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Abstract

Background: Detecting causality for short time-series data such as gene regulation data is quite important but it is
usually very difficult. This can be used in many fields especially in biological systems. Recently, several powerful
methods have been set up to solve this problem. However, it usually needs very long time-series data or much
more samples for the existing methods to detect causality among the given or observed data. In our real
applications, such as for biological systems, the obtained data or samples are short or small. Since the data or
samples are highly depended on experiment or limited resource.

Results: In order to overcome these limitations, here we propose a new method called topologically equivalent
position method which can detect causality for very short time-series data or small samples. This method is mainly
based on attractor embedding theory in nonlinear dynamical systems. By comparing with inner composition
alignment, we use theoretical models and real gene expression data to show the effectiveness of our method.

Conclusions: As a result, it shows our method can be effectively used in biological systems. We hope our method
can be useful in many other fields in near future such as complex networks, ecological systems and so on.
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Background
How to correctly detect the causality from the observed
time-series is quite important but it is usually very difficult,
and has attracted much attention in complex systems in re-
cent years. There are many effective method to infer the
causal relation between the variables, such as mutual predic-
tion method [1], state space method [2], phase mode ling
method [3], quantifying information method [4], recurrence
plots method [5], convergent cross mapping method [6] and
so on. As the primary framework, Granger causality (GC) is
recognized as one of the most popular measures to reveal
causality influence of time-series on the causation problem.
GC can be roughly stated as follows [7]: the variable X

was said to “Granger cause” Y if the predictability of Y

declines when X was removed from the universe of all pos-
sible causative variables u. The key characteristic of GC is
separability, which means that the information for a causa-
tive factor only depends on one variable. In other words, if
the variable X is removed, its information will be eliminated
at the same time. However, the assumption of separability
is mainly appropriate to the stochastic systems or linear
systems because the separability implies that the system is
just considered as a part not a whole at one time. Generally,
for a linear system with strongly coupled variables, GC is a
very powerful tool to detect their interactions. However, it
lacks ability to detect the causal relation on weakly coupled
variables or nonlinearly coupled variables, in particular for
a deterministic system, i.e., for those systems, GC may give
ambiguous results or even wrong conclusions.
In order to overcome these drawbacks or shortages,

Sugihara et al. [6] proposed a method called convergent
cross mapping (CCM) based on the embedded attractor
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reconstruction. To identify the causal relations between
nonlinearly coupled variables or weakly coupled variables,
CCM has been shown to have significant advantages over
GC, vector autoregression (VAR) [8], conditional mutual in-
formation (CMI) [4, 9, 10] and spectral methods [11, 12].
For the topic of causality detection, Hirata et al. [5] also used
the recurrence plots method to identify hidden common
causes from bivariate time-series, in which a nonconvergent
property of a recurrence plot was exploited to deny the ex-
istence of causal relation between the bivariate time-series.
On the other hand, Hempel et al. [13] proposed and ana-
lyzed the inner composition alignment (IOTA) which was
permutation-based asymmetric association measure to infer
the direction of couplings and indirect links from short
time-series. Ma et al. [14] proposed cross map smoothness
(CMS) methd to detecting causality with short time series.
Runge et al. [15] used the multivariate transfer entropy (TE)
method to detect causalities in multivariate time-series. This
method can distinguish direct from indirect causality and
also identify common drivers. However, it is mainly designed
for low dimensional systems. To overcome this limitation,
the decomposed transfer entropy was proposed by the same
group. Similarly, Runge et al. [16] developed a time-delayed
conditional mutual information approach, which is called as
momentary information transfer (MIT) and has a well inter-
pretable notion to measure the coupling strength.
The CCM method and many other methods are effective

for identifying the causal associations from the observed
data, and in particular, CCM method can be thought as an-
other milestone after the GC method to detect causality.
However, in spite of those impressive advances on this area,
most existing approaches including CCM and GC methods,
generally need a long time-series to detect the causal rela-
tion, for example, more than 3000 in CCM study. But in
many real-world application data, especially in biological
systems, the oberved or obtained time-series data (or sam-
ples) is usually very short (e.g., sometimes only a few time
points). Since these data or samples are highly depended on
the experiment or the limited resource. Thus, one natural
question is how to detect the causality of these high dimen-
sional short time-series, including those weakly coupled
and nonlinearly coupled relations.
In this work, to answer this question, we aim to find an

effective method to detect causal relation for high dimen-
sional short time-series or small samples. In other words, in
this paper, we propose a new method called topologically
equivalent position method shorting for TEP which can
detect causality for very short time-series data or small
samples. This method is mainly based on attractor embed-
ding theory in nonlinear dynamical systems. Specifically, we
exploit the information from the embedding theorem, i.e.,
two attractors reconstructed from two different observed
variables are topological equivalent. That information is
used to predict time-series of one variable from another or

detect the causality between them based on the principle of
topologically equivalent position, i.e., the positions of two
corresponding points in the two attractors are topologically
equivalent. This prediction can be achieved even by a small
number of samples or short time-series. We use both
numerical examples and real gene expression data to show
the effectiveness of our method. As a result, it shows our
method can be effectively used in biological systems. And it
can extend GC and CCM methods to general cases. In
addition, the comparison studies for different approaches
are also provided to show the superiority of our method.

Methods
The definition of causality
In dynamical systems theory, the necessary condition that
two variables (time-series) are causally linked each other, is
that these two variables are from the same dynamical system
or they must share the same attractor. This also means that
time-series data of one variable contains the information of
other variables in the same system or attractor, and thus can
be used to predict the dynamics of other variables. Here the
attractor means a set of numerical values of the state invari-
ant under the dynamics or the numerical values toward to a
system in the course dynamic evolution. Furthermore, ac-
cording to the Takens’ delay embedding theorem [17], one
can use the observed time-series of one variable to recon-
struct the original high-dimensional dynamical behavior by
lagged-coordinate [18]. In other words, Takens’ delay
embedding theorem grantees that data of each vari-
able can reconstruct the attractor of the original (high
dimensional) system. Takens’ embedding theorem pro-
vides the theoretical foundation for autonomous
dynamical systems with noise-free. However, this is
not the case in many real systems. Therefore, Stark
et al. [19, 20] extend Takens’ embedding theorem to
deterministically forced systems (i.e., non-autonomous
system) and further they gave the delay embedding
theorems for arbitrarily and stochastically forced
systems.
In this paper, based on the lagged-coordinate delay em-

bedding theorem, we develop an effective method to detect
the causal relation between a pair of variables (i.e.,genes) for
short gene expression data. Specifically, first we define the
causality, which is actually a prediction-based concept in this
work. We denote the shared common attractor (original at-
tractor in Fig. 1a) as M and the reconstructed attractors by
lagged-coordinates from their components, for example, X,
Y as MX, MY, respectively (Fig. 1a). Based on the embedding
theorem, the reconstructed attractors MX and MY are
topologically equivalent.
The variable Y causes the variable X if and only if one

can use the information of X to predict the variable of Y.
Taking Fig. 1b for example, two time-series variables {Pi},
(i = 1, 2,⋯) and {Qi}, (i = 1, 2,⋯) are located on their
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corresponding reconstructed attractorsMX andMY, i.e. Pi ∈
MX, Qi ∈MY, (i = 1, 2,⋯). Now we use the information of
Pi (i = 1, 2,⋯) to predict Qi (i = 1, 2,⋯), if the predicted
time-series (samples) �Qi i ¼ 1; 2;⋯ð Þ are in the near
neighborhood of Qi (i = 1, 2,⋯) on attractor MY, we call
that Y causes X (see Fig. 1b). Otherwise, if the predicted
time-series (points) Q′

i i ¼ 1; 2;⋯ð Þ are outside the near
neighborhood of Qi (i = 1, 2,⋯),we say that Y does not
cause X (see Fig. 1b). Clearly, such causality is based on
the prediction of one variable from data of another vari-
able, and thereby it is the prediction-based causality.

Topologically equivalent position method
To detect the causality between time-series variables, we
propose a new method which we call it topologically
equivalent position method shorting for TEP. We will use
this method to identify the causal relation for oberved short
time-series data or small samples, for which most of exist-
ing methods may fail due to insufficient information. This
method is based on barycentric coordinates obtained by
tessellation [21] which was extended to high-dimensional
phase space that can model a high-dimensional time series
[22]. We first make basic assumption for our method, i.e.,

Fig. 1 Definition of causality. a. the attractors MX and MY are reconstructed from variables X and Y by lagged-coordinates and they are topological

equivalent. b. The predicted time-series (points) Q′
k k ¼ 1; 2;⋯ð Þ are located in the nearest neighborhood of Qk (k = 1, 2,⋯) which implies causality

(see the above part). The predicted time-series (points) Q′
k k ¼ 1; 2;⋯ð Þ are outside the nearest neighborhood of Qk (k = 1, 2,⋯) which implies no

causality (see the below part). Here, the nearest neighborhood is measured by a ball with a small radius r (see the gray district)
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the observed data of variables are from the same system or
share a common attractor. Thus, according to the delay
embedding theorem, each component of the observed
time-series (samples) can reconstruct the topologically
equivalent attractor of the original system.

We know that the reconstructed attractors MX,MY are
topological equivalent (see Fig. 1a). Here topological
equivalent means that the dynamical behavior of the
original system is preserved. Next, we first describe TEP as
follows.

Fig. 2 Illustration of topologically equivalent attractors and topologically equivalent position. The two attractors MX and MY are reconstructed from the
original system by lagged-coordinates of its components X and Y. These two reconstructed attractors are topological equivalent. There are two short
time-series {Pi} and {Qi}(i= 1, 2,⋯) on these two topologically equivalent attractors, respectively. And we call two points as topologically equivalent position,
taking P4 and Q4 for example, if and only if the relative distance from P4 and Q4 to any other points on their corresponding attractors are invariant

Fig. 3 The results of the numerical examples by our method. a. The results of Logistic model by our method (rows → columns). b. The real
interaction of a 5-species model. In this model, Y1, Y2 and Y3 are coupled each other, and also Y1, Y2, Y3 drive Y4 and Y5. However, Y4 and Y5 do not have
any effect on Y1, Y2 and Y3. c. The results of the five species model by our method (rows → columns). Here 0 means that there is no causal relation
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Definition 1 (TEP) For any two points Pi ∈MX, Qi ∈
MY(i = 1, 2,⋯) are called topologically equivalent posi-
tions (TEP), if and only if the relative distances from Pi,
Qi to any other points on respective attractors MX, MY

are invariant.
To understand this definition, we give the illustration

in Fig. 2. In this figure, two points (vectors) on two topo-
logically equivalent attractors MX and MY (taking P4 and
Q4 for example) are called topologically equivalent pos-
ition if the following quantities are satisfied:

d4i ¼ γD4i; i≤3; ð1Þ

where γ ¼ d12
D12

; d12 and D12 are the Euclidean distances of
the first two points on their attractors MX and MY. d4i and
D4i are Euclidean distances from points P4 and Q4 to other
points on their respective attractors MX and MY. For a gen-
eral case, any two points on two topologically equivalent
attractors are called topologically equivalent position, if they
satisfy

dij ¼ γDij; i≥3; j ¼ 1; 2;⋯; i > j; ð2Þ

where γ is a constant.

We also assume that the relative position of points Pi,
Qi(i = 1, 2,⋯) on the reconstructed attractors MX, MY

are known. Next, we use the information defined in (2)
to detect causal relation between these two time-series
from the topologically equivalent attractors.
In order to identify the causality between two time-series

from their topologically equivalent attractors, first we use
the information of P1 ∼ Pi and Q1 ∼Qi− 1 to predict Q′

i . For
example, we use P1 ∼ P4 and Q1 ∼Q3, to predict Q′

4 ,where
Q′

4 is decided by similar polyhedron based on P1 ∼ P4 and
Q1 ∼Q3 by using (2) . The next important step is to evaluate
this prediction. Our criterion is to check the error between
the predicted point Q′

4 and the real point Q4. We denote
the error as

�¼ Q′
4−Q4

�� ��: ð3Þ
If the error ϵ is sufficiently small (less than 10−3), it implies

an accurate prediction from P4 to Q4. In the same way, we
can check other points until all the points are evaluated.
Finally, we obtain the mean error or the total error. If they
are sufficiently small, it means that the information of {Pi}, (i
= 1, 2,⋯) can predict {Qi}, (i= 1, 2,⋯). This also implies that
{Pi}, (i= 1, 2,⋯) has strong relationship with {Qi}, (i= 1, 2,
⋯). In other words, the error can reflect the causal relation
between these two variables X and Y. Clearly, even three
points are sufficient to estimate the TEP between two time-
series in theoretically (to produce ‘two distances’ needs three
points at least), which is a major advantages of this method.
However, to directly evaluate the error ϵ of Eq. (3) is not

a trivial problem. In particular, for a high dimensional
system, it is very difficult to calculate the predicted point

Fig. 4 ROC curves of the E. coli network with 100 genes with different noise levels. IOTA represents the method used in [13], and TEP is our
method used in this paper

Table 1 Summary of AUC for E. coli networks

Noise level AUC for TEP AUC for IOTA

0 0.8149 0.7732

0.1 0.8211 0.7681

0.2 0.7774 0.7386
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Q4i because we need to solve a large number of nonlinear
equations. Here, instead of the error ϵ of Eq. (3), we
evaluate the following relative error.

εij ¼
rij=r12−Dij=D12

�� ��
Dij=D12

; i≥3; i > j; j ¼ 1; 2;⋯; ð4Þ

where rij is the distance from the predicted points to the
real data points. Next, we show that it is not necessary to
calculate the predicted points for the error evaluation. From
Fig. 2, we know r12 = d12. Therefore, εij can rewritten as

εij ¼
rij−γDij

�� ��
γDij

; ð5Þ

Clearly, we substitute Qi into (5), i.e., substitute dij into
(5), then the error εij can be obtained without solving Q′

i

. Since dij and Dij is known, it is easy and straightforward
to calculate the relative error εij. Therefore, small error
εij implies that the predicted Q′

i is in the near neighbor
of Qi or is accurate.
We further scale the error εij by the exponential function

so that the error is normalized between 0 and 1. Therefore,
the final score of a pair of observed time-series is defined as:

ε ¼ 1
n−1

Xn

i¼3

1
i−1

Xi−1

j¼1

1

exp εij
� � ; i≥3; i > j; j ¼ 1; 2;…;

 !

ð6Þ

where n is the number of the time points (samples) for
error estimation. Generally, we use leave-one-out scheme
to evaluate all the observed time points (samples).
By using this score function, we identify the causal rela-

tion both for numerical examples and real gene expression
data in next two sections.
Remark: Both the CMS method used in [14] and TEP

method proposed here used the delay embedding theory
for a nonlinear dynamical system but their idea is different.
On one hand, the key point of CMS method is to construct
‘Smoothness Map’. The key idea of our TEP method is to
obtain barycentric coordinates by tessellation. On the other
hand, the CMS method used nerual network to train the
data to show whether the cross map can map the nearest
neighbors to mutual neighbors. So that it can be used to
detect causality (see Fig. 1a-b in [14]). Our TEP method use
the relative distances to predict the next time point and
then calculate the error between the predicted point and
real point (see Fig. 2). By using this to detect the causal re-
lation between two time series or small samples.

Results
To validate the effectiveness of our TEP method, we first
apply our TEP method to both several benchmark examples
and gene expression data. The theoretical models used here
were the same ones used in [6].

Fig. 5 ROC curves of the Yeast network with 100 genes with different noise levels. IOTA represents the method used in [13], and TEP is our
method used in this paper

Table 2 Summary of AUC for yeast networks

Noise level AUC for TEP AUC for IOTA

0 0.8386 0.6164

0.1 0.7949 0.5986

0.2 0.7648 0.5517
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Causal relation of logistic difference equations
The first example is logistic difference equations. Since we
know the underlying relations between the variables in
advance, we just use these mathematical models to iden-
tify the validity of our proposed method. Considering the
following two coupled Logistic difference equations which
exhibit chaotic behavior [23]

X t þ 1ð Þ ¼ X tð Þ rx−rxX tð Þ−βx;yY tð Þ
h i

;

Y t þ 1ð Þ ¼ Y tð Þ ry−ryY tð Þ−βy;xX tð Þ
h i

:

8<
: ð7Þ

with rx = 3.8, ry = 3.5, βx, y = 0.02, βy, x = 0.1, and the ini-
tial conditions X(1) = 0.4, Y (1) = 0.2.
By using the TEP method, we first check the bidirec-

tional causal relation and then the unidirectional causal
relation of the above system (7) between the variables X
and Y. Since the two cases βy, x = 0 or βx, y = 0 are
equivalent, without loss of generality, here we consider
the case βy, x = 0. The system (7) becomes

X t þ 1ð Þ ¼ X tð Þ rx−rxX tð Þ−βx;yY tð Þ
h i

;

Y t þ 1ð Þ ¼ Y tð Þ ry−ryY tð Þ� �
:

(
ð8Þ

with the same parameters rx = 3.8, ry = 3.5, βx, y = 0.02,

and the initial conditions X(1) = 0.4, Y (1) = 0.2. We give
the calculation results by using our method shown in
Fig. 3a.
Comparing the results in Fig. 3a with those in (7) and

(8), clearly our method can identify the causal relation of
the two dimensional difference Logistic model correctly.
And also comparing with the results in [6], we use much
less time points (actually only 10 time points) to identify
the causal relation of the logistic model.

Causal relation of 5-species mathematical model
To further verify the effectiveness of our TEP method,
we detect the causal relation between the variables of a
5-species model. The model can be described by the fol-
lowing system shown in Fig. 3b.

Y 1 t þ 1ð Þ ¼ Y 1 tð Þ 4−4Y 1 tð Þ−2Y 2 tð Þ−0:4Y 3 tð Þ½ �;
Y 2 t þ 1ð Þ ¼ Y 2 tð Þ 3:1−0:3Y 1 tð Þ−3:1Y 2 tð Þ−0:93Y 3 tð Þ½ �;

Y 3 t þ 1ð Þ ¼ Y 3 tð Þ 2:12þ 0:636Y 1 tð Þ þ 0:636Y 2 tð Þ−2:12Y 3 tð Þ½ �;
Y 4 t þ 1ð Þ ¼ Y 4 tð Þ 3:8−0:111Y 1 tð Þ−0:011Y 2 tð Þ þ 0:131Y 3 tð Þ−3:8Y 4 tð Þ½ �;
Y 5 t þ 1ð Þ ¼ Y 5 tð Þ 4:1−0:082Y 1 tð Þ−0:111Y 2 tð Þ−0:125Y 3 tð Þ−4:1Y 5 tð Þ½ �:

8>>>>><
>>>>>:

ð9Þ

From Fig. 3b, it is clear that Y1, Y2 and Y3 are coupled
each other, and also Y1, Y2, Y3 drive Y4 and Y5. However,
Y4 and Y5 do not have any effect on Y1, Y2 and Y3. It
agrees with our calculation results (by using 15 time
points) listed in Fig. 3c.
Both these two simple models show that our method

works well by using a small number of samples, i.e., it
can detect the causality between the variables correctly.

Fig. 6 ROC curves of the Rat circadian rhythm with 18 key related genes by applying drug at different time points. IOTA represents the method
used in [13], and TEP is our method used in this paper

Table 3 Summary of AUC for circadian rhythm networks

Time points of using drug AUC for TEP AUC for IOTA

19th hour 0.6704 0.5730

28th hour 0.6494 0.6268

37th hour 0.6277 0.5411
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E. coli Gene expression data
In this section, we apply our method to detect the causal
gene regulation between a pair of genes. The gene regula-
tory network used here is the bacterium E.Coli, as described
in [24]. It has been shown that 100 genes can approximate
significantly well the statistical properties of the whole net-
work [13, 25]. In order to make comparison, here we also
analyze a subnetwork with 100 genes where every gene rep-
resents a node and the dynamics of each node (gene) is de-
scribed by Michaelis-Menten and Hill kinetics. We should
point out that for more genes which means the dimensional
is much more higher, it still can be disposed by our method.
The only thing is that it needs much more time to calculate
the errors. Moreover, gene expression data with 10 time
points are measured as the same used in [13, 25].

By using the algorithm above, we first calculate ε for each
pair of genes. Therefore, there are totally P2

100; i. e. , 9900 εs.
We also use the receiver operating characteristics (ROC)
curves with different noise level, i.e., noise free, noise level
0.1 and 0.2, respectively. At the same time we also compare
our method with the IOTA method used in [13]. The com-
paring results are shown in Fig. 4. In addition, to evaluate
and rank the overall performance, we provide the area under
ROC curves (AUC), and the results are shown in Table 1.
From the ROC curves above and the statistic analysis of

ROC curves, clearly, TEP is effective to detect the causal-
ity of gene regulations for the observed or obtained short
time-series data. Comparison results between our method
and IOTA method (see Fig. 4) also demonstrate the super-
iority of TEP on the accuracy.

Fig. 7 The real gene regulatory network of E.Coli with 100 genes
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Yeast gene expression data
Now we detect the causal gene regulations from yeast
gene expression data with 10 time points. The network
structures were downloaded from the reference [26, 27].
Just like the E.coli gene expression data, here we first
conduct the statistics analysis of ROC curves. At the
same time, we compare our method with the IOTA
method. The results are shown in Fig. 5 and Table 2,
which validated the effectiveness of our method.

Rat circadian rhythm gene expression data
Circadian rhythm is fundamentally important for mammals
in their physiological processes. To identify the important
circadian genes and their roles in their relevant processes is
important to elucidate their mechanism of rhythms, in par-
ticular, at a network level. In fact, there exists many key cir-
cadian genes and functional organization interaction, which
generate circadian oscillations. Based on the rat circadian
rhythm gene expression data [28], we detect the causal rela-
tions among genes by our method.
For circadian rhythm related genes [29, 30], there are

18 key circadian genes identified in mammals and also
extensively studied. We further add 22 circadian related
genes which all have protein interactions and phosphor-
ylations relationships with the 18 key circadian genes. In
other words, we mainly study the causal relations among
40 genes by using the gene expression data. The detail
function relationship can be found in [28] (Fig. 2 in
[28]). Figure 6 and Table 3 show the ROC curves and
the AUC as well as the comparison result, which are

obtained based on the gene expression data with 18 time
points as the same case in [28].
In order to make our results more clearly, we give the

real gene regulatory network of 100 genes of E. coli and
Yeast in Figs. 7 and 8. The results of the above three
gene expression data show that TEP method works well
even with a small number of samples. Comparing with
the IOTA method, the truth positive rate (TPR) are
higher with the same false positive rate (FPR), which
means that our method is effective to detect the causal
relation than IOTA method.

Discussion
How to detect the causal relations from short time-
series data is really very important. Especially for the
genes, because the obtained causal relations among the
genes can provide valuable information and insights into
topological structures of gene regulatory networks. Be-
sides the gene regulatory networks, our method can be
used in many other complex networks. However, we
must also point out that there still exist false predictions,
e.g., many false prediction by the circadian rhythm gene
expression data. As a future topic, we will study the de-
pendence of our method on the data and its length.

Conclusion
In this work, a new method which called topologically
equivalent position method is proposed. It is a prediction-
based method. It can be effectively used to detect the
causality of the observed short time-series data or very

Fig. 8 The real gene regulatory network of Yeast with 100 genes
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small samples. Both the numerical examples and gene ex-
pression data have been used to validate the proposed
method. Different from the existed method, such as
Granger causality and CCM, our method not only is sim-
ple in terms of computational procedure, but also can be
applied to nonlinear systems. The most important is that
it can identify the causality for the observed observed
time-series just from short time points. This is very useful
for real-world data, in particular, the gene expression data,
which are typically very short (≈10 points).
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