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Abstract

Background: Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its
malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue.
Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various
experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been
developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are
mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely
available to the research community. These attributes make the adoption of models and simulations of even simple
2-dimensional cell behavior an uncommon practice by cancer cell biologists.

Results: Herein, we developed an accurate, yet simple, rule-based modeling framework to describe the in vitro
behavior of GBM cells that are stimulated by the L1CAM protein using freely available NetLogo software. In our model
L1CAM is released by cells to act through two cell surface receptors and a point of signaling convergence to increase
cell motility and proliferation. A simple graphical interface is provided so that changes can be made easily to several
parameters controlling cell behavior, and behavior of the cells is viewed both pictorially and with dedicated graphs. We
fully describe the hierarchical rule-based modeling framework, show simulation results under several settings, describe
the accuracy compared to experimental data, and discuss the potential usefulness for predicting future experimental
outcomes and for use as a teaching tool for cell biology students.

Conclusions: It is concluded that this simple modeling framework and its simulations accurately reflect much of the
GBM cell motility behavior observed experimentally in vitro in the laboratory. Our framework can be modified easily to
suit the needs of investigators interested in other similar intrinsic or extrinsic stimuli that influence cancer or other cell
behavior. This modeling framework of a commonly used experimental motility assay (scratch assay) should be useful to
both researchers of cell motility and students in a cell biology teaching laboratory.
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Background
Glioblastoma multiforme (glioblastoma, GBM) is the
most common and deadly form of brain cancer, with a
patient survival time of about fourteen months with
treatment [4] and an average adult (40+ years old) five
year survival rate of 3.7% [11]. The current treatment for
GBM involves surgical resection (removal), followed by
treatment with radiation and drugs (e.g., temozolomide)
targeting remaining tumor cells. However, GBM cells
aggressively invade surrounding brain tissue from the
start, so that cells invariably are left behind after surgical
resection. These cells also are resistant to adjuvant
chemo- or radiation-therapy, so that they initiate tumor
regrowth. The recurring tumors often are even more
aggressive in their spread, resulting in the extremely
poor prognosis typical of GBM. We have shown that the
neural adhesion molecule L1CAM (L1) stimulates GBM
cell motility and invasion both in vitro and in vivo using a
variety of approaches [1, 10, 17]. If mechanisms control-
ling GBM cell motility and invasion can be modeled and
simulated, then this likely will aid in experimental design
and predicting outcomes of experimental manipulations.
L1 affects GBM cell motility through autocrine/para-

crine stimulation of integrin and fibroblast growth factor
receptor (FGFR) signaling that appears to converge
through focal adhesion kinase (FAK) [1, 10, 17]. Our in
vitro experimental cell motility paradigm primarily has
been the SuperScratch assay whereby an area in a con-
fluent monolayer of cells is wiped or “scratched” clean
with a pipet tip to leave a free edge within the confluent
monolayer from which cells can migrate into the de-
nuded area (see [1, 5]). We then collect sequential im-
ages of the scratch edge over time and subsequently
measure motility rates of the individual cells over that
time period, thus giving highly quantitative data on indi-
vidual and collective cell motility. We have used multiple
experimental treatments to elucidate L1 autocrine/para-
crine stimulation mechanisms, including attenuation of
L1 expression in L1-positive cells, ectopic expression of
L1 in L1-negative cells, blocking L1 with specific anti-
bodies and peptides, overexpression of a dominant nega-
tive form of FGFR, and blocking cell signaling using
small molecule inhibitors of integrins, FGFR, and FAK
in L1-positive vs. L1-negative cells [1, 10, 16, 17]. Based
on our experiments so far, we theorize that transmem-
brane L1 is proteolyzed and released as a large ectodo-
main fragment from cells at the scratch edge to interact
with the cells’ integrin and FGFRs to initiate cell signal-
ing cascades that converge through FAK to stimulate cell
motility and proliferation. This scenario has multiple
variables, but is simple enough to be modeled based on
several rules. We sought to determine if our observed
experimental motility and proliferation behavior of GBM
cells could be modeled accurately by using a set of

simple rules. Also, such a model might be useful for pre-
dicting the outcomes of experiments that have not yet
been performed.
The modeling framework described here is based in

the NetLogo modeling environment and includes release
of a stimulatory protein fragment (L1 ectodomain) from
cells, integrin and FGFR receptor signaling pathways,
and a downstream convergent FAK signaling pathway.
This model is based on experiments done in the Galileo
laboratory showing that human T98G GBM cells express
membrane L1 when confluent, which acts to adhere
neighboring cells, but cleave L1 at the scratch edge. The
cleaved L1 ectodomain stimulates GBM cell motility
through integrins and FGFRs that share a common
downstream effector (FAK). This adhesive component
can be turned off in the model for cells that do not
exhibit this characteristic, and inputs are provided to
control the degree of proliferation, the average cell
velocity, inhibition of individual receptors, and several
other parameters. Several hierarchical rules govern the
motile and proliferative behavior of cells over a set time
course (e.g., 24 h). We have found this model to accur-
ately simulate the experimentally observed behavior of
GBM cell lines in vitro to a surprising degree.

Biological problem/context
We have chosen T98G human glioblastoma cells as the
cells to be modeled and the widely used “scratch” or
“wound” assay as the experimental paradigm. We have
used these cells and this assay in multiple reports of
GBM cell behavior and molecular mechanisms control-
ling it in vitro (see references above). T98G cells when
confluent express the adhesion protein L1CAM (L1) as
a transmembrane protein that homophilically binds adja-
cent cells together. At the scratch edge where cells are
not completely surrounded by other cells, an unknown
mechanism upregulates ADAM10 protease expression in
these cells, which cleaves L1 to release the L1 ectodo-
main (L1ecto) fragment. This serves 2 functions in
T98G. One function is to release the predominant L1-
mediated intercellular adhesive bonds, and the other
function is to allow L1ecto to bind to several integrin
and FGF receptors to actively stimulate motility and
proliferation. We previously found that when cells main-
tain intercellular adhesion via non-cleaved L1 and release
L1ecto concurrently, the adhesive interactions predomin-
ate and inhibit any increase in motility [3]. Some GBM
cell lines may constitutively cleave L1 and release L1ecto
regardless of their state of confluency, so a predominant
adhesive role for L1 would not apply. Thus, we have
allowed for multiple adhesion scenarios in our model.
Our model is based on a dozen assumptions that are

consistent with our experimental findings using estab-
lished human GBM cell lines. These assumptions were
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based on qualitative and quantitative analysis of data
(velocity measurements and movies) from our time-
lapse motility experiments of T98G cell motility. The
assumptions are:

1) There is no significant cell death in these cultured
cell lines.

2) All cells in the population express L1 constitutively.
3) All cells are assumed to be the same size and shape

(defined as “perfectcell” by NetLogo).
4) Behind the scratch edge, cells can move around

somewhat, but are confined in the monolayer by
crowding and do not pile up on top of each other.

5) Some confluent cells (e.g., T98G) also are held
together by cell surface L1 serving as an intercellular
adhesion molecule. In such a case, cell-cell adhesion
via L1 is a predominant factor controlling monolayer
confluency.

6) T98G cells at the scratch edge cleave L1 and release
the L1 ectodomain (L1ecto) fragment.

7) Released L1ecto diffuses away from the cells into the
media for potential paracrine signaling, however,
cells releasing L1ecto are fully stimulated by their
own autocrine L1ecto and do not respond to a
chemotactic gradient.

8) A high local concentration of L1ecto exists around
cells releasing it such that it binds to and saturates
cell receptors to cause autocrine/paracrine
stimulation.

9) Cells at the scratch edge are released from any
intercellular adhesion (e.g., for T98G) and are
positively stimulated to migrate by L1ecto.

10) L1ecto binding to integrin and/or FGF receptors
initiates signaling cascades that converge at FAK to
stimulate cell proliferation and motility.

11)Migrating cells initially are directed away from the
confluent monolayer into areas of less crowding (i.e.,
scratch area), but develop more random
directionality once they progress into an uncrowded
area with open space on all sides.

12) Cells that migrate away from the scratch edge
continue to release L1ecto and undergo continuous
autocrine/paracrine stimulation.

Methods
NetLogo modeling
In our model, we created an environment that simulates a
scratch, or SuperScratch, assay using NetLogo 6.0, which
is a free multi-agent programmable modeling environ-
ment developed at Northwestern University’s Center for
Connected Learning and Computer-Based Modeling
(https://ccl.northwestern.edu/netlogo/). Our simulations
in this environment show how T98G GBM cells release
and interact with L1CAM ectodomain (L1ecto), which

initiates signals to the cells in an autocrine/paracrine mat-
ter to affect cell proliferation and motility. The language
used by NetLogo is simple and straightforward, which is
beneficial when computer science background is limited.
In this agent-based model in NetLogo, cells are the pri-
mary agent in the simulation and rules governing their be-
havior were written to produce recognizable behavior
within the model. The interface allows user control over a
variety of parameters. By using data collected over a range
of experimental conditions (e.g., [1]) one can adjust the
parameters in the model to produce simulated behavior
similar to the experimental behavior observed in the
laboratory.
L1ecto binds to FGFR and integrin receptors immedi-

ately upon being shed, so the model was built under the
assumption of binary signaling through both pathways
leading to motility and proliferation. A connectivity map
(Fig. 1) was developed to show how the signaling path-
ways lead to motility and proliferation in the GBM cell.
Agents representing the GBM cells were created with an
L1 ectodomain and internal pathways through the integ-
rin receptor (A) and fibroblast growth-factor receptor, or
FGFR (B). Both pathways are hypothesized to converge
at the focal adhesion kinase (FAK) signaling pathway
(C). This, amongst other factors and pathways, leads to
observed motility and proliferation in the cell. We chose
only to model this pathway and assumed other pathways
contributed a constant rate of motility (base motility)
and proliferation and had no dynamic effects on mitosis.
However, this could be changed in the code by others.

Fig. 1 Connectivity map of the signaling pathways leading to motility
and proliferation in a GBM cell. A GBM cell is shown as the large green
oval. 1. GBM cell expresses L1CAM cell surface adhesion protein. 2. Cell
releases the L1CAM ectodomain (L1ecto) after proteolysis from the cell
surface. 3. L1ecto autocrine/paracrine binds to integrin (a) and FGFR
(b) receptors to initiate intracellular signaling pathways (4.), which
converge via FAK signaling (c). 5. Resulting cellular behavior is
manifested as increased cell proliferation and motility
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The aforementioned 12 assumptions were translated
into several rules in NetLogo that each cell would follow
in a hierarchical manner:

1) The confluent cells behind the scratch edge are
confined by the limited space between neighboring
cells. With “cellular-adhesion” turned off, they wiggle
because of their constant decisions (every tick) to
look for, and move into, an area of more space.

2) When “cellular-adhesion” is turned on, it creates
links between neighboring cells that act as adjustable
springs holding them together. This is patterned
after the “layout-spring” function.

3) When cells cross the scratch line by displacement or
migration, they start releasing L1ecto ligand and
begin migrating individually with a preference
towards open space.

4) If open space surrounds a cell equally in all
directions with a radius of “√2 * mu * dt” (mu being
the motility, dt adjusting for time behavior), then the
cell moves in a random direction.

5) If there is no open space surrounding a migrating
cell, then the cell becomes stationary until space
becomes available.

6) Decisions of how and where to move are made
independently for each cell for each tick.

Sliders were made for the cell movement random-
ness, L1 ligand randomness, timescale, scratch line,
and to enable inhibition of each pathway by a speci-
fied percentage. Cells that are at the scratch edge at
the start of the simulation are colored green, as these
are the cells that are tracked experimentally and in
the simulation. This provides visual confirmation of
the cell migratory pathways, which in general are to-
wards open space (rarely, cells are seen traveling
backwards both in our simulation and in experi-
ments). All other cells at the beginning of the simula-
tion are colored blue because they are behind the
scratch edge and do not produce L1. As the simula-
tion progresses, the green cells move away and the
blue cells are exposed to the scratch edge. If cells
progress past the scratch edge, they become red and
begin releasing L1, providing a visual check for which
cells should move faster due to lower adhesion and
stimulation by L1.
NetLogo’s interface is set up with a number of features

to allow easy control over the system. Controls are in
blue-green windows and are described in Table 1.
Monitors are tan windows and are described in Table 2.
“Setup” calls the function “setup”, which clears the
screen of the prior simulation and calls the function
“initialize” so the next simulation can be prepared.
“Run” is similar to a play button and will start or stop

the simulation. It continuously calls the “go” function
which contains the logic behind the simulation’s timing
by controlling “ticks”. Ticks are NetLogo’s internal timer,
and each agent in the model undergoes a singular ran-
dom behavior each tick. We have chosen 1 tick in the
model to represent 1 min of time.
Our simulation is set to be able to run for up to 72

simulated hours. This can be adjusted by right-clicking
the “time-scale” slider, clicking “Edit…”, and adjusting
the maximum value. However, if any cell manages to
reach the far right edge of the environment, it will end
the simulation at that point.
The “initialize” function sets up the simulation by per-

forming the following jobs:

1. It resets the tick counter to zero.
2. The initial cell-density is determined based on the

scratch-line position. Based on the size of the
NetLogo grid underlying the simulation, a cell count
is calculated based on how much room is behind the
scratch-line. The entire area of the initial assay size
is calculated based on the scratch-line so that the
initial density can be obtained.

3. It also sets “dt” – a variable that was determined to
produce recognizable behavior in the distances
traveled by the cells upon each tick. This variable,
multiplied by the square root of two, linearly
translates the motility of the cells into a distance in
the simulation that is reflective of actual cell
behavior.

4. For proliferation simulation, an average response
called “avg-resp” is calculated based on the
percentage each pathway is inhibited as specified by
the user at the beginning of the simulation. This is
used to scale the cell cycle to reflect the level of
inhibition.

5. Change in proliferation rates were determined by
examining the proliferation data at the extremes and
interpolating the data in between extremes and
control situations. The “initialize” function next
calculates a variable called “%S”, which calculates the
theoretical percentage of cells in the S-phase for the
next simulation. This can be seen on the monitor
“theo. %S”.

6. Ligand parameters such as “mu-L”, which represents
the speed of the ligand in micrometers per minute,
is set according to the input from the interface
labeled “LigandSpeed”.

7. The variable controlling the proliferation of cells,
“prolif-factor” is the reciprocal of the average
responses through the cellular signaling pathway.
This is so that the cell cycle lasts longer when under
inhibition, preventing mitosis. This will be explained
in further detail below.
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Controls are shown in blue-green windows, and are
named after variables in the code. These can be adjusted be-
fore and during the simulation. These are listed in Table 1.
Tan windows are monitors that display data during the simu-
lation. Charts can be exported to a spreadsheet after the
simulation is complete by right clicking the window and
choosing “export.” These are listed in Table 2.

Initial conditions
Anderson and Galileo [1] used small molecule inhibitors
of integrins, FGFRs, and FAK to inhibit L1-mediated
motility and proliferation on T98G and U-118 MG glio-
blastoma cell lines. Results suggested that intracellular
FAK might serve as a convergence point between signals
initiated by the FGFR and integrin receptors. The model

Table 1 Explanation of Controls (Blue-Green Windows)

Control Parameter Explanation Functions Affected in code

Cellular-adhesion Switch that turns on adhesion feature that tethers cells together with adjustable spring-like
connections. Cells can wiggle or shift around in the monolayer to varying degrees.

update-params

time-scale Slider that chooses the simulated runtime, currently ranging from 1 to 72 h. However, if a cell
reaches the end of the simulation (towards the right) it will end prematurely.

go

randomness Slider that determines the randomness of cell movements. The closer this is to 1, the cell path
will be more random. When closer to 0, the cells move towards open space if possible, which
usually results in straighter forward (east) movement.

cell-diffuse

L-randomness Slider that determines the randomness of the yellow L1 ligand molecule movement. Closer
to 1, L1 molecules have a better chance at random movement, vs. diffusing towards cells
when set near 0.

L-diffuse

show-L? Switch that allows the yellow L1 molecules to be hidden. go

trailers? Switch that will create colored trail markers behind the green cells that were initially at the
scratch edge.

update-params

%_in_S-phase_Base Input by the user to reflect the % of cells in the S-phase under normal, uninhibited conditions. initialize

%_in_S-
phase_Max_Inhibition

Input by the user to reflect the % of cells in the S-phase if all pathways were fully inhibited. initialize

scratch-line Slider that determines the initial cell density of the simulation and the location of the
simulated scratch. The range is from −32 to 32, reflecting the x-coordinates of the
NetLogo grid.

initialize; populate; make-
scratch; L-production

LigandSpeed Input from the user that has been determined to produce visual behavior that represents
the speed of the ligand.

initialize

doubling-time User input, in hours, to specify the average doubling time of the simulated cells. populate; update-params;
update-phase

Base_Motility_A User input, in microns/ min, of the motility rate when the B pathway has been inhibited fully. populate; update-params

Base_Motility_B User input, in microns/ min, of the motility rate when the A pathway has been inhibited fully. populate; update-params

Base_Motility_C User input, in microns/ min, of the motility rate when the C pathway has been inhibited fully Populate; update-params

UninhibitedMotility User input, in microns/ min, of the motility rate for an uninhibited cell. initialize

%DecreaseA These sliders are set based on experimental data. They reflect the % inhibition in motility if
the particular pathway is totally inhibited.

populate; update-params

%DecreaseB

%DecreaseC

A-inhibition These sliders are set to reflect the degree to which that particular pathway is inhibited by a
specific inhibitor.

initialize; populate; update-
params

B-inhibition

C-inhibition

deviation-from-avg This is an arbitrary input that is used to tune the variance in motility to that observed in
experiments.

initialize

clear-cells This button allows for the cells to be removed from the model. Typically, this option would
be used to see the trailers more clearly.

show-cells This button will show the cells in the model after they have been cleared with the “clear-cells”
button.

show-scratch? This switch gives the option to show the scratch line. The line itself is shown by the patches
located to the left of the scratch line, which are colored white when the switch is on.

make-scratch

motility-check? This switch is used to prevent the motility from being a negative number. populate; update-params

S-phase_to_G1? This switch is used to direct the change in S-Phase cells to G1 (on) or G2 (off). update-params
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uses the A pathway to represent the integrin receptor
and the B pathway to represent the FGFR. The C path-
way represents FAK and takes the maximum response
between these two pathways and this translates directly
into the motility rates generated in the model. We as-
sume that L1ecto immediately binds to the external cell
receptors upon being shed.
Each cell has an internal counter to keep track of their

individual cell cycle. After entering the doubling time
and data on the S-phase of the user’s cells into the inter-
face, the model calculates a range across the doubling
time to reflect each phase of the cell cycle. Each cell
initially starts at a random point in the cell cycle. On the
last tick of the cycle, the cell undergoes mitosis and cre-
ates two daughter cells. The daughter cells then begin
their individually timed cell cycles to divide at the end of
the specified length of the cycle.
The model also allows the user to view data on the S-

phase under normal conditions of no inhibition and
under inhibition of one or more signaling pathways. Our
model assumes that proliferation changes linearly with
inhibition (which may not always be biologically accur-
ate). By allowing the user to specify the percentages of
cells in the S-phase under no inhibition and under max-
imum inhibition, the model creates a line using a point-
slope method. As the user changes the inhibition sliders,

the phase boundaries - used within the model to separ-
ate phases on each cell’s cycle – are shifted to reflect the
change in inhibition. The change in the S-Phase corres-
pondingly will affect either the G1 or G2 phase, depend-
ing on whether the S-phase_to_G1? switch is on. If it is
‘on’, the change in the S-Phase will be accounted for in
the G1 phase, rather than the G2 phase if the switch is
turned to ‘off ’.

The Interface
Visual-aspects of the simulation can be found on the
Interface tab. This houses the environment where
agents, or cells in this case, interact. Pressing “Setup”
spawns a constrained number of cells onto the screen in
random places based upon the input parameters. Input
parameters that are to be manipulated by the user are
also located on the Interface. Cells are color coded based
on their status in the simulation as described in Table 3.
In order to change aspects of the simulation, the blue-

green boxes on the Interface can be changed as desired.
The switch, labeled “cellular-adhesion”, is better left off
initially. By switching “cellular-adhesion” on, the simula-
tion time increases dramatically unless the scratch edge
is moved significantly to the left (e.g., about 10% of the
way to the right). This is due to the increased number of
calculations necessary for every cell behind the scratch
edge, which can be minimized by moving the scratch
line towards the left to result in fewer cells behind the
scratch in the monolayer. This has no effect on the cells
at the scratch line or ones moving freely beyond the
scratch line. Thus, this is a minor limitation of the simu-
lation because the cells of most interest (red, orange,
and green) are unaffected. The cellular adhesion feature
is useful with cell lines like T98G for visualizing that
they are held together behind the scratch line by

Table 2 Explanation of Monitors (Tan Windows)

Monitor Explanation

Cell Count Gives the sum total of the cells in the simulation at
any given time.

Avg. Motility Displays the average motility rate, in microns/ min,
of the green cells (initially at the edge).

Time (hours) Shows the time elapsed in the simulation in hours.

theo. % S Displays the variable “%S” so the user can see that
the target number of cells in the S-phase through
out the simulation can be previewed based on
varying the inhibition parameters.

% in S-phase Displays the current % of cells in the S-phase during
the simulation.

Ligand Count Shows the total number of yellow ligand molecules
(e.g., L1) in the simulation.

Cleaved Cells Shows the total number of cells that have crossed
the scratch line.

Uncleaved Cells Shows the total number of cells that have not
crossed the scratch line.

Phase Histogram
(graph)

Illustrates the count of cells in each phase of the cell
cycle with a histogram.

Average Motilty
(graph)

Graphs the average motility of the green cells
(initially at the scratch edge) throughout the
simulation.

Cell Count
(graph)

Displays the counts of the various cells throughout
the simulation.

Phase Cycle
(graph)

Graphs the percentage of cells in each phases of the
cell cycle throughout the simulation.

Table 3 Key to Different Cell Colors

Cell Color Description

Blue cells Blue cells are those initially behind the scratch
line, and reflect cells still under adhesion from L1.

Green cells Green cells are those that are initially at the
scratch line, and reflect cells that begin the
simulation with L1 being cleaved and released
and allow the cell to interact with the cleaved
L1 to stimulate motility.

Red cells Red cells are those that were blue, but have
passed the scratch line because the cellular
density surrounding this particular cell allowed
them to do so (i.e., move to the right because
cells initially at the scratch line moved to the
right into open space).

Periwinkle, lime, and
orange cells

Cells that are created through mitosis during
the simulation will be the color of the parent
but slightly lighter (e.g., division of a blue cell
results in one daughter cell remaining blue,
while the other is a lighter periwinkle color).
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adhesive bonds, and that those bonds are broken as cells
migrate into open space.
Experiments that would run for 24 h can be simulated

in under five minutes (when “cellular-adhesion” is
switched off ). The time scale for the simulated
experiment can be changed with the slider labeled
“time-scale”, which allows adjustment of the simulated
experiment from 1 to 72 h. This window was chosen
based on run-time limitations, but can be adjusted by
right-clicking the slider and choosing “Edit…” as de-
scribed above.
The interaction of L1 with GBM cells was assumed to

follow the hypothesized pathway described above. So
that the model could easily translate to other research
scenarios, the pathways were renamed so that they were
not specific to the GBM-L1 interaction. The key to our
connectivity pathway is as follows:

� Receptor A mirrors the integrin receptor and its
pathway.

� Receptor B mirrors the FGFR receptor and its
pathway.

� Receptor C mirrors the FAK receptor and its
pathway of convergence.

Each pathway can be inhibited based on percentage.
These are selected with the sliders located on the bot-
tom of the interface labeled “A-inhibition”, “B-inhib-
ition”, and “C-inhibition”, respectively. The user should
note that the inhibition sliders directly affect both the
motility and proliferation rates of the cells. Exact effects
are discussed later.
The number of cells spawned in each simulation is

dependent upon where the user sets the theoretical
scratch line. When this line is set using the slider below
the environment labeled “scratch-line”, NetLogo calcu-
lates an appropriate number of cells to fill the virtual
culture dish behind the line with a near confluent layer
of cells. The total number of cells can be found in a tan
window on the left side of the screen, which updates
continuously throughout the simulation as more cells
are born. The concentration of cells has been pre-
determined in the code in order to reflect a nearly con-
fluent cell monolayer, but this can be altered for systems
that may require a different cell density.
The left-hand side of the Interface also shows more in-

formation and allows more parameter manipulation.
These all pertain to the parameters unique to our
experiment, such as base motility values. “LigandSpeed”
allows one to adjust how fast the ligand moves in the
simulation. This speed is not reflective of a true meas-
urement, but is selected arbitrarily in order to create a
visual representation of ligand movement. Our Ligand-
Speed is set at 0.25, which allows for L1 to diffuse but

remain primarily concentrated around cells that are
interacting with the ligand.
Cell doubling-time can be based upon the type of cell

being studied. Many cultured cell lines, including GBM
cells, are observed to double about once a day, which we
have reflected in our simulation. Again, this can be ad-
justed by changing the “doubling-time” parameter lo-
cated on the interface.
Windows labeled “Base_Motility_A”, “Base_Motility_B”,

and “Base_Motility_C” allow the user to set a baseline
value for movement speed (in microns per minute)
through pathways A, B, & C, respectively. Experimental
data [1] showed uninhibited movement through solely the
A (integrin) pathway (with B inhibited) to be about
0.15 μm per minute, and through the B (FGFR) pathway
(with A inhibited) to be about 0.13 μm per minute. Note
that Base_Motility input values must be set lower than the
UninhibitedMotility value. Also, Base_Motility values for
pathway A or B must be set greater than or equal to the
value set for pathway C.
Next, two input windows labeled “%_in_S-phase_Base”

and “%_in_S-phase_Max_Inhibition” allow the user to
customize the percentage of cells in the S-phase. Experi-
mental data from Anderson and Galileo [1] showed unin-
hibited T98G cells are 28% in S-phase, which drops to 8%
under maximum inhibition. For the user with this data
readily available, this is a small but influential part of the
simulation that allows for more realistic trials, since prolif-
eration can also be lowered. However, we have added only
one input of lowered S-phase and not separate ones for
each inhibition pathway.
On the bottom of the interface, a number of tan win-

dows are found beneath the input windows, where infor-
mation that updates throughout the simulation can be
visualized. “Average Motility” tracks the mean speed of
the green cells in the simulation, so it can be seen how
fast the initially scratched cells move throughout the ex-
periment, as done in our cell tracking experiments using
MetaMorph software. All this data can be exported to a
spreadsheet upon completion of a simulation by right
clicking the desired window, choosing “Export…” and
then saving the given .csv file.
“Theoretical % in S phase” displays the calculated per-

centage of cells that should be in the S phase at a given
time equal to the user’s input parameters. This will
match the “%_in_S-phase_Base” under no inhibition,
and will match “%_in_S-phase_Max_Inhibition” when
under max inhibition.
Next, “% in S-phase” displays the actual percentage of

all cells in the S-phase at the current time step.
“Uncleaved Cells” reports the number of blue and peri-
winkle cells behind the scratch line, while “Cleaved
Cells” reports the number of red and green cells that
traveled beyond the scratch line, including daughter
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cells. Finally, “Ligand Count” shows the number of yel-
low L1 molecules shown in the modeling world at the
current time step.
Underneath the simulation, the average motility of

the green cells is plotted over time. Next to this
graph, there is a graph of the cell counts for each cell
population over time. The legend shows the colors of
each cell population. A phase histogram lets the user
see the total number of cells in each phase of the cell
cycle at any given moment. Cell cycle data also is dis-
played on the right as the relative percentages of the
total cell population in each phase of the cell cycle
over time (“Phase Cycle”).
A “deviation-from-average” input allows the average

motility value of the green cells, as plotted on the histo-
gram, to deviate over time, which occurs in experimen-
tally collected data. A value of around 0.3 gives a
graphical deviation similar to that observed experimen-
tally. However, if this value is set too large, especially
under inhibition, the average motility values can go
negative because of the way they are calculated. In this
case, the baseline will shift up along the Y-axis to denote
where zero occurs. A “motility-check?” switch will pre-
vent motility from going negative. It can be left on, with
one exception: if the pathways are fully inhibited (i.e., if
the motility is low) and the “deviation-from-avg” is
greater than about 0.5, the Average Motility is much
larger than it should be, which can cause the cells to not
follow their typical behavior. If the switch is turned off,
however, the cells follow their expected behavior,
although motility can be negative. In most biological
cases, this should not be an issue since the deviation
from average is not usually that large. To visualize the
most accurate cell velocity under all conditions, one may
wish to keep the “motility-check?” switch off and just
ignore any few negative peaks.

NetLogo info
Under the Info tab, one can find standard NetLogo
documentation provided by the creator of the model.
Headings include What is it?, How it works, How to use
it, Things to notice, Things to try, Extending the model,
NetLogo features, and Related models. Descriptions have
been entered under these headings for this model. They
will be useful when this paper is unavailable to the user.

The code
The first blocks of code define what the simulation is
working with. We define agent breeds, called “turtles” in
NetLogo, to be cells and ligands (Ls). The breed
“trailers” is designated for the trailing lines that follow
the movement of the cells. Next, we define what the
cells and ligands own – their personal parameters. Below
is a more detailed description of the internal parameters.

Cells:

� A, B, C
○These are all calculated based on the base
response by the cell to each individual pathway
(found through experimental data) and the
inhibition percentage specified by the user at the
Interface.

� Cycle
○This is a number between 0 and the doubling
time of the cell, as specified by the user at the
Interface. At each time step, “cycle” is incremented
by one. A threshold for each phase of the cell
cycle is calculated based upon the doubling-time
and user specifications about S phase percentage.
Upon reaching a new phase, “phase” is updated
accordingly.

� Phase
○Here is the name of the cell’s current phase in
the cell cycle. This is updated based on the
aforementioned “cycle” parameter. If “phase” is
equal to mitosis or the M phase, a daughter cell is
spawned.

� Mu
○The speed of the cell in microns per minute.
This is chosen to be the minimum rate of motility
through the A, B, or C pathways.

� Released?
○This is a Boolean (true or false) value that tells
us if the cell has cleaved L1 or not. If “released?” is
true, the cell will be red or green. Otherwise, it
will be blue.

� trailerColor
○This parameter is randomly generated at the
beginning so that all the initial cells have a
different trailer color.

The grid in the simulated world creates patches, which
hold information regarding the concentration of cells
and concentration of ligand on each patch. These are
used in calculations based on cellular and L1 density.
Globals are variables that are used throughout

calculations and are not simulated concretely in the
environment. Most are self-explanatory, such as cell-
count and initial-density, and are typically used for
values that are reported in the Interface.
The first function is called when the user presses the

“Setup” button. This is under “to setup”. This function
clears the world of its current inhabitants, and sets the
shape for the upcoming simulation. It then makes a call
to the function “initialize”.
“Initialize” readies the world for the next simulation. It

resets the tick count, which is NetLogo’s internal timer.
For this simulation, 60 ticks are equal to 1 h. “Initialize”
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handles many of the front-end functions of the simula-
tion, as described more detailed as follows:

� The cell count is calculated through the size of the
world and the location of the scratch line.

� Cellular response to each pathway is recorded based
upon the user’s initial inputs.

� The threshold for cell-cycle phase transitions, as
specified earlier, is calculated next. This accounts for
the user’s input parameters such as S phase
percentages and inhibition.

� Finally, initialize calls “populate” and “make-scratch”
○ “populate”
� Creates the number of cells specified by the

calculation in “initialize”
� Looks for open space to place cells
� Sets initial internal cellular parameters
○“make-scratch”
� Checks for cells on the scratch line
� Changes color to green and Boolean “released?”

to true
� Creates visual line for scratch if “show-

scratch?” switch is turned on

“Go” is the function called when the “Run” button is
pressed on the Interface. The arrows on the “Run” but-
ton tell us that it continually calls the “go” function on
each tick. This function handles most of the work
performed during the simulation. Upon each tick, “go”
does the following:

� Counting parameters are updated
○ If all the cells have inexplicably died, the
simulation halts

� Patches are told to update their density through a
function call to “update-density”
○ This function counts the number of cells and
ligands on each patch and updates their
concentration.

� Cells are told to do three things:
○ “update-params”
� This function checks if the cell has released

L1 or not. Motility and phase are updated
based upon the cell’s location, neighboring
densities of cells and L1, and whether or not
they have released L1 or not.

○ “cell-diffuse”
� Based upon a random number generated, the

cell either takes a random step in a random
direction, or it moves towards areas of lower
cellular density.

○ “L-production”
� Here we decide if the cell will release a new L1

molecule to the world. The cell will do so if it

has been released from adhesion (“released?”
equals true).

� The first check is if the cell’s position is past
the scratch line. Then, it ensures that there are
less than two cells in the path ahead of the cell.
If there are less than two cells, there is a 5%
chance of the cell creating up to four new L1
molecules.

� Next, ligands are told to move based on the
specified LigandSpeed.

� Finally, it checks to see if the number of ticks has
reached the end of the user’s specified time-scale. If
it has, the simulation halts.

Results
Although our particular model was developed using data
from the Galileo laboratory, the agent-based modeling
framework was created with parameters that could be
tuned to reflect data collected in another laboratory or
during hypothetical situations. This will allow users to:

1) Examine other cell systems that may use a similar
pathway by adjusting parameters.

2) Manipulate the model to reflect in vitro scenarios
after further research.

3) Simulate planned experiments to analyze results
against a baseline experimental scenario.

Several simulations are shown below at initial set up
and end endpoints of cell motility. The simulations rep-
licate the data collected in the Galileo laboratory (e.g.,
[1]) to a surprising degree. Fig. 2 shows cells initially
ordered along the scratch edge before any motility has
been simulated, as seen in the main simulation window.
This is achieved by pressing the Setup button. The green
cells are those along the scratch edge and are the ones
that will be tracked for motility and proliferation. The
blue cells are behind the scratch edge and do not get
tracked, except as a component of the Cell Count graph.
The remaining figures show example simulations in

several environments at the end of the simulations.
Figure 3 shows the endpoint of a 24 h simulation of the
setup shown in Fig. 2, showing cells and ligand. Figue 4
shows the endpoint of another simulation run under the
same settings, but without showing ligand or cells.
“Show-L?” was turned off and cell “trailers” were turned
on before the simulation was run, and the “clear-cells”
function was engaged after the simulation ended. This
allows the paths taken by the initial green cells to be
seen clearly as different colored trails without being ob-
scured by the numerous daughter cells or ligand. One
will notice that turning on the cell trailers slows down
the simulation as it proceeds to accommodate the in-
creased tasks. Note the farthest distance to the right that
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each individual cell travels is highly variable, which cre-
ates a very uneven edge at the end of the simulation.
This is an accurate reflection of cell behavior that we
have observed in our SuperScratch assays, which makes
conventional scratch assay measurements by drawing
straight lines very inaccurate, as we pointed out in Fotos
et al. [5].
Figure 5a shows the endpoint of a simulation with

intracellular signaling pathway C (FAK) fully inhibited.
Shown are the cells along with their pathway trailers.
The differences in the trail lengths can be seen more
clearly in Fig. 5b without the cells shown. Note that cells
have migrated less far to the right than in Figs 3 and 4
due to inhibition. Also note that proliferation is de-
creased, and that a few values on the Average Motility
graph went negative, which caused the zero line to move
up on the Y-axis. Also note in Fig. 5a that several cells
without trails are at the far right leading edge (i.e., the
tracked cells at the initial scratch edge are not always
those that move the farthest to the right). This is be-
cause each cell makes motility decisions based on rules
that are independent of the decisions of other cells.
Here, a few light green daughter cells (no trails) hap-
pened to migrate farther than any of the dark green cells
(with trails) being tracked. This is an accurate reflection

of cell behavior that we have observed in our Super-
Scratch assays.
Figure 6a shows the beginning of a simulation with

the “cellular-adhesion” switch turned on, after 10 min
has elapsed on the time indicator, showing cells and
ligand. Note the interconnections between cells be-
hind the scratch line, but lack of such adhesions for
the green cells at the scratch edge. Also note that the
graphs and tan indicator windows all show values up
to that point. Figure 6b shows the endpoint of this
simulation after 24 h. Running such a simulation with
the cellular adhesion function engaged takes consider-
ably longer than with adhesion off. Note that an
initial green cell and two green daughter cells mi-
grated back into the confluent monolayer (i.e., to the
left; white arrows). These cells often re-establish ad-
hesive connections with surrounding cells in the
monolayer. This infrequent cell migration back into
the monolayer is an accurate reflection of cell behav-
ior that we have observed sometimes in our Super-
Scratch assays, as we illustrated in Fotos et al. [5].
Figure 7 shows the endpoint of a simulation with

cellular-adhesion on, cell trailers on, without showing
cells or ligand. Interconnections between cells in the
confluent monolayer can be seen clearly, as can the trails

Fig. 2 Initial arrangement of cells. The entire NetLogo graphic interface is shown. The cells at the scratch line are represented by the green cells
at the edge of the cell monolayer of blue cells. The slider control for the position of the scratch edge is indicated. A white scratch line also can
be switched on to denote where the green cells were located initially as the simulation proceeds. Cells will proceed to migrate into open space.
Input controls are shown in the blue-green boxes
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of the cells that migrated away. This illustrates the versa-
tility of our simulation program not only to change mul-
tiple parameters, but also to visualize those aspects on
which one wishes to focus.
Our simulation gives velocity data for each tracked

cell every minute (tick). However, images of actual
cells are acquired and tracked every 5 or 10 min
using MetaMorph software in the Galileo laboratory.
To ensure that the average motility (microns/min.)
does not change regardless of 1, 5, or 10 min aver-
ages, the data from the average motility graph after a
simulation was exported into Microsoft Excel, and av-
erages were calculated using velocity values at time
intervals of 1 min (all values), 5 min, and 10 min. As
can be seen in Fig. 8, the averages using values from
the three different time intervals resulted in identical
averages equal to the value entered into the simula-
tion (0.23 μm/min.). This is not the same way that
tracking actual cells in MetaMorph is done, as that
program calculates the velocities of the cells based on
their absolute positions at the specified interval (e.g.,
5 min.). NetLogo does not store the absolute positions of
the cells, so our calculations at 5 and 10 min intervals
could not be calculated from the positions at time 0, 5, 10,
etc. as is done in MetaMorph. Nonetheless, this compara-
tive analysis at different time intervals revealed that the

averages are correct regardless of the time interval, as is
found experimentally.

Life as a blue cell
Following is a description of the environment that gov-
erns the behavior of a blue cell within our simulation.
Each cell is an independent model, which is what makes
this an agent-based model. On every tick, NetLogo
updates each individual cell. The blue cells are those that
are initialized behind the scratch line. Each is created
with different initial parameters. The “A” pathway is
calculated to be a random number within a range.
Variability is a variable in the model that reports the
“deviation-from-avg” that is manually entered. The range
mentioned to calculate the speed through the A pathway
is the calculated motility of A (depending on the path-
way’s inhibition) plus or minus the variability. If A is
uninhibited, the value of its motility is the user-defined
“UninhibitedMotility”. However, if the pathway is fully
inhibited, the motility of A is the user-defined “Base_-
Motility_A”. The cells are also randomly assigned to a
phase of the cell cycle, with the phase distribution simi-
lar to that of experimental values. Since the cell is blue,
it has yet to shed its L1 ectodomain, and therefore has a
variable noting this.

Fig. 3 Cells at end of 24 h simulation. Shown is the same simulation set up in Fig. 2 after running for 24 h. Cells at the original scratch edge
(green) have migrated into the open space along with their daughter cells (light green), blue cells that have crossed the scratch line (red), and
their daughter cells (orange). Cells that have passed the scratch line release L1ecto (yellow dots). Outputs are shown in the tan boxes and graphs
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On each tick, cells first are told to “update-params”, a
function that updates the parameters of each cell. Look-
ing at the block following the spring constant code:

On each step, a blue cell’s A and B values have a 50 %
chance of fluctuating slightly by adding or subtracting
two different random numbers within the variance
range. Next we increment the cell’s internal cycle, and
then call “update-phase”.
“Update-phase” checks the cell’s internal cycle counter

against the calculated ranges for each phase in the cell

cycle. If the cell is in the M-phase, the function mitosis is

called, which creates a new daughter cell if there is open

space for it. This would be a periwinkle cell, to signify that

it was not there at the beginning of the simulation.
Next, the blue cell calls the function “cell-diffuse”.

This handles the cell’s movement. It first looks at the
eight surrounding patches and checks to see if any of
them are empty. Empty patches in the neighborhood
are stored in the cell’s memory for this tick. Next, the
cells check if the patch behind it has more than two
cells. If this is the case, the cell will move forward to
allow more room for the dense cells behind it.
Next, assume the variable “randomness” from the

interface is set to a base value of 0.10. This signifies that
there is a 10% chance that the blue cell will take a ran-
dom walk in any direction at the speed mu that is just
the maximum between the variables A and B with inhib-
ition accounted for. There is a 90% chance that the cell
will turn to face the surrounding area of least density
and move towards open space at the same calculated
motility rate.
Now that the cell has moved, it must be analyzed from

the new position. In the function “L-production”, it is
checked if the cell has moved past the initial-scratch line,
and if there are any cells in front of it. If it is past the line,
and there are less than two cells ahead of it, the cell will
shed the L1 ectodomain and change from blue to red. The

Fig. 4 End of 24 h simulation with cell trails but without cells. Shown is another simulation under the same settings as in Fig. 3, but with “trailers”
turned on and “show-L?” turned off before the simulation was run. After the simulation was run, “clear-cells” was engaged to remove display of
all cells. This results in clear visualization of the trails of the original green cells at the initial scratch line
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cell now will behave according to different rules. It will
hatch 4 yellow L1 molecules into the NetLogo environ-
ment when it becomes red. If the cell moves back into the
pack of cells undergoing adhesion, then it will become
blue again as it will regain its adhesion properties.

Discussion
Herein, we have developed a rule-based simulation that
models the migratory and proliferative behavior of GBM

cells in our commonly used 2-dimensional SuperScratch
assay (see Additional file 1 for NetLogo file). The conven-
tional “scratch” or “wound healing” assay is one of the
most widely used assays for cell migration. Undoubtedly,
this is because of its simplicity, but there are several limi-
tations and drawbacks. That is why we developed the
SuperScratch assay whereby the cells along the scratch
edge were tracked individually and precisely in Fotos et al.
[5] where we compared the two assays directly. In the
conventional scratch assay, and any 2-dimensional

Fig. 5 Cells at end of 24 h simulation with C pathway fully inhibited. A simulation was run under the same conditions as in Figs. 3 and 4, but
with pathway C fully inhibited by engaging the “C-inhibition” slider all the way to the right (100%). a. “trailers?” were turned on, and “show-L?”
was turned off before the simulation was run. b. “clear-cells” was engaged to leave only the cells trails. Cell migration was clearly reduced, as
evident by the shorter cell trails (compare to uninhibited cell trails in Fig. 4)
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motility assay that measures an advancing front of cells
imprecisely (e.g., by drawing a line), advancement of the
front is a combination of active migration and passive fill-
ing of space by newborn daughter cells. In the Super-
Scratch assay and its simulation presented here, the
movement of individual cells is measured, and not the fill-
ing of a gap. Individual cells can be affected by their neigh-
bors, but the filling in of a gap is not measured. Usually,
active migration by cells originally at the scratch edge is

faster than filling in space by cell division. In the 3-
dimensional Transwell motility assay, cell division is also
irrelevant because it measures only those cells that actively
squeeze through small membrane pores to the other side
in response to a chemotactic signal. Thus, that assay is
fundamentally different in that cells must respond to a
chemotactic signal and then squeeze through small pores,
which arguably assays several other cell properties beyond
simply unconstrained motility.

Fig. 6 Simulation with cellular adhesion on. “cellular-adhesion” and “show-L?” were turned on before the simulation was run. a. Simulation was
stopped after only 10 min had elapsed on the Time indicator box. Note the intercellular connections (lines) between the blue cells behind the
scratch line. Green cells are not bound by adhesive bonds and are beginning to release L1ecto (yellow dots). b. At the end of the simulation,
many cells have migrated beyond the scratch line into open space and are releasing L1ecto. Cells behind the scratch line remain interconnected
by adhesive bonds. Note that 3 green cells have migrated back into the confluent monolayer (white arrows). Such cells often reestablish adhesive
bonds with neighboring cells
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Mathematical models for GBM previously have been
developed to describe cell proliferation and/or motility
in vitro [8, 12, 13, 15] or cell and tumor behavior in vivo
[7, 9, 14, 18]. However, these models either have been
aimed at very specific aspects of cell behavior, have been
mathematically complicated (e.g., use multiple differen-
tial equations and partial differential equations), and/or
use software not readily available to the public. We
sought to develop a model that 1) would accurately
account for the motility behavior of GBM cells that we
observe under different experimental conditions in vitro
in two dimensions, 2) was based on software that was
freely available to the public, 3) could be coded so that
each individual cell followed several simple rules to gov-
ern their motility behavior decisions, 4) could simulate
cell behavior under various conditions that were adjust-
able by the user, 5) had parameters that were adjustable
easily through a simple graphic interface, and 6) could
have the code modified easily by other investigators to
suit their particular needs.
Several other previous reports that model the effects

of cancer cell behavior and signaling are worth mention-
ing for comparison. None of these models, however,
fulfill all of the abovementioned criteria. A review of
GBM models by Hatzikirou et al. [6] grouped different
types of GBM modeling into four categories: 1) early

Fig. 8 Comparative analysis of average motility at different time
intervals. A simulation was run at the standard values shown in Fig.
3, data from the average velocity graph was exported into Microsoft
Excel, and average velocities were calculated using values at time
intervals of every 1, 5, and 10 min (ticks). Average motilities were
plotted. Error bars = s.e.m.

Fig. 7 End of 24 h simulation with cellular adhesion on but without cells. Simulation was run with “cellular-adhesion” and “trailers” turned on, but
“show-L” turned off. At the end of the simulation, “clear-cells” was engaged. Clearly visible are the pattern of interconnections of the cells behind
the scratch line along with the trails of the migrated green cells that initially were along the scratch edge
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glioma tumor growth, 2) invasion of brain by tumor cells
(simulates invasion into nonhomogeneous brain struc-
ture), 3) tumor modeling of genetic alterations and their
macroscopic effects (these models are interested in what
microscopic changes are required for a given macro-
scopic behavior), and 4) modeling therapies (mainly
tumor resections effects and chemotherapy). Our model
would fit into the first category. Out of the three papers
compared in this category, only one was an agent-based
model of GBM. The movement of the cells in the agent-
based model was defined by the nutrient and toxic
concentration, and the mechanical confinement of the
neighboring spaces in the lattice. There was no stimula-
tion by an external molecule, as in our model.
Tanaka et al. [14] developed a hybrid compartment-

continuum-discrete (CCD) model to model tumor devel-
opment in vivo in two or three dimensions. Simulations
were performed using MATLAB software (MathWorks,
Natick, MA). They modeled a developing tumor to have
three compartments: a necrotic core, a ring of proliferat-
ing cells, and an outer ring of proliferating cells from
which cells become migratory at the tumor surface. Indi-
vidual characteristics of migratory cells were stored,
which affects the probability that they will proliferate or
migrate. The cells within the tumor mass were modeled
as groups of cells. This minimized the computational
requirements for the model. This hybrid model appears
to accurately simulate in vivo growth of a GBM tumor
and general motility and invasive cells. Our model solely
simulates a two-dimensional cell monolayer situation,
but allows for easy manipulation of signaling pathways
that affect motility and proliferation through the user
interface.
A model by Swanson [13] is based off of Chicoine and

Silbergeld’s [2] two dimensional radial dish assay experi-
ments. It is a diffusion based model where their goal was
to look at the motility and proliferation of the GBM cells.
Consequently, they “poisoned” the cells to prevent mitosis,
but it is assumed that the “poison” does not affect the mo-
tility of the cells. They ultimately measured the density of
cells vs. the radial distance from the center at different
time intervals. The results of Chicoine and Silbergeld sug-
gest a minimum linear velocity of 4.8 μm/h in vivo. The
mathematical model is simply (∂c/∂t =∇ (D(x)∇c) + ρc),
which is the sum of the diffusion of the cancerous cells
and the net proliferation of the cancerous cells. This
model does not, however, have a graphic user interface or
allow for easy changes to cell conditions.
An in vivo 3-D model of brain cancer was developed

by [18] to simulate glioma cell motility, proliferation,
quiescence, and apoptosis. A four quadrant model of a
brain slice was fed glucose and transforming growth
factor alpha and monitored for volumetric tumor
growth, tumor heterogeneity, expansion rate per tumor

region, expansion rate per clone, phenotypic spectrum
per tumor clone, and molecular phenotype switching
profiles. Chemotaxis was modeled using a diffusion
based system of differential equations, but has a param-
eter that allows for stochastic movement. The glioma
cells mutate through a linear progression throughout the
simulation, with different sensitivities to the environ-
ment based on the cell’s progression towards a new
clone. Cells are modeled individually and have equations
governing all aspects of cell life, but stochastic parame-
ters are incorporated based on random probability. This
model was implemented in Java, combined with
in-house developed classes for representing molecules,
reactions and multi-receptors as a set of hierarchical ob-
jects. The code appears to be unavailable.
Kim et al. [9] developed a complicated multi-scale

model that models a population of glioma cells that ei-
ther proliferate or migrate depending on the availability
of glucose. They used a system of three ODEs (ordinary
differential equations) for the miR-451-AMPK-mTOR
intracellular signaling pathway, which is dependent on
glucose levels. The molecule levels or activation of each
of these species in a cell determines whether it will be in
the proliferative state or in the migratory state. The
ODEs utilized three interconnected ODEs, only the first
of which was directly dependent on an extracellular mol-
ecule (glucose). They used a lattice-free cell-based model
which models each cell as an ellipsoid that applies and is
subject to forces from other cells and the extracellular
matrix. In order for a cell to move, it must apply a force
to its surroundings. They used a PDE (partial differential
equation) model for the distribution of extracellular
molecules such as oxygen, glucose, chemoattractants,
extracellular matrix (ECM), matrix metalloproteases,
and chemotherapeutics. The code for this model does
not appear to be available.
Based on these and other GBM models found, there

has not been a published paper that uses L1 stimulation
of GBM cells or the NetLogo computational platform.
Our modeling platform is unique in its simplicity, accur-
acy, ease of use, and ability to be adapted by others.
NetLogo can operate via rule-based code as well as
mathematical code and so they are both incorporated in
this model (see NetLogo tutorials for specifics). Sensitiv-
ity analysis can be performed fairly easily by changing
parameters and observing significant deviations from
base behavior. It is possible to write code to run multiple
simulations rather than look at each case interactively
with slider bars. Although actual experiments can be
conducted to find parameters, one can use qualitative
feedback to improve on parameter guesses.
Our model of GBM cell motility and proliferation is

fundamentally different from those above because it is
based on a set of simple rules and probabilities that
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determine the behavior of the agents (i.e., cells and
L1). In doing this, simulations run with a particular
set of inputs are very similar in their overall outcome,
yet each simulation is unique because the behavior of
individual cells is independently determined at each
time point (tick). Although this stochasticity might be
viewed as an inaccuracy when compared to a model
based on equations, this characteristic makes the
modeling platform more representative of biological
systems, where stochasticity is a significant compo-
nent. We believe that the presented set of hierarchical
rules reflects, and is sufficient to explain, the GBM
cell behavior that we have observed in SuperScratch
assays in the laboratory. These simulations also likely
will make predictions of cell behavior that we have
yet to test experimentally, which might allow esti-
mates to be drawn before conducting experiments.
The main drawback of our model is that it is limited
to a two-dimensional cell culture paradigm. However,
this arguably is also its strength for those interested
in modeling cell motility and proliferation in a dish.
Specifically, our initial modeling behavior is deter-

mined by basing the rules primarily on one cell type
(T98G). However, rules in the code can vary with differ-
ent cell types. A simple example would be to uncouple
proliferation from motility in the code, as pointed out
above, to allow proliferative foci potentially to form if in-
sufficient space for migration occurs in specific areas
and not others. Another example would be to have two
different adjacent cell areas, where one has cells
releasing a ligand (e.g., L1ecto) and the other has cells not
releasing it, but responding to the gradient from the
nearby releasing cells (paracrine). The paracrine respond-
ing cells could be set up to use different rules and/or
equations from the autocrine stimulated releasing cells.
One could even create subpopulations within each of the
two populations, thus creating a very complex model of
cell migration and proliferation, which could generate be-
haviors that could be tested experimentally in the labora-
tory. We have begun to develop such modifications of our
framework but are only at the beginning stages.

Conclusions
We developed a simple rule-based model that appears to
accurately depict glioblastoma cell behavior during
SuperScratch assay experiments performed in the labora-
tory. It is tempting, therefore, to speculate that actual
observed cell behavior in a dish might be governed by a
similar, if not the same, set of rules. We realize that it is
not known whether or not the computational behavior in
our simulations actually reflects correct implementation
of biological processes. Proving that, one way or the other,
is well beyond the scope of this work, and likely is not
even determinable with the current knowledge of how

cells work. That our model has built-in stochasticity is a
strength in that this reflects biological systems. How one
might move forward could be to alter the number and
connectivity of critical variables, to alter assumptions and
the rules based on them, and to change various parame-
ters. This could be done both to develop simulations that
better fit the observed behavior of other cell types, and to
make predictions of how alterations of variables or param-
eters will result in changes in observed cell behavior.
By utilizing NetLogo, this model is freely available for

interested investigators to examine, use, and modify to
suit their own individual purposes. The simplicity behind
the NetLogo interface is attractive, as it makes alter-
ations by others a relatively easy task. Information about
how the model works is explained herein and also can
be found under the “Information” tab of the model. This
model should be useful to researchers of cell motility in
vitro and to instructors and students of cell biology cov-
ering cell motility. It is hoped that our model and simu-
lations can be used in cell biology teaching labs by
students alongside their performing commonly used cell
culture scratch assays.

Additional file

Additional file 1: NetLogo file of the modeling framework described in
this article that simulates autocrine/paracrine stimulation of glioblastoma
cell motility and proliferation by L1CAM in 2-D culture. The NetLogo soft-
ware can be downloaded at https://ccl.northwestern.edu/netlogo/.
(NLOGO 28 kb)
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