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Abstract

Background: Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a
nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues.
Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size
effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles.

Results: We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The
model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and
adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection,
diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue
dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that
investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in
these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such
as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a
detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a
biological tissue.

Conclusion: Our work suggests that the size of a nanoparticle may play a less significant role in its ability to
overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield
misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.
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Background
Drug-delivery nanoparticles are subject to a variety of
transport barriers in biological tissues [1, 2]. To overcome
these barriers, significant research efforts have been made
over the years to study the principles of drug-delivery
nanoparticle design [3]. The key nanoparticle design fea-
tures that have been widely studied are particle size,
geometry, and surface-attached targeting molecules [4].
Among these, the size of a particle is believed to have
important effects on its immune clearance, transvascular
delivery, and intra-tissue dispersion and penetration [4, 5].

*Correspondence: baruad@mst.edu
Department of Chemical and Biochemical Engineering, University of Missouri
Science and Technology, Rolla, Missouri, USA

Two earlier studies quantitatively studied the effects of
particle size on the efficacy of tissue delivery and pene-
tration of drug-delivery nanoparticles [6, 7]. Nonetheless,
the mechanistic aspects of these effects remain poorly
understood. Earlier, an experiment by Wong et al. [6]
indicated enhanced tissue penetration as a result of par-
ticle size reduction. Later, Tang et al. [7] reported similar
effects from particle size variation but their experimen-
tal data revealed significantly narrower tissue distribution
profiles and penetration of particles. Moreover, in Tang
et al. [7], the effects of particle size variation appeared rel-
atively modest. These apparent disparities motivated us to
develop a multiscale model and mechanistically interro-
gate particle size effects on their efficacy of tissue distri-
bution and penetration. The two studies above carried out
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investigations in different experimental settings. Wong
et al. [6] employed in vitro experiments involving a cell-
free collagen tissue. On the other hand, the experiments of
Tang et al. [7] were conducted in in vivo tumor tissues.We
were particularly interested in investigating how these two
experimental settings might affect the intra-tissue trans-
port behavior and penetration efficacy of nanoparticles of
different sizes.
We developed the multiscale model to realistically cap-

ture the transport behavior and cellular interactions of
nanoparticles. In many aspects, a biological tissue can
be compared with a heterogeneous porous media. Parti-
cle motion through the interstitial space of a biological
tissue is subject to advection, diffusion, and interaction
with the cell boundaries. Tissue-scale particle distribu-
tion may occur over hours. However, the process is
ultimately determined by the micro scale adhesion and
interaction of particles with the cell boundaries. Bridg-
ing these spatiotemporal phenomena at distinct spatial
and temporal resolutions in a model could be computa-
tionally expensive. Here, we developed a time-adaptive
Brownian Dynamics (BD) simulation algorithm. We com-
bined the algorithm with the Method of Regularized
Stokeslets (MRS) [8]. The integrated algorithm enabled
multiscale simulation of particle transport under both
advection and diffusion in a heterogeneous porous sys-
tem. The time-adaptive feature captured particle-cell
interactions at high resolution while enabling efficient
computation.
Using the model, we analyzed experimental data

reported in Wong et al. [6] and Tang et al. [7]. Our
analysis revealed how the different tissue conditions in
these two experimental studies could lead to the dis-
tinct particle distribution profiles and size effects. Our
results and analysis indicate that particle size effects may
appear pronounced in a cell-free tissue system, such as
collagen matrix, often employed in in vitro microfluidic
studies. In the absence of particle-cell interaction and
under pure diffusion, particle size may have more dra-
matic effects on the tissue distribution and penetration
efficacy of nanoparticles. However, in in vivo physiolog-
ical conditions, the barriers imposed by the interstitial
cells may moderate the effects arising from the parti-
cle size difference. We show that particle-cell interaction
imposes significant transport barriers and serves as a key
determinant of distribution and penetration efficacy of
nanoparticles.

Methods
Below, we describe our simulation approach together with
the model of nanoparticle transport in biological tis-
sues. The model is written in C++. The source code for
the model and associated instructions are available in
Additional file 1 (S1_File.zip).

Domain representation of biological tissue
The computational domain in our model represents a
two-dimensional rectangular tissue section (Fig. 1a). We
refer the entire domain by �, and its left, lower, and
upper edges by �1, �2, and �3, respectively. We consider
the rectangle sufficiently wide such that the right edge
can be ignored. The bottom-left corner of the domain
(�1 ∩ �2) represents the origin, and any point x ∈ �

represents a position with respect to this origin. The left
edge, �1, represents a porous capillary wall from where
nanoparticles enter into the tissue space. The entry points
of particles, x ∈ �1, are selected randomly along this
edge. The horizontal distance to the right with respect
to �1 represents tissue depth (labeled as X-distance
in Fig. 1).

Fig. 1 The MRS calculated force and velocity fields in a rectangular
tissue section. a The red arrows represent force vectors at discrete
locations along the domain edges and cell boundaries. The black
arrows represent velocity vectors in the interstitial space. b A
zoomed-in view of the velocity vectors in the interstitial space and
near the cell boundaries
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We treat the mobile nanoparticles as circular objects
with a defined size (radius). We treat each cell as a sta-
tionary circle of 10 μm radius. Cells are populated at
non-overlapping random positions in the domain. The
cells occupy 40% area of the domain. We refer this aggre-
gate area occupied by the cells as �. The remaining 60%
area represents the interstitial space, which we refer to
as �. We refer the boundary of any cell i ∈ {1, 2, · · · , n}
as Pi, and the region the cell occupies as Ai. Therefore
� = (∪n

i=1Pi) ∪ (∪n
i=1Ai). Thus, the entire computational

domain, � is equal to (∪3
i=1�i) ∪ � ∪ �.

Nanoparticle velocity
To evaluate nanoparticle velocities in the domain, we
adopt the approach of Rejniak et al. [9]. At any position
x ∈ �, we represent the velocity of a nanoparticle by the
local fluid velocity v(x) [9]. As in [9], we compute v(x)
using the Method of Regularized Stokeslets (MRS) [8].
The MRS [8] has been used to model complex solid-fluid
interactions in a variety of Stokes flow systems [10–14].
Here, for completeness, we provide a brief description of
the MRS and its implementation in our model.

Themethod of regularized stokeslets (MRS)
The MRS is a Lagrangian approximation of the Stokes
equations. It provides a convenient framework to avoid
singularities associated with the fundamental solutions of
the Stokes equations. Because of this property, themethod
is particularly useful for modeling Stokes flow associated
with irregular geometries or non-smooth boundaries.
The Stokes equations in two or three dimension are as

follows:

μ∇u(x) = ∇P − f
∇ · u(x) = 0

In the above equations, μ is the fluid viscosity; x is a
position vector; f is force; and P is pressure. u(x) is the
local fluid velocity vector at x. The Stokes equations can
be solved for a single point force at x0, f = f 0δ(x − x0),
where δ(x) represents the Dirac delta function.

μ∇u(x) = ∇p(x) − f 0δ(x − x0)
∇ · u(x) = 0

The solution of the above equations represents the
velocity u(x) at x due to the single point force at x0.
This solution, however, is singular at the point of appli-
cation of the force (i.e., |u(x)| → ∞, as x → x0). To
avoid this singularity, the MRS avoids direct use of the
point force f 0δ(x− x0) in the Stokes equations. Instead, it
approximates (regularizes) the point force into a smooth,
radially-symmetric force centered at x0: f 0φε(x − x0).

With this regularized force term, the Stokes equations
take the following form:

μ∇u(x) = ∇P(x) − f 0φε(x − x0) (1)

∇ · u(x) = 0 (2)

The function φε(x) is known as cutoff function, which
represents a spatially-symmetric sphere or blob of radius
ε in the domain space. The regularized force f 0φε(x− x0)
takes the maximum value at the center (x0), and decays
smoothly towards the surface of the blob. The cutoff func-
tion satisfies the constraint

∫ +∞
−∞ φε(x)d(x) = 1. As ε → 0,

φε(x) → δ(x), and the regularized force approaches the
point force.
For an appropriate choice of the cutoff function φε(x),

Eqs. 1 and 2 can be solved to evaluate the fluid veloc-
ity u(x) due to the regularized point force centered at
any arbitrary position x0 in the fluid. Unlike the Stokes
solution, the resulting velocity is non-singular at x0.
Now, the force field over the entire domain can be rep-

resented by a collection of N discrete point forces located
at different points in the domain. If f k located at xk for
k ∈ {1, 2, · · · ,N} represents such a point force, its contri-
bution at x can be represented as uk(x). By solving Eqs. 1
and 2, uk(x) for k ∈ {1, 2, · · · ,N} can be evaluated. Then,
the net velocity at x, v(x), can be evaluated simply by lin-
ear superposition of the solutions corresponding to the N
discrete forces: v(x) = ∑N

k=1 uk(x)

Force and velocity calculation
Following Rejniak et al. [9] and Tlupova et al. [15], we
chose φε(x) = 2ε4

π(r2+ε2)3
, where r = |x|. We discretized

the solid boundaries of the tissue domain into N = 6, 700
discrete points. The solid boundaries include the three
domain edges (�1, �2, and �3), and the boundaries of the
circular cells, Pi for i ∈ {1, 2, · · · , n}.
For the above cutoff function, the solution of Eqs. 1 and

2 is:

uk(x) = − f k
8πμ

(

ln
(
r2 + ε2

) − 2ε2

r2 + ε2

)

+ 1
4πμ

1
r2 + ε2

[
f k . (x − xk)

]
(x − xk) . (3)

For the entire collection of the N discrete forces, the net
velocity v(x) is obtained by linear addition of the solutions:

v(x) =
N∑

k=1
uk(x)

=
N∑

k=1

{

− f k
8πμ

(

ln
(
r2 + ε2

) − 2ε2

r2 + ε2

)

+ 1
4πμ

1
r2 + ε2

[
f k . (x − xk)

]
(x − xk)

}

. (4)
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However, to obtain v(x) using Eq. 4 (or uk(x) using
Eq. 3), we had to first evaluate the unknown point forces,
f ks, at the N discrete points. To evaluate the f ks, we set
no-slip boundary conditions (uk = 0) at the lower and
upper domain edges (�2 and �3), and the cell bound-
aries Pi for i ∈ {1, 2, · · · , n}. As mentioned previously,
the left domain edge �1 represents the particle or fluid
entry points (the porous wall of a vascular capillary). At
�1, we set the boundary condition uk = 1ĵ μm/second,
where ĵ represents a unit vector towards the tissue depth
(parallel to �2 or �3). Thus, for the N discrete points,
we obtained a system of N independent linear equations
from Eq. 4. The left hand-side (u(x)) of these equations
were defined (either 0 or ĵ), whereas the right-hand side
contained the N unknown force terms f ks. Using the GSL
package (ftp://ftp.gnu.org/gnu/gsl/), we solved this system
of linear equations to evaluate the unknown f ks at the N
discrete points. We then plugged these force terms into
Eq. 4 to evaluate the velocity vector v(x) at any arbitrary
position x in the interstitial space of the domain.
In Fig. 1, we represent the force vectors, f ks by red

arrows. The length and direction of each red arrow rep-
resent the relative magnitude and direction of the corre-
sponding force vector at the indicated point.We represent
the velocity vectors at different points of the interstitial
space by black arrows. The length and direction of each
black arrow represent the relative magnitude and direc-
tion of the fluid (nanoparticle) velocity at the indicated
point.

Nanoparticle diffusion
We calculated diffusion constants of the nanoparticles
based on the Einstein-Stokes equation:

D = KBT
6πμa

(5)

where D is diffusion constant of a particle, KB is the
Boltzmann constant,T is temperature,μ is viscosity of the
interstitial fluid, and a is radius of the particle.

Time-adaptive simulation algorithm
In our BD algorithm, we consider that the nanoparticles
are independent and mutually non-interacting in a bio-
logical tissue. This consideration is based on the fact that
drug-delivery nanoparticles can reach a target tissue at
small quantities. Typical particle concentration in a bio-
logical tissue is expected to be small. Therefore, it is less
likely that their mutual interaction can have a significant
impact on their transport behavior over other factors,
such as fluid flow, collision with the cell boundaries, and
cellular uptake. Because particles are considered indepen-
dent, the model allows independent simulation of one
particle at a time.

Figure 2 illustrates the time-adaptive scheme of the
algorithm. The algorithm is summarized in a pseudocode
in Fig. 3. In the algorithm, particles are advanced adap-
tively with time steps 	tm ≥ 	t ≥ δt, where 	tm and δt

Fig. 2 Illustration of the time-adaptive BD algorithm. a Particle
motion in the bulk fluid. The small green circle represents a
nanoparticle, and the large gray circles represent cells. The radius of
the dashed circle, R, represents the distance between a particle’s
current position and its nearest cell boundary. In the bulk fluid,
particle jump S is taken adaptively so that |S| < R − a. |S| is
determined by the time step 	t: S = Sv + Sd , where Sv = v	t
(displacement due to advection), and Sd = √

4D	te (displacement
due to diffusion). b Particle motion near a cell boundary. |S| is
determined by a constant but fine resolution time step δt = 10−3

seconds. The cell boundary represents a sticky wall that captures or
reflects a colliding particle with probability ρ and 1 − ρ , respectively

ftp://ftp.gnu.org/gnu/gsl/
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Fig. 3 Pseudocode for the simulation algorithm

represent the largest and smallest permissible time step,
respectively.
During the simulation, in each BD step, the algorithm

first computes R, which is the distance between the cen-
ter of a particle and its nearest interaction point on a solid
boundary (Fig. 2). The solid boundary can be any of the
three domain edges or cell boundaries. It then attempts
to move the particle based on the largest permissible step
	tm. It computes a possible jump: S = Sv + √

4D	tme,
where Sv = v	tm represents displacement due to advec-
tion, Sd = √

4D	tm represents displacement due to
diffusion (Fig. 2), and e represents a unit vector with ran-
dom orientation. Velocity v and diffusion constant D are
computed using the MRS and Einstein-Stokes equation,
as detailed in the previous sections. If the jump length
|S| is smaller than R − a, where a is the particle radius,
the move is accepted, and the particle position is updated
accordingly.
If the move based on 	tm is rejected, the algorithm

attempts to move the particle based on a new time step
	ta < 	tm. This time step 	ta is obtained by solv-
ing |v|	ta +

√
4D	ta = R − a. It then computes: S =

v	ta + √
4D	tae. The algorithm then compares |S| with

the particle radius a. If |S| > 4a (i.e., the distance between
the particle boundary and a cell boundary is at least twice
the diameter of the particle), the move is accepted and the
particle position is updated accordingly.
If |S| ≤ 4a, the algorithm attempts to move the parti-

cle based on the smallest permissible step δt: S = vδt +√
4Dδte. The move is accepted if the new particle position

falls in the interstitial space (�). However, if the new posi-
tion falls outside the domain edges, or in any of the cell
regions (�), the algorithm treats it as a collision with the
corresponding domain edge or cell boundary. In the for-
mer case, the particle is reflected by the domain boundary.
In the latter case, the particle is captured or reflected by a
cell boundary, as discussed in the next section.

Particle interaction with cell boundaries
We consider the cell boundaries as sticky walls that can
capture or reflect a hitting nanoparticle with a defined
probability (Fig. 2b). Because a cell is much larger in size
than a particle, a cell boundary is treated as a flat surface
when a particle collides with the boundary (Fig. 2b). As
mentioned in the previous section, a particle can hit a cell
only when it is in the vicinity of a cell and advanced by the
finest time step δt = 10−3 s (Additional file 2: A and B).
This time step size requires the distance between a collid-
ing particle and a cell boundary to be small (four times the
particle radius). When a particle hits a cell, it is either cap-
tured with probability ρ, or reflected into the fluid with
probability (1−ρ) (Fig. 2b). The value of ρ determines the
rate of particle capture (uptake) by cells.
It should be noted that particle capture or uptake by

a cell may involve complex biophysical and biochemical
processes. These processes can be influenced by many
factors, such as van der Waals force [16], particle sur-
face charge effects [17], particle surface modification by
corona formation [18–21], and molecular recognition
by the receptor proteins in the cell membrane [22–25].
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Explicit consideration of these different factors may be
possible if quantitative information about their relative
importance and molecular mechanisms of the recogni-
tion processes are known. Here, we limit our scope by
taking this simple approach where the probability param-
eter ρ implicitly accounts for the lumped effects from
the various factors that may influence particle capture
by cells. For example, a particle with a small ρ in our
model may represent a particle with a bare surface with
a poor affinity for the cell membrane. On the other hand,
a particle with a large ρ may represent a particle with
a modified surface (functionalized with a targeting lig-
and, for example) with a high affinity for the cell mem-
brane because of the molecular recognition by membrane
proteins [17, 22–25].

Model parameters
Table 1 lists the model parameters and their values. In the
model, cells have a typical radius of 10 μm. Nanoparticles
have a radius of 100 nm if a different size is not specified
explicitly. Tissue porosity (�/�) is 0.60. The probability
of particle capture per collision with a cell (ρ) is varied
between 0.01 and 1. Physiological temperature (37°C or
310 K) was used in the Einstein-Stokes equation to cal-
culate particle diffusion. The remaining parameters, fluid
viscosity (μ), entry fluid velocity (vin), and regularization
constant (ε) are based on [9]

Results
Size effects of nanoparticles in an in vitro cell-free tissue
In drug-delivery experiments, it is a common practice
to employ cell-free tissue systems as a substitute of an
in vivo physiological tissue. We first investigated parti-
cle size effects on the distribution and penetration of
nanoparticles in such in vitro tissue systems. As men-
tioned previously, the experimental work of Wong et al.
[6] studied the effects of particle size in a cell-free collagen
matrix (Fig. 4a). In contrast, Tang et al. [7] investigated
particle size effects in in vivo tumor tissues (Fig. 4b). The
collagen matrix used in Wong et al. [6] was devoid of cells

Table 1 Model parameter values

Parameter Value Reference

Cell radius, r (μm) 10 This work

Nanoparticle radius, a (nm) 10–100∗ This work

Tissue porosity, α 0.6 This work

Particle capture probability, ρ ∗0.01–1 This work

Fluid viscosity, μ (cP) 2.5 [9]

Temperature, T (K) 310

Entry fluid velocity, vin (μm/s) 0.05–1 [9]

Regularization constant, ε (μm) 0.5 [9]

*Bold font indicates the default parameter value used in the simulations

Fig. 4 Experimental data adapted from two earlier works [6, 7]. a Data
from Figure 3H of Wong et al. [6]. The figure compares distribution of
100 nm (red) and 10 nm (black) nanoparticles in collagen in an in vitro
experiment. b Experimental data adapted from Fig. 5d of Tang et al.
[7]. The figure compares tumor tissue distribution of 200 nm (red) and
50 nm (black) particles in an in vivo experiment

and advective transport. An experiment in the study com-
pared the tissue distribution and penetration efficacy of
10 and 100 nm particles. Both particle sizes displayed a
broad dispersion across the tissue system. However, the
smaller particles revealed a significantly deeper penetra-
tion (Fig. 4a).
The experimental observation of Wong et al. [6] can be

explained with a simple theoretical model. Comparing the
tissue domain with a semi-infinite plane in one dimen-
sion, the solution of the following equation describes the
time-dependent concentration profile (probability density
function) of a single particle in the domain:

∂G
∂t

= D
∂2G
∂x2

+ δ(x)δ(t), (6)

where the source term (product of the Dirac delta
functions) represents the initial particle location at the
origin. D is the size-dependent diffusion coefficient
(Eq. 5). The solution of this equation is G(x, t) =
(1/

√
πDt)exp(−x2/4Dt). The solution is similar to a
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Gaussian distribution in an infinite domain with the
exception that the peak height is 1/

√
πDt instead of the

corresponding Gaussian peak 1/
√
4πDt, and the solution

is valid only in the right half plane (x ≥ 0). Figure 5a rep-
resents this analytical solution for three different particle
sizes. The diffusion coefficient of each particle size was
calculated based on the Einstein-Stokes formula (Eq. 5)
and the physical properties of the interstitial fluid listed
in Table 1. Figure 5b shows corresponding results from
our simulation for two different particle sizes (10 and 100
nm). The inset of Fig. 5b shows the normalized curves
for a direct comparison with the fluorescence data in [6]
(Fig. 4a).
In a biological tissue, however, it is unlikely to have a

purely diffusive motion of particles. In the presence of a
small flow (advection) to the right, particle distribution
can be described by the following equation:

∂G
∂t

= D
∂2G
∂x2

− v
∂G
∂t

+ δ(x)δ(t), (7)

where v is a constant velocity in the X-direction. The
solution of this equation, G(x, t) = (1/

√
πDt)exp(−(x −

vt)2/4Dt), is shown in Fig. 5c for v = 0.05 μm/s. Cor-
responding simulation result is shown in Fig. 5d. The
distribution peaks are shifted by a distance vt, as expected.
Based on this result, in a cell-free system, it may take only
few hundred seconds for a particle to travel tissue-scale
distances (few hundred microns). Contrary to this, the in
vivo distribution in Tang et al. [7] (Fig. 4b) clearly indicates

that particles travel at a much slower pace in a physio-
logical tissue condition perhaps because of the transport
barriers imposed by the cells.

Size effects of particles in in vivo tissue conditions
We next investigated how particle size may impact the
tissue distribution and penetration efficacy in a physi-
ological tissue condition. We were interested in the in
vivo tumor tissue distributions reported in Tang et al. [7]
(Fig. 4b). This in vivo data indicated a modestly deeper
penetration by the smaller particle but the tissue distri-
bution profiles of the particles were significantly different
from those observed in the cell-free collagen sample in [6]
(Fig. 4a). Both particles revealed narrow and overlapping
peaks, suggesting a relatively poor tissue dispersion and
penetration compared to the cell-free system.
We investigated two different scenarios in the presence

of cells. In one case, we included only cells and diffu-
sion but no advection (Fig. 6a). In the other case, we
included cells, diffusion, and advection (Fig. 6b). This lat-
ter condition could be a more practical representation of
a biological tissue.
Comparing Fig. 6 with Fig. 5, the presence of cells in the

model had a dramatic effect on the penetration depth. The
dispersion of both the 100 and 10 nm particles were sig-
nificantly reduced under pure diffusion (Fig. 6a) as well as
under advection and diffusion (Fig. 6b). The predicted dis-
tributions in Fig. 6b are qualitatively consistent with the
experimental observations of Tang et al. [7]. Consistent

Fig. 5 Particle size effects in a cell-free system. a Theoretical model (Eq. 6) and b simulation considering pure diffusion. c Theoretical model (Eq. 7)
and d simulation considering a small advection (0.05 μm/s) and diffusion
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Fig. 6 Predicted particle size effects in the presence of cells. The
panels represent the following conditions: a pure diffusion and cells;
b advection, diffusion, and cells. All simulations were carried out
considering ρ = 0.01. The fluid velocity at the tissue entry (left edge)
was assumed v = 1 μm/s [9]

with the experimental data, the model shows that the
peaks of the 10 and 100 nm particle distributions align at
the same location though the smaller particle distribution
shows a tail stretched further to the right.
Comparing Fig. 5 with Fig. 6, a cell-free in vitro system

may provide inaccurate information as to how the particle
size affects the distribution and penetration of nanopar-
ticles in biological tissues. Figure 5 indicates the 10 nm
particles are significantly more efficient in tissue disper-
sion, consistent with the experiment of Wong et al. [6].
However, Fig. 6 indicates the difference between the 10
and 100 nm particles may be less pronounced in a real tis-
sue system, where particle motions could be hindered by
their interaction with the cell boundaries.
Our analysis above indicates that cell-surface adhesion

and capture of particles may significantly compromise the
particle size effects in in vivo physiological conditions. In
a cell-free system, particle size effects could be more sig-
nificant due to the unrestricted diffusion, which is directly
determined by particle size. In contrast, in the presence

of cells, diffusion plays a less significant role. Therefore,
in vivo interstitial transport behavior of particles could be
predominantly determined by the barriers imposed by the
cell boundaries.
We next used the model to capture the experimental

data of Tang et al. [7] (Fig. 4b). A direct fit between the
model and the data was not possible due to the missing
information on the exact experimental time frame and
tissue properties, which include cell density and intersti-
tial fluid properties, fluid velocity, and particle capture
rate by cells. We simulated the system for 10,000 seconds
and attempted to match the position of the distribution
peaks for the two particle sizes reported in [7]. The match
between the simulation and data (Fig. 7) required varia-
tions in the inlet fluid velocity (vin) and the probability of
particle capture per collision (ρ), leading to vin = 4 μm/s
and ρ = 0.001.
The small value of ρ indicates that a particle gets

captured after many contacts (collisions) with the cell
boundary. At this range of ρ, we found that the particle
distribution profiles were less sensitive to the value of ρ in

Fig. 7 Comparison between simulation and experiement. The open
circles represent the experimental data of Fig. 4b (plotted in a
different scale). The filled circles represent simulation. a Particle size is
200 nm. b Particle size is 50 nm
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our simulations. The distributions were primarily deter-
mined by the fluid velocity and duration of the simulation.
It should be noted that the parameter ρ does not capture
the possibility of particle dissociation (reversible bind-
ing). Replacing this simple probabilistic construct based
on ρ with more mechanistic details of particle uptake
[26] and complementary quantitative experiments might
shed light on particle uptake rate by cells in biological
tissues.

Effects of cellular uptake rate on tissue dispersion and
penetration
Our previous analysis led us to further investigate how
cells influence the tissue distribution of particles. In Fig. 8,
we investigated the effects of ρ on the tissue penetra-
tion efficacy of 100 nm nanoparticles. Figure 8a shows
the mean depth of penetration as a direct function ρ.
Figure 8b shows the tissue distribution profiles at differ-
ent values of this parameter. As seen in the figures, the
penetration depth and the distributions were insensitive
in the range 0.1 < ρ < 1. However, there was a noticeable
change in the penetration depth and distributions in the
range ρ < 0.1.
The results above indicate a non-linear relationship

between the cellular uptake rate and tissue penetration
depth. This nonlinearity could reflect the fact that the
overall rate of cellular uptake is determined not only by ρ

but also by the mean number of collisions a particle makes
with the cell boundaries. If a particle on average makes C
number of collisions with any cell boundary, the proba-
bility that it will get captured is ρC. As for example, with
ρ = 0.1 and C ≥ 10, particle can get captured with proba-
bility 1 upon its encounter with a cell. Therefore, a further
increase in ρ beyond 0.1 could have little impact on the
overall capture rate. Our adaptive algorithm takes fine-
resolution time step (δt) near the solid (cell) boundaries,
as discussed in Materials and Methods. As illustrated in
Fig. 9 (also in Additional file 2: A and B), the fine reso-
lution δt = 10−3 second near the cell boundaries allows
a particle to make many collisions with a cell before it
gets captured. Therefore, the actual rate of cellular uptake
could be high even though ρ is small. In our simulations,
the default value of ρ is 0.01 (Table 1).

Model prediction sensitivity to time steps
Because our adaptive algorithm selects time steps over a
wide range ( 	tm = 0.1 < 	t < δt = 10−3 s), we wanted
to investigate if the predictions in Fig. 10 could be sensi-
tive to the selection of time steps. Therefore, we varied the
upper bound (	tm) in the range 10−3 − 0.1 s to enforce
different resolution of time steps in the simulation algo-
rithm. For each 	tm, we simulated 16,000 nanoparticles
for 104 s and then calculated themean depth of tissue pen-
etration by these particles. We carried out this analysis for

Fig. 8 Predicted effects of cellular uptake rates on tissue distribution
of nanoparticles. aMean depth of tissue penetration by particles as a
function of ρ . The mean depth of penetration represents the average
of the horizontal positions (X-coordinate) of 16,000 simulated
particles in 104 seconds after their tissue entry. b Histograms showing
distribution of the nanoparticles. Each histogram corresponds to a
different value of ρ , as indicated in the figure legend

different values of ρ. Corresponding plots are provided in
Fig. 10a. As seen in the figure, the predictions remained
insensitive to the 	tm. This robustness reflects the fact
that the algorithm adapts to smaller steps when particles
are in close proximity to the cell boundaries regardless of
the value of 	tm.
However, it is important to note that 	tm cannot be

assigned an arbitrarily large value. A smaller 	tm is
needed to approximate particle velocities to the local fluid
velocity. A large 	tm enables the particles to advance with
large steps. As a result, local velocity fields before and after
the jump could be significantly different, thus introducing
larger inaccuracies in the velocity approximation for the
particles.
In Fig. 10b, we performed the same analysis using a

non-adaptive algorithm, where we kept the time step
size constant. This fixed time-step algorithm is similar
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Fig. 9 Representative travel paths of simulated nanoparticles. a Travel
paths of 100 nanoparticles in the tissue domain. The particles are of
identical size (100 nm radius). b A zoomed-in view showing a single
particle travel path and its interaction with a cell boundary. Panel B
corresponds to the small region in Panel A marked by a rectangle

to the algorithm of Rejniak et al. [9]. Contrary to our
approach, the algorithm of Rejniak et al. [9], however,
treated particles (drug molecules) as point objects. The
algorithm moved the particles based on a fixed time step
and rejected the moves in case of a conflict with the
cell positions. The algorithm also assumed an interaction
layer of 0.25 μm around each cell periphery. A particle
was considered captured by a cell immediately upon its
arrival within the 0.25 μm interaction layer. We took into
account these features of the Rejniak model with the fol-
lowing exceptions: 1) Instead of treating the particles as
points, we treated them as circular objects of 100 nm
radius, as in our model; and 2) Instead of assuming an
immediate particle capture within the interaction layer,
we incorporated a capture probability 0 ≤ ρ ≤ 1 in

Fig. 10 Effect of time step 	tm variation on model predictions.
a Average tissue penetration by particles as a function of 	tm . Each
curve corresponds to a different value of ρ (the probability of particle
capture by a cell in a collision between the particle and the cell.)
b The analysis of Panel A is repeated using a non-adaptive BD
algorithm based on Rejniak et al. [9]

the layer. The predictions made by this algorithm at dif-
ferent selections of the time step size and ρ are shown
in Fig. 10b. Clearly, the predictions were sensitive to the
choice of the step size. This sensitivity is expected because
the rate of particle capture by cells in this algorithm should
depend on the thickness of the interaction layer and the
relative choice of the time step size. For a thinner inter-
action layer, a particle would be less likely to hit the layer
if advanced based on a fixed step. Similarly, an increase
in the time step size would also reduce the possibility of
hitting the interaction layer. Thus, the fixed time step algo-
rithm should underestimate the rate of particle capture
(cellular uptake) and overestimate the tissue penetration
depth if a smaller interaction layer or larger time step is
chosen. Moreover, due to the fixed (and large) time step
size in the algorithm of Rejniak et al. [9], many particle
moves might be rejected due to the conflicts with the cell
positions.
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As mentioned before, δt = 10−3 represents the smallest
time step in our model. Because of the no-slip boundary
condition, particle motion near a cell boundary is pri-
marily driven by diffusion. Thus, the length of a particle
jump near a cell boundary can be estimated based on
pure diffusion: |S| ≈ |
Sd| = √

4Dδt. For the fluid prop-
erties and temperature listed in Table 1, this jump size
becomes comparable to the size of the particle. Therefore,
it is a sufficiently small step size to capture the fine reso-
lution details of interactions occurring at the particle-cell
interface.

Discussion
In this work, we developed amultiscale Brownian Dynam-
ics algorithm to study particle transport behavior in
biological tissues. using the approach, we investigated
particle size effects on tissue distribution and penetra-
tion reported in two experimental studies. Our analysis
focused on how these behaviors may vary in cell-free
artificial tissue systems and in vivo tissue conditions.
Our multiscale algorithm can be generally applicable

to modeling advection-diffusion systems involving het-
erogeneous porous media. The approach we have imple-
mented is inspired by two previous modeling works
[9, 27]. Earlier, Monine et al. [27] developed a time-
adaptive Brownian Dynamics (BD) algorithm to study
enzyme-substrate reaction in the plasma membrane of
cells. Recently, Rejniak et al. [9] used the Method of Regu-
larized Stokeslets (MRS) [8] to study drug molecule trans-
port in biological tissues. Both these models treated the
mobile particles (substrate and drug molecules, respec-
tively) as point particles while considering their stationary
reaction or binding partners (enzyme molecules and cells,
respectively) as circular objects. In our model, we com-
bined the time-adaptive feature of the Monine model with
the MRS. This combination enabled multiscale modeling
of particle transport under both advection and diffusion
while capturing high-resolution details of particle interac-
tion with the cell boundaries. Contrary to the point parti-
cle assumption in the Monine model and Rejniak model,
we considered the mobile nanoparticles as spherical objects
occupying space in the two-dimensional membrane.
Contrary to the general perception, our study revealed

less significant effects of particle size on their intra-tissue
distribution and penetration. Our analysis shows that in
vitro tissue systems, being devoid of cells and convective
flow, may result in misleading conclusions regarding the
transport behavior of particles in the biological tissues.
Here, we limited our focus to particle size only. However,
the multiscale algorithm can be extended to incorpo-
rate other design attributes of particles, such as geometry
and surface ligands. This extension will allow mechanistic
interrogation of how these parameters affect the transport
behavior of particles in biological tissues.

In the model, we treated the nanoparticles as mutually
non-interacting objects. In the model, the particles do not
collide or form aggregates. This consideration is based on
the assumption that physiological tissue concentrations of
drug-delivery nanoparticles are small. Apparently, there
is no report on the mutual interactions of drug-delivery
nanoparticles in the physiological tissue conditions. It has
been reported that 1% of intravenously injected particles
can reach the target tissue [28, 29]. Therefore, from the
injection of 1 ml solution containing 100 million parti-
cles/ml [30], only a 1 million particles are expected to
reach the target tissues. Thus, for 100 nm radius particles,
the estimated volume fraction of particles in the target
tissues could be in the order of 10−9 assuming 1 cm3

of tumor tissue volume (a single tumor or many smaller
tumors). At this volume fraction, their non-specific colli-
sion is unlikely or less important considering many other
cellular proteins and biomolecules that could present at
comparable amounts.
Ourmodel does not consider the effects arising from the

surface charges of particles or van der Waals forces acting
between a particle and a cell. Moreover, in a body fluid,
soluble biomolecules may interact with nanoparticles and
form a coating or biocorona over the particle surface
[18–21]. Formation of biocorona modifies the surface
properties of particles. At present, the quantitative aspects
of biocorona formation and how it modifies the particle
surface properties and tissue interaction are not well-
understood. Therefore, rather than explicitly incorporat-
ing these other properties (van der Waals and biocorona
effects), we used a phenomenological parameter ρ in the
model that accounts for a lumped measure of the affinity
of interaction between a nanoparticle and a cell. Never-
theless, for a quantitative understanding of these other
phenomena influencing tissue interactions of particles,
it is crucial to explicitly address them in a mechanistic
model. The Brownian Dynamics-based framework pre-
sented here could serve as an initial platform towards
this direction. The framework could be extended to cap-
ture these other types of particle- and tissue-specific
physicochemical parameters. Integration of such predic-
tive mechanistic models with complimentary experiments
could be essential for a quantitative elucidation of these
other effects on drug delivery nanoparticles in biological
tissues [31].
We considered nanoparticle velocity to be the same as

the local fluid velocity while ignoring the influence of the
particles on the velocity field. It is possible that large parti-
cles also modify the local velocity fields at the micro scale.
However, nanoparticles are of the same dimension as
many cellular proteins, biomolecules, and solute particle.
Our model is based on existing models where nanopar-
ticles velocities were considered to be the same as fluid
velocities in the porous media [32–35]
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Our modeling approach may be expanded for spa-
tiotemporal modeling biochemical network systems. The
rule-based modeling (RBM) approach [36–38] provides
unique capability to model biochemical network sys-
tems by taking into account the coarse-grained structural
details of protein molecules [39, 40]. However, most of
the early RBM tools were developed aiming at non-spatial
modeling. Recently, the RBM tools Kappa [41], Simmune
[42], and BioNetGen [43] are being added with new
capabilities for spatiotemporal modeling. The molecular
dynamics (MD) simulation is used to model protein struc-
tures with atomistic details [44]. But MD can deal with
very short time scales, and not scalable for biochemical
network modeling considering a large number of species
and their structural details.

Conclusions
We have developed and applied a robust multiscale simu-
lation method for mechanistic modeling of particle trans-
port in porous media. By combining a new time-adaptive
BD simulation algorithm with the Method of Regular-
ized Stokeslets (MRS), our method provides a unique
capability to model particle transport considering parti-
cle size and particle-cell interactions in a heterogeneous
biological tissue. Using the approach, we have investigated
particle size effects on their distribution and penetration
in biological tissues. Contrary to the general perception,
we show that particle size may play a less significant role
in particle transport in the physiological tissue conditions.
We show that, in the presence of cells, the effects arising
from particle size difference is small. Particle penetration
and distribution is primarily determined by particle-cell
interactions. Our study underscores the roles of advective
transport and cells that are often ignored in artificial tissue
systems of in vitro experiments.

Additional files

Additional file 1: Model Source Code. The compressed folder, S1_File.zip,
contains necessary files and instructions to run a simulation. The file named
main.cpp contains the C++ source code. The file named README.txt
contains necessary instructions to compile the code and execute the
simulation. (ZIP 8 kb)

Additional file 2: Time Adaptive Motion of a Particle. (A) Movie file
S1_Video_A.mp4 shows the time-adaptive motion of a single nanoparticle
in the interstitial space and near the cell boundaries. Only the motion of
the particle center is shown. (B) Movie file S1_Video_B.mp4 shows a more
zoomed-in view. Both the particle and the cell are represented by circles.
The circles are scaled based on their relative size in the model (particle
radius 100 nm and cell radius 10 μm). (ZIP 821 kb)
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