Asami et al. BVIC Systems Biology 2017, 11(Suppl 7):129

DOI 10.1186/512918-017-0513-2 BMC SyStemS BIOlogy

CrossMark

Constraint-based perturbation analysis with ®
cluster Newton method: a case study of
personalized parameter estimations with
irinotecan whole-body physiologically

based pharmacokinetic model

Shun Asami', Daisuke Kiga'” and Akihiko Konagaya'**

From 16th International Conference on Bioinformatics (InCoB 2017)
Shenzhen, China. 20-22 September 2017

Abstract

Background: Drug development considering individual varieties among patients becomes crucial to improve
clinical development success rates and save healthcare costs. As a useful tool to predict individual phenomena and
correlations among drug characteristics and individual varieties, recently, whole-body physiologically based
pharmacokinetic (WB- PBPK) models are getting more attention. WB-PBPK models generally have a lot of drug-
related parameters that need to be estimated, and the estimations are difficult because the observed data are
limited. Furthermore, parameter estimation in WB-PBPK models may cause overfitting when applying to individual
clinical data such as urine/feces drug excretion for each patient in which Cluster Newton Method (CNM) is
applicable for parameter estimation. In order to solve this issue, we came up with the idea of constraint-based
perturbation analysis of the CNM. The effectiveness of our approach is demonstrated in the case of irinotecan
WB-PBPK model using common organ-specific tissue-plasma partition coefficients (Kp) among the patients as
constraints in WB-PBPK parameter estimation.

Results: We find strong correlations between age, renal clearance and liver functions in irinotecan WB-PBPK

model with personalized physiological parameters by observing the distributions of optimized values of strong
convergence drug-related parameters using constraint-based perturbation analysis on CNM. The constraint-based
perturbation analysis consists of the following three steps: (1) Estimation of all drug-related parameters for each
patient; the parameters include organ-specific Kp. (2) Fixing suitable values of Kp for each organ among all patients
identically. (3) Re-estimation of all drug-related parameters other than Kp by using the fixed values of Kp as
constraints of CNM.
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Conclusions: Constraint-based perturbation analysis could yield new findings when using CNM with appropriate
constraints. This method is a new technique to find suitable values and important insights that are masked by CNM

without constraints.

Keywords: Cluster Newton method, Constraint-based sensitivity analysis, PBPK models, Pharmacokinetics, Parameter

estimation

Background

Despite considerable advances in biotechnology and in
silico tools, effective drug development remains a chal-
lenging task. In fact, clinical development success rates
are low and new drugs approved by the US Food and
Drug Administration (FDA) have declined since the
1990s [1]. Especially, the success rates of oncology drugs
are the lowest compared with non-oncology drugs;
therefore, the costs of cancer drugs have been increasing
dramatically over the last years. For example, the cost of
ipilimumab, which has been approved in 2011 as a drug
for melanoma in the United States of America is $120,000
per patient per year [2]. Considering the healthcare costs
and the burden on patients, improvements of clinical de-
velopment success rates and methods for a cost-efficient
drug development are urgently needed.

Because efficacy or safety issues often make drug
developments unsuccessful, individual optimized doses
have the potential to help clinical development success
[1]. Treatments with individually optimized doses indeed
have improved the efficacy and safety compared to treat-
ments with standard doses [3]. However, the determin-
ation of individually optimized doses involves very high
costs because clinical trials are generally needed.

Most recently, the use of physiologically-based pharma-
cokinetic (PBPK) models is considered to be an efficient
approach to personalized doses of drugs [4]. PBPK models
have emerged as promising in silico tools for drug devel-
opment. PBPK models are expected to predict pharmaco-
kinetic properties that are useful for evaluating the effects
of intrinsic (e.g., organ dysfunction, age, genetics) and ex-
trinsic (e.g., drug- drug interactions, DDI) factors without
the need for clinical studies [5]. Regulatory authorities
such as the FDA recommend that pharmaceutical com-
panies apply PBPK models to drug development [6, 7].
Actually, some drugs have been already approved solely
based on PBPK models without accompanying clinical
studies [8, 9], which indicates the usefulness of PBPK
models for efficient drug development. Furthermore,
PBPK models which are tailored to the individual patients
will give us a lot of useful information for personalized
medicine, such as individually optimized doses and treat-
ments. Such PBPK models are considered effective tools
to improve clinical development success rates and to
decrease the costs of clinical development.

For the parameter estimation of PBPK models, Cluster
Newton Methods (CNM) [10, 11] allow to find multiple
solutions to an underdetermined inverse problem. The
parameters of PBPK models are often estimated by con-
ventional methods such as Gauss-Newton method or its
derived algorithms. For a large number of parameters,
however, these classical parameter estimation algorithms
can be rather time-consuming, and are highly dependent
on an initial parameter setting, which is often difficult
due to the limited size of clinical data. Furthermore, the
algorithms estimate only one set of optimized parameters
while ignoring the diversity of the optimized parameter
set resulting from the complexity. On the other hand,
CNM can solve these problems by the following advan-
tages reported in [11]. Firstly, CNM can accept a much
broader range of the initial parameters of a PBPK model
than the conventional algorithms. Thus, even if the suit-
able initial parameters are not known beforehand, CNM
can find the proper parameters. Secondly, the computa-
tional costs are very low compared to other algorithms.
Finally, the most important advantage is that CNM can
provide a variety of optimized parameter sets which repro-
duce the observed clinical phenomena with a PBPK
model. The parameter sets contain a lot of useful informa-
tion that enable us to interpret the phenomena with
higher confidence and extrapolate the obtained insights to
new phenomena.

The previous reports applied CNM for estimating the
parameters of PBPK models of irinotecan [10, 11]. As
one of the key cancer drugs, irinotecan has been used
for the treatment of many cancers worldwide. Irinotecan
is also called CPT-11. It is metabolized to SN-38, NPC,
and APC by carboxylesterase 2 (CES2) or CYP3A4, and
moreover, NPC and SN-38 are metabolized to SN-38
and SN-38G by CES2 and UGT1A, respectively [12, 13].
Additionally, irinotecan pharmacokinetics are known to
involve enterohepatic circulation (EHC). Thus, PBPK
models of irinotecan used to be rather complicated, and
the estimation of optimized parameters by the conven-
tional methods was difficult.

Although the parameters of a simplified PBPK model
of irinotecan were estimated by CNM [10, 11], the
estimated parameters were obtained from general
physiological data and from the average objective values
of drug excretions in urine and feces of seven patients.
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Therefore, individual varieties such as sex, height and
weight, and individual objective values of the elimina-
tions could not be reflected, and correlations among the
estimated parameters and individual varieties were not
investigated.

In order to solve this issue, we here introduce a
whole-body physiologically- based pharmacokinetic
(WB-PBPK) model with personalized information and
constrained-based perturbation analysis. A WB-PBPK
model is an expanded PBPK model in which the organ-
ism is modeled as a circulatory system consisting of
compartments that represent organs that are important
for absorption, distribution, metabolism and elimination
(ADME). Such models are quite useful for simulating
personalized pharmacokinetics behavior because they
can simulate personalized patient- specific variations
(height, weight, age, sex) or physiological changes associ-
ated with disease-specific characteristics [14]. Thus,
WB-PBPK models with many organs are increasingly
important to develop personalized drugs and make per-
sonalized doses due to reflecting more individual var-
ieties. WB-PBPK models generally require two types of
input data: physiological parameters, such as blood flow
and organ volumes, and drug-related parameters, such
as clearance and tissue-plasma partition coefficients
(Kp). The physiological parameters can be calculated
based on personalized patient-specific data (height,
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weight, sex), and anatomic information [15]. The drug-
related parameters are often estimated by the conven-
tional methods. As mentioned in the previous section,
however, the conventional methods have some problems
for the parameter estimations of WB-PBPK models.

Although CNM can estimate the parameters in WB-
PBPK models, it may cause overfitting when applying to
individual clinical data such as urine/feces drug excre-
tion for each patient without reflecting pharmacological
or clinical knowledge. In general, Kp in the drug-related
parameters depends on physical characteristics of drugs
rather than individual differences between patients.
Then, individual varieties of the drug-related parameters
other than Kp may be masked when the parameters are
estimated by the conventional CNM. In order to solve
this issue, we came up with the idea of constraint-based
perturbation analysis of the CNM. Our approach in
more detail is explained by using a simple model in
Additional file 1.

To be more precise, we estimate personalized drug-
related parameters of irinotecan detailed WB-PBPK
model with many organs and blood vessels by using
CNM with personalized physiological parameters and in-
dividual objective values of eliminations. Additionally,
the following steps for constrained perturbation analysis
with CNM give us new insights. Firstly, we estimate in-
dividual values of all drug- related parameters including
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Fig. 1 WB-PBPK model for irinotecan and the metabolites. We constructed a WB-PBPK model of irinotecan and the metabolites including blood
circulatory compartments and elimination compartments. Blood circulatory compartments include venous and artery blood, lung, heart, brain,
muscle, adipose (Adipo.), skin, bone, kidney, spleen, pancreas (Panc,), stomach (Stomac,), small intestine (S.l.), large intestine (L.I) and liver. Elimination
compartments include three biliary transit, S.I,, LI, urine and feces. Structure of the WB-PBPK model in each compound is described (Fig. 2)
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Fig. 2 Parameters in the WB-PBPK model for irinotecan and the metabolites. Parameters are shown in the WB-PBPK model for irinotecan and the
metabolites. a The kinds of parameters other than the metabolites in liver are same among irinotecan and the metabolites. Indicated are the
blood flow (Q), the volume (V), the tissue-plasma partition coefficient (Kp), renal clearance (CL,), biliary clearance to transit compartment (CLy;e),
absorption rate constant (k,), kinetic constant for the transit in bile compartments to small intestine (ky;.), kinetic constants for the transit from
small intestine to large intestine (k ), kinetic constant for the transit from large intestine to feces (keces), hepatic artery (H.A) and hepatic vein
(H.V.). The metabolic pathway of irinotecan and the metabolites in liver are represented b. Indicated are metabolic clearance of CPT-11 by CES2
to form SN-38 (CLcgs,1), metabolic clearance of NPC by CES2 to form SN-38 (CLcgs ), metabolic clearance of CPT-11 by CYP3A4 to form APC
(CL3a4,1), metabolic clearance of CPT-11 by CYP3A4 to form NPC (Clsa4,) and metabolic clearance of SN-38 by UGT to form SN-38G (CLygr)
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Table 1 Patient characteristics, dose of irinotecan and physiological parameters
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7
Sex Men Men Men Men Female Female Female
Age (years) 73 67 51 70 74 52 71
Height (cm) 1716 1694 1823 1825 1706 1694 188.6
Weight (kg) 109.1 89.1 786 98.2 88.0 52.7 832
BMI (kg/m2)* 37.1 31.0 23.7 29.5 30.2 184 234
Dose (ug/kg) 1000 1500 1700 1100 1400 2200 1400
Duration of infusion (min) 90 90 90 90 90 90 90
Volume (ml/kg)®
Venous blood 128 156 187 149 123 204 14.0
Artery blood 8.1 9.8 1.7 94 7.7 12.8 88
Lung 116 14.1 169 135 119 19.7 135
Heart 38 45 54 44 39 6.4 44
Brain 138 169 192 154 154 257 16.3
Muscle 290.8 3527 4224 3384 2384 396.0 2719
Adipose 469.0 360.6 2400 3912 5164 2108 4526
Skin 47 46.0 50.3 403 38.1 49.1 40.7
Bone 1063 1289 1544 1237 107.3 178.2 1223
Kidney 39 4.8 5.7 46 47 79 54
Spleen 2.2 2.7 32 25 26 43 29
Pancreas 1.7 2.1 25 20 20 33 23
Stomach 1.5 18 22 1.8 19 32 22
Small Intestine 6.5 79 95 76 8.2 136 93
Large Intestine 37 45 54 43 49 8.1 56
Liver 212 25.7 308 24.7 224 372 255
Blood flow Rate (m\/min/kg)b
Lung 54.9 66.6 79.8 639 64.7 107.5 73.8
Heart 23 28 34 27 35 58 40
Brain 7.0 85 102 82 83 13.8 9.5
Muscle 99 121 144 116 78 13.0 89
Adipose 29 35 42 34 59 9.8 6.7
Skin 29 35 42 34 35 58 4.0
Bone 29 35 4.2 34 35 58 4.0
Kidney 11.9 145 17.3 139 13.2 219 15.0
Spleen 1.8 2.1 2.5 20 2.1 35 24
Pancreas 0.6 0.7 0.8 0.7 0.7 1.2 0.8
Stomach 06 0.7 08 0.7 0.7 1.2 08
Small Intestine 58 7.1 85 6.8 76 127 87
Large Intestine 23 28 34 2.7 3.5 58 4.0
Liver (Total) 149 18.1 217 173 18.7 311 214
Liver (Artery) 38 4.6 55 44 45 7.5 5.1

BMI, body-mass index

#BMI is calculated as weight(kg)+height(m)2

PVolume and blood flow rate for each vessel and organ are calculated by using the work of Willmann et al. [15]
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Kp for each organ by the conventional CNM without
any constraints. Secondly, we estimate suitable values
of Kp for each organ among all patients identically.
Thirdly, we estimate personalized drug-related param-
eters, such as renal and liver clearances, by using
CNM with constraints of the fixed values of Kp.
Then, we observe the distributions of the personalized
parameters with strong convergence in all patients
and find considerable personalized factors when irino-
tecan is administered.

The novelty of our methodology is that we firstly show
the way to deal with both common parameters and indi-
vidual parameters among patients in WB-PBPK model.
In our study, we found that a CNM with the constraints
such as the fixed values of Kp can give us new insights
which are masked in the conventional CNM without
constraints. Thereby, we can better understand the
correlations between pharmacokinetic parameters and
individual varieties of physiological parameters and drug
excretions.

Methods

Data source

We use reported individual data and pharmacokinetic in-
formation of irinotecan and its metabolites to estimate
drug-related parameters and calculate personalized physio-
logical parameters [16]. This report describes individual
data such as sex, age, weight, body surface area, dose of
irinotecan, and elimination ratio in urine and feces.

Table 2 Objective values for each patient
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WB-PBPK model structure of irinotecan

The WB-PBPK model of irinotecan is constructed to
estimate the drug-related parameters (Figs. 1 and 2. As
mentioned in the introduction, irinotecan (CPT-11) is
mainly metabolized into three compounds: SN-38, NPC
and APC. Furthermore, SN- 38 and NPC are metabo-
lized to SN-38G and SN-38, respectively. Therefore,
these five compounds are included in our model. Our
model is composed of 16 independent compartments for
each compound, in which the following are included:
venous and artery blood, lung, heart, brain, muscle, and
adipose tissue; furthermore, skin, bone, kidney, spleen,
pancreas, stomach, small intestine, large intestine and
liver. Anatomically, the organs account for a large per-
centage in the human body [17]. Each compartment has
an associated blood flow rate, volume and Kp (Fig. 2).
Urine and feces are included as elimination compart-
ments. SN-38G is assumed to be deconjugated to SN-38
by B-glucuronidase in intestinal microflora [18], and the
sum of SN-38 and SN-38G are observable in feces.
Additionally, three biliary transit compartments, small
intestine, and large intestine are set to describe EHC.
The dynamics of each compound are represented by
differential equations in the supplementary material
(Additional file 2). The differential equations are solved
with MATLAB stiff ODE solver ODE15s [19].

Parameter settings for WB-PBPK model of irinotecan
Patient characteristics, dose of irinotecan and physio-
logical parameters are shown in Table 1. The patient

D Parameters Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7
Urinary elimination ratio (%)

1 CPT-11 23.2 255 355 26.3 17.8 28.1 300
2 SN-38 04 05 0.7 05 03 05 06
3 SN-38G 3.1 34 48 36 24 38 4.0
4 NPC 0.1 0.2 0.2 0.2 0.1 0.2 0.2
5 APC 23 25 35 26 18 28 30
Fecal elimination ratio (%)

6 CPT-11 453 435 354 427 496 414 399
7 SN-38 + SN-38G 1.9 114 93 1.2 13.1 109 10.5
8 NPC 19 18 15 1.8 2.1 1.7 1.7
9 APC 11.6 1.2 9.1 11.0 127 10.6 102
Cmax (ug/ml)

10 CPT-11 1.53 1.53 1.53 153 1.53 1.53 1.53
11 SN-38 0.04 0.04 0.04 0.04 0.04 0.04 0.04
12 SN-38G 0.09 0.09 0.09 0.09 0.09 0.09 0.09
13 APC 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Cmax, maximum serum concentrations
The total elimination ratio of urine and feces is normalized to the ratio of reported individual information. Ratios of metabolism from CPT-11 to its metabolites

and Cmax of all compounds use average values in the report. Cmax of the metabolites are normalized to the amount of CPT-11
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characteristics and dose of irinotecan are based on
the literature [16]. We excluded a bile duct cancer
patient because the metabolic pathway of a patient
with a bile duct t-tube as elimination pathway is very
different from that of the other patients. The person-
alized physiological parameters are calculated by the
reported method [15]. The method requires the
following physiological information demographic in-
formation (sex, body weight and height) and organ
information (mean of organ volumes and blood
flows). As can be seen in Table 1, the reported pa-
tient information in [16] is used for the personalized
information. The organ information is estimated by
the reported anatomical information in [17].

In Table 2, objective values for the parameter
estimation are shown. The total elimination ratios
of urine and feces are normalized to the ratios of
the reported individual information [16]. The ratios
of metabolism from CPT-11 to their metabolites
and maximum serum concentrations (Cmax) of all
compounds use the average values in [16]. Cmax of
the metabolites are normalized to the amount of
CPT-11.

The initial ranges of drug-related parameters are
shown in Table 3. The parameter ranges were initial-
ized similarly to the approach reported in [11].

CNM method

In this study, Yoshida's CNM algorithm with dS is
used [11]. Firstly, a group of 1000 virtual samples as
initial parameter sets is created by a random sampling
from given parameter ranges (Table 3). The CNM
algorithm has parameter dS to keep the diversity in
population by means of creating a dividing point Xi
with the ratio of dS: (1 -dS) where dS of 0 means
the original CNM. The dS value is set 0.2 in our
study, because the calculation converges adequately
with this value. The first CNM is performed in 10 it-
erations to find a group of optimized parameter sets.
After completing the parameter estimation, the calcu-
lated urinary and fecal ratios and Cmax of each com-
pound are compared with the observed values. The
comparisons of the observed values are based on the
sum of squared residuals (SSR). Next, we select a
group of some parameter sets based on small SSR
value in all patients and calculate the median value of
each tissue- plasma partition coefficient (Kp). The
second CNM with the fixed values of Kp calculated is
performed in 15 iterations to estimate the optimal
parameters of the other drug-related parameters, such
as renal and liver clearances. The number of virtual
samples and value of dS are the same as those in the
first CNM.
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Table 3 Drug related parameters to estimate

D Parameters Unit Min Max
1:5 KPLung - 0.1 10
6:10 Kpheart - 0.1 10
11:15 Kpgrain - 0.1 10
16:20 KPmuscle - 0.1 10
21:25 Kpadipose - 0.1 10
26:30 KPskin - 0.1 10
31:35 Kpeone - 0.1 10
36:40 KPkidney - 0.1 10
41:45 KPspleen - 0.1 10
46:50 Kppancreas - 0.1 10
51:55 Kpstomach - 0.1 10
56:60 KPsmall intestine - 0.1 10
61:65 KPLarge intestine - 0.1 10
66:70 KpLiver - 0.1 10
71 CL(CPT-11) ml/min/kg 0.1 10
72:75 CL,(metabolites) ml/min/kg 0.01 1
76:80 Clpite ml/min/kg 0.1 10
81 Clcesy ml/min/kg 0.1 10
82 Clegs ml/min/kg 0.1 10
83 Clsaa ml/min/kg 0.1 10
84 Clsag2 ml/min/kg 0.1 10
85 Clygr ml/min/kg 0.1 10
86:90 Kbile /min 0.001 0.1
91:95 ka /min 0.0001 0.01
96:100 k. /min 0.0001 0.01
101:105 Kfeces /min 0.0001 0.01

KpLung tissue-plasma partition coefficient of lungs; Kpyeart, tissue-plasma
partition coefficient of heart; Kpgyain, tissue-plasma partition coefficient of
brain; Kpmuscie: tissue- plasma partition coefficient of muscles; Kpagipose: tissue-
plasma partition coefficient of adipose; Kpsyi,, tissue-plasma partition coefficient
of skins; Kpgone, tissue-plasma partition coefficient of bones; Kpiney tissue-
plasma partition coefficient of kidneys; Kpspieen, tissue-plasma partition coefficient
of spleen; Kppancreas: tissue-plasma partition coefficient of pancreas; Kpsiomachr
tissue-plasma partition coefficient of stomach; Kpsmar intestines tissue-plasma parti-
tion coefficient of small intestine; Kpiarge intestines tissue-plasma partition coeffi-
cient of large intestine; Kpiver tissue-plasma partition coefficient of liver; CLr
(CPT-11), renal clearance of CPT-11; CLr (metabolites), renal clearance of SN-38,
SN-38G, NPC or APC, respectively; Clye, biliary clearance to transit compartment;
CLcgs,1, metabolic clearance of CPT-11 by CES2 to form SN-38; CLcgs,, metabolic
clearance of NPC by CES2 to form SN-38; CLsa4,1, metabolic clearance of CPT-11
by CYP3A4 to form APC; CL3as,, metabolic clearance of CPT-11 by CYP3A4 to
form NPC; CLygr, metabolic clearance of SN-38 by UGT to form SN-38G; Kpje,
kinetic constant for the transit in bile compartments to small intestine; k,,
absorption rate constant; k, kinetic constants for the transit from small intestine
to large intestine; keeces, kinetic constant for the transit from large intestine

to feces

Results and discussion

Estimations of suitable values of Kp for irinotecan
WB-PBPK regardless of individual varieties

We estimated the individual varieties of some drug-
related parameters by using WB-PBPK model with
personalized physiological parameters and individual
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Fig. 3 Individual varieties of elimination ratios from urine and feces. We visualized the individual varieties of elimination ratios from urine and feces.
Blue diamonds and red triangles represent male and female patients, respectively

objective values of the eliminations. In our study, firstly,
we estimated all drug-related parameters for each pa-
tient using conventional CNM, that is, CNM without
constraints. Secondly, we estimated suitable Kp values
among all patients identically by calculating the median
of the estimated Kp values with low SSR (sum of
squared residuals). Thirdly, we estimated the drug-
related parameters other than Kp by using CNM with
the fixed suitable values of each Kp, that is, using CNM
with constraints. Finally, we observed correlations be-
tween the estimated drug-related parameters and indi-
vidual varieties. We included more than 100 drug-
related parameters and many compartments with 14
organs and 2 blood vessels for each substance in our
WB-PBPK model (Figs. 1 and 2). Calculated personalized
physiological parameters and reported individual doses
of irinotecan are shown in Table 1. As reported in [16],
there are varieties for the elimination ratios from urine
or feces for the individual patients (Fig. 3).

The suitable values of Kp are estimated regardless of
individual varieties by using CNM, since it is difficult
for them to be estimated by classical parameter

Table 4 Estimated parameters with CV 0.3 or less

estimation algorithms due to the large number of Kp in
our WB-PBPK model. As drug- related parameters,
clearances in renal and liver, elimination rates to urine,
feces, bile and large intestine, absorption rate of EHC,
and Kp in each organ are involved. In general, Kp de-
pends on physical characteristics of drugs rather than
individual differences between patients. On the other
hand, the clearances in renal and liver, the elimination
rates and the absorption rate are significantly influ-
enced by individual varieties such as age, weight, and
body surface area. Parameter estimations in the WB-
PBPK model were performed with a total of thirteen
objective values: nine objective values of urinary and
fecal accumulations and four objective values of Cmax
of irinotecan and the metabolites (Table 2). Total elim-
ination rate from urine and feces reflects individual ob-
served data. Initial ranges of all drug-related
parameters including Kp are shown in Table 3. The
ranges are sufficiently large to include the real values
for each parameter. Parameter estimations for all drug-
related parameters were performed for each patient by
using Yoshida’s CNM algorithm. The calculation time

ID: Parameters Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7
71: CLr (CPT-11) 0.10 0.07 0.12 0.11 0.18 0.25 0.18

72: CLr (SN-38) - - - 0.28 - - -

76: CLbile (CPT-11) 0.10 0.10 0.18 0.10 0.13 030 0.20

80: CLbile (APC) - - 0.26 0.27 - - -

82: Clegso - - - - 027 - -

83: Claaas 0.12 0.08 0.12 0.08 0.23 0.28 0.18

CV coefficient of variation, Bars represent CV is 0.3 over
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for the parameter estimations was relatively short, al-
though in order to deal with quite complicated PBPK
models, much more parameters must be estimated. The
computation took less than 15 min with 10 iterations
and 1000 virtual samples on a standard PC.

Next, we selected the estimated parameter sets with SSR
(sum of squared residuals) 0.03 or less in all patients,

because these parameter sets considerably reproduce the
objective values. A total of 100 parameter sets can be se-
lected in all patients. Then, median values of each Kp were
calculated in the selected parameter sets (Additional file 3).
Almost all values of Kp are around 1.0 and consistent with
other PK model of irinotecan [20]; therefore, these values
are probably appropriate.
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Estimations of parameters influenced individual varieties
by using CNM with the fixed values of Kp

The other drug-related parameters that are influenced
by individual varieties are estimated by using CNM with
the median values of each Kp. Initial ranges of the pa-
rameters other than Kp are the same as the first CNM
in Tables 3, and 1000 virtual samples were prepared. In
the estimation, CNM required 15 iterations for param-
eter convergence. The parameter estimations were per-
formed for each patient by using the same CNM
algorithm as the first CNM. After the estimations, we
calculated the coefficient of variation (CV) of the param-
eters and selected those parameters with CV =0.3 or
less, since these values showed strong convergences. As
shown in Table 4, parameter #71 (Renal clearance of
CPT-11), #76 (Liver clearance to bile of CPT-11), and
#83 (Liver metabolism from CPT-11 to APC) show
strong convergences in all patients. It appears that these
parameters are important to reproduce the observed
values. CVs of the parameters are slightly higher in pa-
tient 6 than in the other patients. Patient 6 has a lower
body-mass index than the other patients, and suitable
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values of Kp may be different between this patient and
the others. However, further investigation is needed to
clarify the difference.

Distributions of strong convergent parameters

We observe distributions of the optimized values of the
three parameters with strong convergence in all patients.
As shown in Fig. 4, we find the distributions of param-
eter #71 (Renal clearance of CPT-11) are decreased in
inverse proportion to age. On the other hand, #76 (Liver
clearance to bile of CPT-11), and #83 (Liver metabolism
from CPT-11 to APC) do not show the inverse propor-
tion, however, elderly patients with 70 years and over de-
creased the distributions. In clinical practice, renal
function is assessed by creatinine clearance calculated by
Cockceroft-Gault equation including age as negative vari-
able, and it has been reported that glomerular filtration
rate decline with age [21]. Our results are partly in a
good agreement with this clinical knowledge. According
to the product information of irinotecan [22], the
influence of renal impairment on pharmacokinetics of
irinotecan has not been evaluated yet; therefore, the
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influence of changing renal clearance is not clear. Our
finding possibly suggests that the administration of
irinotecan needs to consider a patient’s age, since the
renal clearance of CPT-11 may be decreased by age.
Liver function indicated by parameter #76 (Liver clear-
ance to bile of CPT-11) and #83 (Liver metabolism from
CPT-11 to APC) do not show clear correlations with
age, but the distributions of them are decreasing for eld-
erly patients of 70 years and over. The results are con-
sistent with the previous report that liver function such
as clearance and metabolism by cytochrome is dramatic-
ally diminished in elderly patients of 70 years and over
[23]. The administration of irinotecan should take into
account a patient’s age, since the influence of elderly pa-
tients on pharmacokinetics of irinotecan has not also
been clarified yet [22]. Our findings suggest that the
dose of irinotecan should be adjusted for age. Although
further investigations are needed to confirm the correl-
ation between age, renal and liver function and pharma-
cokinetics of irinotecan, we can get new insights by
observing the distributions of the parameters with strong
convergences in optimized parameter sets obtained by
CNM, especially when using with proper constraints.

Differences in distributions of optimized parameters
between by CNM with and without constraints

In our study, the first CNM was performed without con-
straints for all drug-related parameters to estimate Kp
values for each patient. On the other hand, in the second
CNM, we constrained the fixed Kp with the median
values of the optimized parameter sets with low SSR
(sum of squared residuals) in all patients, in consider-
ation of pharmacokinetics and physiology.

In summary, we observed differences in the distribution
of optimized values of parameter #71, #76 and #83 be-
tween the first CNM without constraints and the second
CNM with constraints. As shown in Fig. 5, the correla-
tions between age and the parameters are not present in
the first CNM without constraints. However, in the sec-
ond CNM with constraints, the correlations are present as
shown in Fig. 4. Furthermore, we divided all patients into
two age groups (below 70 years and 70 years and over),
and we observed distributions of optimized values of the
parameters in the different age groups by both the CNM
estimations with and without constraints (Fig. 6). The
distributions of the estimated parameters by the CNM
without constraints do not show any difference in both
age groups. On the other hand, we can observe that the
distributions of the parameters by the CNM with the
constraints are considerably lower in the second group
(70 years and over) than in the first group (below 70 years).
It may appear that the Kp play a central role in adjusting
the values of the other parameters so that the WB-PBPK
model can reproduce the observed data for each patient,
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in other words, to mask true values of the parameters.
This suggests that CNM with suitable constraints can give
us new insights which are difficult to find when using ob-
served data only. We strongly believe that CNM will be a
more useful tool when using proper constraints based on
knowledge of other disciplines as well as observed data.

Conclusions

Constraint-based perturbation analysis with CNM is a
powerful method to find masked relationships between
parameters. In this study, we have successfully estimated
personal parameter sets fitting to individual physiological
parameters and excretions in irinotecan WB-PBPK model
when assuming that Kp are the same among the patients.
The results indicate strong correlations between age, renal
clearance and liver function in the patients. Constraint-
based perturbation analysis could present new findings
when using CNM with suitable constraints, which
should be guided by clinical background knowledge.
Our methodology can be applicable to any PBPK
models in which patient-dependent and patient-
independent parameters are mixing together.

Additional files

Additional file 1: A simple model for parameter estimations with and
without constraint. We explain our approach of parameter estimation
with or without constraint in this file. (PDF 180 kb)

Additional file 2: The ordinary differential equations in our WB-PBPK
model nomenclature. This file shows the ordinary differential equations in
our model. (PDF 86 kb)

Additional file 3: The median values of Kp from parameter sets with
SSR 0.03 or less after first CNM. This file shows the median values of Kp
from parameter sets with SSR 0.03 or less after first CNM. The values are
fixed in second CNM with constraints. (XLS 46 kb)
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ka: absorption rate constant; kye: kinetic constant for the transit in bile
compartments to small intesting; keces: kinetic constant for the transit from
large intestine to feces; ki ;: kinetic constants for the transit from small
intestine to large intestine; Kp: tissue-plasma partition coefficient;
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