

‖vi−1vi‖
vi+1vi

‖vi+1vi‖ can be used to tell whether
a dominant point is smooth or not. For simplicity, we
call the cross angle of the two directional vectors cen-
tered at vi the angle of vi. Figure 7a shows a scenario
where the two hollow dots represent the two intersec-
tions between the contours of two touching Drosophila
embryos, and their angles are acute. Figure 7b shows a
scenario where the contour of a Drosophila is a bean

Fig. 10 More positive examples of the proposed algorithm on images of touching Drosophila embryos
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shape that contains two inflection points. The angles
of two inflection points are obtuse, i.e., similar to the
cross angle of other dominant points given a smooth
contour.

Figure 8 shows the longest subsequence output by the
Algorithm 3 being applied to the geometric sequence
presented in Fig. 1b.

Results
We tested the proposed method on BDGP (Berkley
Drosophila Genome Project) [1]. BDGP images are avail-
able at the following public webpage: http://www.fruitfly.
org/insituimages/insitu_images/.

We first give a visual evaluation on the proposed
method. Figure 9 shows a comparison between Li’s
method [4] and the proposed method on BDGP images
of touching Drosophila embryos. We can observe that Li’s
method fails in all three cases, while the proposed method
works well. Figure 10 shows more positive results of the
proposed method.

Algorithm 3 Sequence subdivision
input: S = 〈v1, v2, . . . , vn〉 with closedTags
output:{Sk}: a set of subsequences
1. for i=1:n
2. if angle(vi) is acute // detection
3. closedTag(vi) = 0; // tag is set to open
4. k = 1; Sk = 〈〉 // init 1st subsequence
5. i = 1;
6. while i ≤ n
7. insert vi into Sk until closedTag(vi)=0;
8. k++; Sk = 〈〉 // init next subsequence
9. i++;

Next, we present a quantitative evaluation of differ-
ent combinations of the parts of the proposed method
in terms of detection rates. Given an image, the result
is defined as a successful detection if the output by
Algorithm 2 has larger than 90% overlapping region with
the ground truth. The dataset contains 2000 images of
BDGP Drosophila embryos. Table 1 shows the quanti-
tative results, including the comparison of two existing
methods on contour extraction of Drosophila embryos: i)

Table 1 Quantitative results

Method Detection rate (%)

Li and Kambhamettu [3] 90

Li [4] 92

Proposed 94

Li and Kambhamettu’s method [3] that consists an initial-
ization based on a quadratic curve model, and a refine-
ment based on an active contour model; ii) Li’s method
[4] that can detect and restore deficiencies and faults of
primal sketch tokens occurring when a targeting object is
surrounded by a complex background.

Discussion
As we mentioned in the introduction, the proposed
framework can be applied to other applications of contour
extraction. The main contribution of the proposed frame-
work is k-dominant point extraction based on a specific
distance measure. There is a trade off among the three
types of distance measures: max-sum, max/min-sum, and
max/min/median-sum. The last one is the most sophis-
ticate one, i.e., it can deal with concave contours, and
touching scenarios of targeting objects, while the first one
is the most efficient one in computation. Therefore, max-
sum distance may be used in some circumstance, e.g.,
contours are convex. K-dominant point extraction may
also be applied to more general applications beyond con-
tour extraction, such as data clustering. In other words,
the data that k-dominant point extraction is applied can
have arbitrary dimensions rather than two.

Conclusions
We have proposed a geometric method for contour
extraction of Drosophila embryos. Experiment results
show the effectiveness of the proposed method, typically
in segmenting two touching embryos in an image. The
results also show the superiority of the proposed method
over two previous methods. The proposed method
advances the theory of control point detection by gen-
eralizing 3-dominant points to k-dominant points. The
generalization includes strategies to deal with concave
shapes, thus the proposed method can be applied to a wide
range of applications relevant to contour extraction.
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