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Abstract

Background: Breast cancer and ovarian cancer are hormone driven and are known to have some predisposition
genes in common such as the two well known cancer genes BRCA1 and BRCA2. The objective of this study is to
compare the coexpression network modules of both cancers, so as to infer the potential cancer-related modules.

Methods: We applied the eigen-decomposition to the matrix that integrates the gene coexpression networks of
both breast cancer and ovarian cancer. With hierarchical clustering of the related eigenvectors, we obtained the
network modules of both cancers simultaneously. Enrichment analysis on Gene Ontology (GO), KEGG pathway,
Disease Ontology (DO), and Gene Set Enrichment Analysis (GSEA) in the identified modules was performed.

Results: We identified 43 modules that are enriched by at least one of the four types of enrichments. 31, 25, and 18
modules are enriched by GO terms, KEGG pathways, and DO terms, respectively. The structure of 29 modules in both
cancers is significantly different with p-values less than 0.05, of which 25 modules have larger densities in ovarian
cancer. One module was found to be significantly enriched by the terms related to breast cancer from GO, KEGG and
DO enrichment. One module was found to be significantly enriched by ovarian cancer related terms.

Conclusion: Breast cancer and ovarian cancer share some common properties on the module level. Integration of
both cancers helps identifying the potential cancer associated modules.
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Background
Despite of decades of intensive study and substantial
progress in understanding breast cancer and ovarian can-
cer, these two diseases remain the most prevalent malig-
nancy in women, and the important causes of death
in women. Among solid gynaecological tumors, breast
cancer is the most often diagnosed tumor while ovar-
ian cancer is the most deadly gynaecological neopla-
sia. Both breast and ovarian cancer are hormone driven
and are known to have some predisposition genes in
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common. The major genes associated with susceptibil-
ity to breast and ovarian cancer are the two well-known
high-penetrance cancer genes: BRCA1 and BRCA2
[1–3]. However, mutations in these genes account for only
a very small percent of all breast cancers and ovarian can-
cers. Other genes such as TP53, PTEN, and STK11/LKB1,
are even less common causes of breast and ovarian cancer
[4]. Despite tremendous efforts to conquer such malig-
nant diseases, research on studying the mechanism of
cancer development and developing effective preventive
measures is still a hot topic.
The high speed development of high-throughput tech-

nologies such as next generation sequencing of the human
genome, gene expression microarrays, identification of
the changes of copy numbers has dramatically accelerated
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the study aiming at predicting and curing such diseases.
Many works have been published to address the topics
on associated susceptibilities, potential biomarkers, can-
cer predictions and so on [5–19]. Several of them put
breast cancer and ovarian cancer together in their studies
[5–10]. These works either borrowed information from
each other with the assumption that both cancers have
similar etiologies [5, 7, 9], or conducted research on the
differences between the pathogenic mechanisms [6, 8].
Some review papers also analyzed the related research
progresses of both cancers together [4, 10]. In this
work, we also put both cancers together to study the
complex gene coexpression patterns with the network
tools.
Network has been widely applied to study the com-

plex interactions between genes, proteins, and other small
molecules. It is also a popular tool for studying breast
cancers and ovarian cancers [11–16, 20–22]. When using
networks to study the complex interactions, one typical
concept is module, which is the densely connected sub-
networks. With the network module analysis, we may
infer the susceptibility genes in cancer [16], identify the
biomarkers [14], and predict the prognosis of the can-
cer patients [11]. Current studies on cancer-related net-
work modules are mainly based on one network, which
is also true for breast cancer [14] and ovarian cancer
[16]. Even in the study of more than one network, the
module identification process is one network by one net-
work, and then comparisons between different networks
are performed [16]. Recently, several module identifica-
tion methods on multiple networks are proposed [22–24].
Among them, the method proposed in [22] introduced
an algorithm to find the differential modules in differ-
ent networks. It mainly concentrates on the differential
part. While in the paper [24], the method not only can
find the modules in each network, but also can align the
modules at the same time. Thus both the common and
the differential parts can be detected. In the following,
we compared the modules that were identified from the
gene coexpression networks of breast cancer and ovar-
ian cancer using the method in [24]. We analyzed the
basic properties of the modules including density, average
degree, distribution difference etc., and we did enrich-
ment analysis of Gene Ontology (GO), KEGG pathway,
Disease Ontology (DO) and Gene Set Enrichment Analy-
sis (GSEA). By comparing the modules, both the common
properties and the differences between the two cancers
are detected.

Methods
Data sets
The level 3 gene expression data for breast cancer (BRCA)
and ovarian cancer (OV)were downloaded fromTheCan-
cer Genome Atlas (TCGA). The gene expression data

were generated with UNC AgilentG4502A. We chose the
samples from the solid tissues only. There are 526 and 572
samples for both BRCA and OV, respectively. The expres-
sion value of 17,814 genes was measured. The missing
data for each specific gene was imputed with the mean
value of the known samples. We also downloaded the
most updated protein-protein interaction (PPI) data for
humans from BioGrid https://thebiogrid.org. We chose
the genes having PPIs in the gene expression data, and
9603 genes were selected.
To choose the differential expressed genes for BRCA

and OV, t-test and Kolmogorov-Smirnov test were
applied. The genes having p-values less 0.01 in both
tests were chosen, where the p-values were adjusted
by controlling the false discovery rate. We then got
7742 genes.

Coexpression network construction
We first computed the pairwise Pearson correlation coef-
ficient rij to measure the coexpression levels between
gene i and gene j. To make the correlations across
the two networks comparable, we ‘normalized’ the
Pearson correlation coefficients with the same method
as shown in [25]. Fisher’s z transformation score for
each rij was first computed as zij = 0.5 log 1+rij

1−rij . The
z-scores were then normalized to make zij follow nor-
mal distribution. After this, the ‘normalized’ correlations
were obtained by transforming back to rij. With these
steps, the correlations in the two networks will be on
the same level. We then did hard thresholding to make
the network be unweighted. We took 99.5% quantile of
the transformed correlation coefficients as the thresh-
old. If the absolute value of the correlation coefficient is
greater than the threshold, we assigned an edge between
the corresponding genes, otherwise, there is no edge.
With this method, the average degree is about 37 in
both networks.

Module identification in BRCA and OV coexpression
networks
Before we did module identification, we first removed
the genes having no links with any other genes in both
networks. The left gene number became 6779. Consider
the constructed gene coexpression network G1 (BRCA),
G2 (OV) consisting of 6779 genes. We let the adjacency
matrices for both networks be A1,A2, where Ak(i, j) = 1
represents there is an edge between gene i and gene j.
We first applied the model proposed in [24] to cluster the
genes in lower subspace for both networks. This model
aims at finding the clusters in multiple networks and
aligning the clusters at the same time. The main idea is
to use spectral clustering to find the cluster in each net-
work, and align them by maximizing the cluster similarity
of multiple networks. Here, we only have two networks.

https://thebiogrid.org
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We assume the putative number of clusters M in both
networks is given first.
Let Sk be the assignment of the 6779 vertices into M

clusters for the network Gk , where Skim = 1, if i ∈ Gk
belongs to the m-th cluster, otherwise Skim = 0 for i =
1, 2, · · · , 6779,m = 1, 2, · · · ,M, k = 1, 2. The optimiza-
tion model is formulated as:

min
∑

k=1,2

M∑

m=1

Sk,m
T
(Dk − Ak)Sk,m
Sk,m

TSk,m
− β

∑

k,l=1,2

M∑

m=1

Sk,m
TSl,m

‖Sk,m‖2‖Sl,m‖2
s.t. Ski,m ∈ {0, 1}, i = 1, 2, · · · , 6779;m = 1, 2, · · · ,M; k = 1, 2;

M∑

m=1
Sk,m = 1, for k = 1, 2. (1)

The first term in the objective function is to do clus-
tering in both networks separately, and the second term
defines the similarity of the clusters in both networks
measured by cosine function. β balances the contributions
from inter-network and intra-network.
To solve the optimization problem (1), the variable Skim is

relaxed. Using the same technique as spectral clustering,
the optimization problem is transformed to:

min �̃(S̃) = Tr(S̃TCS̃), s.t. S̃T S̃ = 2IM ,

where C =
(
L1 0
0 L2

)
− β

(
0 In
In 0

)
, S̃ =

(
S̃1

S̃2

)
, S̃k,m = Sk,m

‖Sk,m‖2 ,

and Lk = Dk −Ak , 0 is an n×nmatrix with all entries being
zero.
By computing the eigenvectors corresponding to the M

smallest eigenvalues of matrix C, the original vertices in
the networks are projected to a space of dimension M.
To get the clusters, we may use k-means clustering to
cluster the data points similar to spectral clustering. Due
to the large size of the network, k-means does not work
well. Instead, we applied hierarchical clustering with com-
plete linkage to cluster the vertices. The distance is chosen
to be the spearman distance. This is because when the
size of matrix C is large, the range of the eigenvector
entries is large, but their order is comparatively stable. The
algorithm is summarized in ‘Algorithm’.
Selection of parameter β and M The parameter β controls

the connections between the vertices in both networks.
When β = 0, it is equivalent to finding the clusters in two
networks separately. When β becomes larger, the corre-
sponding vertices in both networks tend to belong to the
same cluster. We note that even when a group of vertices
are densely connected in the first network, while their
corresponding parts are isolated in the second network,
the method will put all the isolated vertices in the same
cluster as in the first network. Here, since both networks
were controlled to have a close number of total connec-
tions, we directly set β = 1, which means the connection
weight between two networks is the same as that within

Algorithm:
Input: Adjacency matrix Ak , k = 1, 2, and M, which is the
putative number of clusters.

1. Construct the matrix C;
2. Compute the M eigenvectors u1, u2, · · · , uM

corresponding to the M smallest eigenvalues of matrix
C;

3. Construct a new matrix T ∈ R2·6779×M with columns
u1,u2, · · · ,uM ;

4. Cluster the points constructed from each row of matrix
T into M clusters using hierarchical clustering with
spearman distance.

Output: Cluster label in both networks.

both networks. We note that when β > 1 and it is within a
reasonable range, the results do not change much.
The number of clusters M was chosen according to the

eigenvalues of matrix C. M corresponds to the first big
eigengap [26]. We note that here M is not the number of
clusters in either of the twonetworks because by choosing β,
the isolated vertices in one network can also be clus-
tered together depending on the other network. It should
be the number of the union clusters in both networks.
Thus the method can find both the consistent clusters and
the differential clusters having quite different connection
probabilities.
After the above clustering procedures, we can get a clus-

ter label for each gene. The corresponding clusters in both
networks may include different genes. We take the union
of the genes as the cluster. Due to the large number of
genes, the clustering method may have some bias. Some
unconnected subnetworks may be clustered together.
Before going to further analysis, we need to check each
cluster such that it cannot include unconnected subnet-
works. These resulted subnetworks are defined as the
modules we identified.
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Table 1 Statistics of the identified modules

No. Size d̄BRCA d̄OV DBRCA DOV p-value NGO NKEGG NDO NGSEA

1 66 1.36 7.97 0.02 0.12 1.06E-37 2

2 56 9.79 7.14 0.18 0.13 2.67E-4 1 1

3 111 3.59 20.29 0.03 0.18 6.88E-160 6 1

4 6 0.67 1.67 0.13 0.33 0.39 133 1

5 202 3.65 16.95 0.02 0.08 2.20E-200 53 1

6 7 3.43 2.57 0.57 0.43 0.54 42 3

7 92 1.87 2.15 0.02 0.02 0.37 26 5 21

8 10 0 3.8 0 0.42 3.33E-06 2 1

9 71 3.38 10.39 0.05 0.15 3.42E-32 2

10 50 2.28 11.4 0.05 0.23 5.65E-40 1

11 14 0.43 2.71 0.03 0.21 6.48E-4 22

12 8 0.5 1.5 0.07 0.21 0.25 9

13 11 0.36 2 0.04 0.2 0.02 6

14 25 1.12 5.84 0.05 0.24 1.76E-11 286 27 53 17

15 16 0.88 2.88 0.06 0.19 3.41E-3 4 9 15

16 29 1.10 4.97 0.04 0.18 5.33E-10 1 3

17 6 1.33 4 0.27 0.8 0.01 131 7 1

18 22 1.27 1.36 0.06 0.06 1 16

19 22 1 2.82 0.05 0.13 2.11E-3 2 2 4

20 6 2.33 0.67 0.47 0.13 0.11 15

21 6 2 3.33 0.4 0.67 0.27 15 2 4

22 13 0.15 2.31 0.01 0.19 6.02E-4 8

23 40 1.25 6.85 0.03 0.18 3.19E-20 180 8

24 22 0.64 2.64 0.03 0.13 2.68E-4 1 5

25 7 0.86 1.71 0.14 0.29 0.45 1

26 9 0.22 2.44 0.03 0.31 4.42E-3 1

27 127 3.40 14.87 0.03 0.12 7.67E-109 24

28 14 0.57 3.71 0.04 0.29 2.72E-05 4 2

29 14 5.14 5.43 0.40 0.42 0.88 74 2 17

30 22 3.91 8.82 0.19 0.42 8.08E-08 2

31 15 0.67 3.73 0.05 0.27 3.03E-05 1 2

32 7 2.57 0.29 0.43 0.05 0.01 138 2

33 213 0.94 49.94 0.004 0.24 0 130 3 16

34 7 0.86 2 0.14 0.33 0.28 40 2 16

35 12 1.67 4.17 0.15 0.38 5.77E-3 3 1

36 6 3.33 2.33 0.67 0.47 0.46 38 6

37 9 2 4 0.25 0.5 0.05 1 1 8

38 14 2.14 2.86 0.16 0.22 0.45 36 3

39 6 2 3.33 0.4 0.67 0.27 37

40 102 4.16 16.35 0.04 0.16 3.08E-91 8

41 17 1.65 3.88 0.10 0.24 3.89E-3 7

42 46 2.78 10.04 0.06 0.22 1.68E-25 2

43 125 10.54 9.28 0.09 0.07 0.02 7

Total 31 25 18 1
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Table 2 Enriched GO terms with p-value< 10−5 in all the modules

No. GO ID Description p-value

5 GO:0016259 Selenocysteine metabolic process 4.86E-59
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 2.03E-56
GO:0006613 Cotranslational protein targeting to membrane 3.84E-56
GO:0045047 Protein targeting to ER 7.94E-56
GO:0072599 Establishment of protein localization to endoplasmic reticulum 4.45E-55
GO:0070972 Protein localization to endoplasmic reticulum 4.45E-55
GO:0001887 Selenium compound metabolic process 1.37E-53
GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 1.64E-52
GO:0019080 Viral gene expression 2.59E-47
GO:0006415 Translational termination 3.29E-47
GO:0019083 Translational elongation 7.19E-47
GO:0044033 Multi-organism metabolic process 2.32E-46
GO:0000956 Nuclear-transcribed mRNA catabolic process 6.16E-44
GO:0006612 Protein targeting to membrane 6.16E-44
GO:0006402 mRNA catabolic process 2.23E-42
GO:0006401 RNA catabolic process 1.09E-39
GO:0043624 Cellular protein complex disassembly 7.83E-39
GO:0006413 Translational initiation 1.70E-38
GO:0043241 Protein complex disassembly 6.44E-38
GO:0032984 Macromolecular complex disassembly 3.32E-37
GO:0006575 Cellular modified amino acid metabolic process 3.50E-34
GO:1901605 Alpha-amino acid metabolic process 1.89E-33
GO:0090150 Establishment of protein localization to membrane 1.44E-32
GO:0034655 Nucleobase-containing compound catabolic process 3.53E-32
GO:0019058 Viral life cycle 1.09E-30
GO:0044270 Cellular nitrogen compound catabolic process 4.69E-30
GO:0046700 Heterocycle catabolic process 4.69E-30
GO:0019439 Aromatic compound catabolic process 1.27E-29
GO:1901361 Organic cyclic compound catabolic process 2.56E-28
GO:0072657 Protein localization to membrane 5.23E-28
GO:0042254 Ribosome biogenesis 3.59E-14
GO:0022613 Ribonucleoprotein complex biogenesis 5.19E-14
GO:0042255 Ribosome assembly 1.56E-12
GO:0042273 Ribosomal large subunit biogenesis 3.61E-12
GO:0000027 Ribosomal large subunit assembly 9.99E-11
GO:0022618 Ribonucleoprotein complex assembly 1.23E-09
GO:0071826 Ribonucleoprotein complex subunit organization 2.74E-09
GO:0042274 Ribosomal small subunit biogenesis 5.64E-06

6 GO:0009952 Anterior/posterior pattern specification 1.91E-10
GO:0003002 Regionalization 1.90E-09
GO:0007389 Pattern specification process 7.21E-09
GO:0001501 Skeletal system development 1.71E-06

14 GO:0032496 Response to lipopolysaccharide 1.02E-08
GO:0002237 Response to molecule of bacterial origin 1.02E-08
GO:0050727 Regulation of inflammatory response 5.43E-08
GO:1903034 Regulation of response to wounding 8.40E-07
GO:0030595 Leukocyte chemotaxis 1.24E-06
GO:0050900 Leukocyte migration 4.99E-06
GO:0060326 Cell chemotaxis 5.27E-06

27 GO:0044782 Cilium organization 3.90E-10
GO:0060271 Cilium morphogenesis 7.14E-09
GO:0042384 Cilium assembly 7.14E-09
GO:0007018 Microtubule-based movement 1.80E-08
GO:0010927 Cellular component assembly involved in morphogenesis 7.24E-08
GO:0030031 Cell projection assembly 3.37E-07
GO:0042073 Intraciliary transport 4.27E-06
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Table 2 Enriched GO terms with p-value< 10−5 in all the modules (Continued)

No. GO ID Description p-value

GO:0098840 Protein transport along microtubule 4.27E-06
36 GO:1901685 Glutathione derivative metabolic process 8.14E-12

GO:1901687 Glutathione derivative biosynthetic process 8.14E-12
GO:0006749 Glutathione metabolic process 1.03E-10
GO:0042537 Benzene-containing compound metabolic process 1.49E-09
GO:0006805 Xenobiotic metabolic process 2.90E-08
GO:0071466 Cellular response to xenobiotic stimulus 2.90E-08
GO:0009410 Response to xenobiotic stimulus 2.90E-08
GO:0044272 Sulfur compound biosynthetic process 3.74E-08
GO:0006575 Cellular modified amino acid metabolic process 2.18E-07
GO:0006790 Sulfur compound metabolic process 5.04E-07

39 GO:0048706 Embryonic skeletal system development 1.28E-08
GO:0009952 Anterior/posterior pattern specification 7.49E-08
GO:0048704 Embryonic skeletal system morphogenesis 4.26E-07
GO:0003002 Regionalization 4.47E-07
GO:0007389 Pattern specification process 1.51E-06
GO:0001501 Skeletal system development 1.86E-06
GO:0048705 Skeletal system morphogenesis 4.37E-06

Enrichment analysis
To see the associations between the identified gene mod-
ules and gene functions, we did Gene Ontology (GO)[27],
KEGG pathway [28], and Disease Ontology (DO) [29]
enrichment analysis for eachmodule. GO annotates genes
to biological processes (BP), molecular functions (MF),
and cellular components (CC) in a directed acyclic graph
structure. We only considered BP terms here. KEGG
annotates genes to pathways, and Disease Ontology (DO)
annotates genes with human disease associations. To see
whether the identified modules show statistically signif-
icant, concordant differences between the two diseases,
we also did Gene Set Enrichment Analysis (GSEA) [30].
GSEA was also done for the three types of enrich-
ment analysis: GO, KEGG, and DO. We implemented
the enrichment analysis with ‘clusterProfiler’ [31]. For all
the cases, we let the cutoff be the Benjamini-Hochberg
adjusted p-value 0.05, and recorded all the enriched terms
with p-value less than 0.05.

Results
We did module identification in the gene coexpression
networks of both breast cancer and ovarian cancer simul-
taneously. Figure 1 shows the first 350 eigenvalues of the
matrix C. We chose M to be 215. After we clustered the
genes into 215 clusters with hierarchical clustering, we
removed those with size less than 5 and greater than 800.
With the method described, finally, we got 62 modules.
To look at the module structures in both networks,

we first computed the average degree (d̄BRCA, d̄OV ) and
density(DBRCA,DOV ) for each module. Besides, we did sta-
tistical test for each module to see whether the modules in
the two networks have the same connection distribution.
We assume the connection between any two vertices is

randomly generated following Bernoulli distribution with
a given probability. We applied t-test to see whether the
probability in the two networks is the same. The p-values
are recorded. For all the 62 modules, after we did all the
enrichment analysis, we removed those modules that have
no enriched terms. Finally, 43 modules were found to have
at least one type of enrichment. We put the module size,
the average degree, the density, the t-test p-value, and the
number of enriched terms for GO, KEGG pathway, DO,
GSEA in Table 1. For GSEA, we only found GSEA GO
enrichment terms.
From the t-test p-values of the modules in both coex-

pression networks, the structures of 29 modules are sig-
nificantly different with p-values less than 0.05, of which
25 modules have larger densities in OV. Thirty one mod-
ules are enriched by GO terms, 25 modules are enriched
by KEGG pathways, 18 modules are enriched by DO
terms, and one module is enriched by GSEA GO terms.
One module (module 14) is enriched by all the four
terms. Nine modules (module 7,15,17,19,21,29,33,34,37)
are enriched by GO, KEGG, and DO. We checked
the details of each module and the enriched terms.
All the enrichment results are put in the Additional
files 1, 2, 3, 4 and 5.

GO enrichment analysis
We listed the modules that have an enriched p-value
less than 10−5 in Table 2. Three modules including mod-
ule 6, 36, and 39 have the same connection distribution
in both cancers. These modules have small sizes, and
very significant enrichments. Six among the 7 genes in
module 6 are involved in the regionalization and pat-
tern specification process. Module 36 is mainly related to
glutathione metabolic process and xenobiotic metabolic
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process. Five of the 6 genes are involved in these processes.
Module 39 is mainly related to skeletal system develop-
ment. Five among 6 genes are involved in this process.
In other three modules 5, 14, and 27, the connections
in the OV coexpression network are much denser. There
are several isolated genes in the BRCA coexpresson net-
work. These three modules are involved in many complex
biological processes significantly. One typical example is
the enriched term ‘GO:0016259 selenocysteine metabolic
process’. There are 89 genes in the background 16655
genes involved in this process. In module 5, 44 among the
195 (overlapping with the background) genes are involved
in this process. For the term ‘GO:0006614 SRP-dependent
cotranslational protein targeting to membrane’, 45 genes
among the 195 genes are involved in the process compared
to the background 108 genes of 16655 genes in this pro-
cess. These show the high correlations among the genes
involved in the same process. Compared to OV, the genes
involving in the same biological processes in BRCA have
much less correlations, which leads to the sparser module
structures.

KEGG enrichment analysis
The KEGG pathways that enrich the modules having a
p-value less than 10−4 are listed in Table 3. Module 5 is
enriched by the pathway ‘hsa03010 Ribosome’. Forty-six
out of 130 (overlapping with the background) genes in
this module belong to this pathway compared to 154 out
of 7274 in the background genes. From the GO enriched
terms of this module, it is clear that this module is

Table 3 Enriched KEGG terms with p-value< 10−4 in all the
modules

No. KEGG ID Description p-value

5 hsa03010 Ribosome 1.02E-43

14 hsa04668 TNF signaling pathway 3.80E-09

hsa04657 IL-17 signaling pathway 1.97E-06

hsa05323 Rheumatoid arthritis 4.57E-05

hsa04380 Osteoclast differentiation 1.96E-04

hsa04010 MAPK signaling pathway 3.00E-04

23 hsa05217 Basal cell carcinoma 2.59E-05

hsa05200 Pathways in cancer 9.26E-05

33 hsa04610 Complement and coagulation cas-
cades

2.68E-06

36 hsa00480 Glutathione metabolism 1.12E-10

hsa00982 Drug metabolism-cytochrome P450 1.43E-10

hsa01524 Platinum drug resistance 1.43E-10

hsa00980 Metabolism of xenobiotics by
cytochrome P450

1.43E-10

hsa05204 Chemical carcinogenesis 1.93E-10

hsa05418 Fluid shear stress and atherosclerosis 2.37E-09

mainly involved in the translation process. The pathways
related to module 14 are mainly related to diseases. ‘IL-
17 signaling pathway’ [32], ‘TNF signaling pathway’ [33],
‘Rheumatoid arthritis’ [34], and ‘MAPK signaling path-
way’ [35] were shown to have relations with BRCA. For
these enriched terms, no existing literatures addressed
their associations with OV to the best of our knowledge.
Module 23 is also related to cancers. Eight genes in this
module belong to ‘Pathways in cancer’. It is also enriched

Table 4 Enriched DO terms with p-value< 0.01 in all themodules

No. DO ID Description p-value

14 DOID:3770 Pulmonary fibrosis 7.40E-04

DOID:1602 Lymphadenitis 7.40E-04

DOID:9942 Lymph node disease 7.40E-04

DOID:1936 Atherosclerosis 7.40E-04

DOID:1036 Chronic leukemia 7.40E-04

DOID:2348 Arteriosclerotic cardiovascular dis-
ease

7.40E-04

DOID:2349 Arteriosclerosis 7.79E-04

DOID:3459 Breast carcinoma 1.10E-03

DOID:3082 Interstitial lung disease 1.94E-03

DOID:0070004 Myeloma 3.21E-03

DOID:75 Lymphatic system disease 3.21E-03

DOID:4960 Bone marrow cancer 3.21E-03

DOID:865 Vasculitis 5.68E-03

DOID:13378 Kawasaki disease 7.82E-03

DOID:9538 Multiple myeloma 9.27E-03

15 DOID:2730 Epidermolysis bullosa 3.27E-04

DOID:2731 Vesiculobullous skin disease 3.27E-04

DOID:299 Adenocarcinoma 6.72E-03

DOID:4766 Embryoma 9.26E-03

DOID:688 Embryonal cancer 9.71E-03

17 DOID:700 Mitochondrial metabolism disease 1.77E-03

33 DOID:1882 Atrial heart septal defect 2.16E-03

DOID:9477 Pulmonary embolism 2.16E-03

DOID:1681 Heart septal defect 8.06E-03

DOID:1682 Congenital heart disease 8.06E-03

DOID:2214 Inherited blood coagulation disease 8.06E-03

DOID:780 Placenta disease 8.13E-03

34 DOID:2893 Cervix carcinoma 1.62E-03

DOID:4362 Cervical cancer 1.62E-03

DOID:120 Female reproductive organ cancer 4.60E-03

37 DOID:10652 Alzheimer’s disease 8.20E-03

DOID:680 Tauopathy 8.20E-03

38 DOID:3113 Papillary carcinoma 3.66E-03

DOID:2394 Ovarian cancer 4.14E-02
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by ‘breast cancer’ with a p-value 0.049, with 3 genes asso-
ciated with breast cancer in this module. This module
has no enrichments related to OV. The pathway ‘hsa05418
Chemical carcinogenesis’ that enriches module 36 is also
related to cancers. Chemical carcinogens may contribute
significantly to the causation of a sizable fraction, perhaps
a majority, of human cancers [36].

DO enrichment analysis
Table 4 lists the DO enriched terms in all the modules
with p-value less than 0.01, and one term that is related
to OV. Module 14 is enriched by BRCA, with 7 among
20 (overlapping with the background) genes in this mod-
ule associated with BRCA. Module 38 is enriched by OV
with 4 among 11 (overlapping with the background) genes
in this module being associated with OV. There are no
OV related enriched terms in module 14, and no BRCA
related terms in module 38. This is mainly due to the dif-
ferent known genes associated with the two cancers. We
note that module 34 is also enriched by the female organ
cancer.
From all the above analysis, we found that most mod-

ules are the general modules that may not be associated
with BRCA and OV. The validated enriched terms related
to BRCA are much more than that of OV. One reason
may be there are more researches conducted on BRCA.
Among all the enriched modules, module 14 is enriched
by BRCA, and module 38 is enriched by OV. Module 36
is not enriched by these two diseases, but the enriched
terms are related to cancer treatment. Among these three
modules, the structure of module 14 is shown to be dif-
ferent with a p-value 1.76E-11 in these two cancers. In the
following, we give some details of these three modules.

Enrichment analysis for module 14
Module 14 consists of 25 genes. The module structure
in both networks is significantly different with a p-value
1.76E-11. Figure 2 shows themodule structures. It is much
denser in OV compared to that in BRCA. Figure 3 shows

the dotplot of GO, KEGG, DO enrichment results. For GO
and DO, we plotted the first 30 enriched terms with the
smallest p-values. We plotted all the 27 enriched terms for
KEGG. Figure 4 shows the associations between the genes
and the enriched terms. We selected the most enriched
12 GO terms with p-value less than 10−4, 10 KEGG terms
with p-value less than 0.01, and 15 DO terms with p-value
less than 0.01.
The enriched GO terms are mainly related to differ-

ent responses, such at inflammatory response, response
to molecule of bacterial origin, responses to wound-
ing, immune response, etc.. Several responses have been
shown to be associated with cancers [37, 38]. For exam-
ple, the inflammation as the seventh hallmark of cancer
plays important roles in cancer development. Inflamma-
tory cells may facilitate angiogenesis and promote the
growth, invasion, and metastasis of tumor cells, which
may change the genetic instability in cancer cells. Con-
trolling the regulation of inflammatory response has a
potential in both prevention and treatment of cancer [37].
There are 9 genes included in this module associated with
the enriched term ‘regulation of inflammatory response’,
which achieves a p-value of 5.43E-08. This module also
includes 7 genes that are associated with the enriched
term ‘adaptive immune response’, which achieves a p-value
of 8.78E-05. The immune response can result in the pro-
liferation of antigen-specific lymphocytes.When antibod-
ies and T-cell receptors are expressed and up-regulated,
immunity is acquired. Then the immune systems will
initiate antigenic responses against carcinomas. A new
approach to the treatment of cancer is immunotherapy,
which aims to up-regulate the immune system in order
that it may better control carcinogenesis [38]. Figure 4a
shows the relations between the 12 GO terms with
p-value less than 10−4 and the 25 genes in this module.
The genes ‘CXCL1’, ‘CCL20’, ‘ANXA1’, ‘S100A9’, ‘S100A12’,
‘TNF’, ‘DUSP10’, ‘TNFAIP2’ are included in more than
6 enriched terms. There are 10 genes associated with
the most enriched terms ‘response to lipopolysaccharide’
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Fig. 2 Network structure of module 14. a BRCA; b OV
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and ‘response to molecule of bacterial origin’. For these
two terms, we have not found the related literature that
addresses their relations to cancers.
In the KEGG enriched terms, ‘TNF signaling pathway’

[33],‘Rheumatoid arthritis’ [34], ‘MAPK signaling path-
way’ [35], and ‘IL-17 signaling pathway’ [32] have shown

to be associated with BRCA. TNF is a major inflam-
matory cytokine shown to be highly expressed in breast
carcinomas. It induces a wide range of intracellular signal
pathways including apoptosis and cell survival as well as
inflammation and immunity [33]. ‘MARK signaling path-
way’ is involved in various cellular functions, including
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Fig. 3 Enrichment results for module 14. a GO, 30 terms with minimal p-values; b KEGG, all enriched 27 terms; c DO, 30 terms with minimal p-values
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cell proliferation, differentiation and migration. Research
on signaling pathway switch in breast cancer shows that
in a large proportion of breast cancer, MARK signaling
pathway is repressed, while another important pathway
is activated. This mechanism may have impacts on the
balance between self-renewal, proliferation, and differ-
entiation of the tumor-initiating cells [35]. IL-17 plays
crucial roles in both acute and chronic inflammatory
responses. It is shown to have a direct association with
breast cancer invasion in human breast tumors. IL-17
directly induced breast cancer cell invasion. There should
be a potential mechanism for breast cancer invasion and
tumor progression [32]. ‘Rheumatoid arthritis’ is mainly
related to immune systems. Research shows that the risk
of breast cancer is increased in non-Caucasians patients
with rheumatoid arthritis while it decreased in Caucasian
population [34]. Figure 4b shows the associations between
the enriched KEGG terms and the genes. Four genes
including ‘CXCL1’, ‘TNF’, ‘FOS’, and ‘IL1A’ connect to at
least 6 of the 10 terms. There are at least 6 genes asso-
ciated with ‘TNF signaling pathway’, ‘MAPK signaling
pathway’, and ‘IL-17 signaling pathway’. For these enriched
pathways, we have not found their associations with OV.
In the DO enriched terms, ‘breast carcinoma’ reaches

the p-value 0.001. Seven genes including ‘S100A9’, ‘TNF’,
‘SOC53’, ‘CD55’, ‘IL1A’, ‘ANXA1’, ‘GADD45A’ among the 25
genes in this module are associated with BRCA. Several
other diseases also enrich module 14, including arte-
riosclerosis disease, nutrition disease, etc.. However, OV is

not on this list. Figure 4c shows the associations between
the genes and the diseases. ‘S100A9’, ‘TNF’, ‘SOCS3’, and
‘IL1A’ connect to at least 10 diseases among the 15
enriched diseases.
In the GSEA study, we ordered the genes according to

the t-test p-value between the two diseases and did the
analysis. Finally, 17 GO terms enrich this module. Table 5
shows the enriched terms. The 8 sequential genes having
the largest t-test p-values are all in the enriched biological
processes. They are ‘TNFAIP3’, ‘S100A9’, ‘BCL3’, ‘MAFF’,
‘TMEM173’, ‘JUNB’, ‘CEBPD’, ‘NFKBIZ’. Figure 5 shows
the patterns for the running enrichment score. All the
enriched terms have a similar pattern for these 8 genes.
By comparison of this module structure between BRCA

and OV, we found module 14 is closely related to BRCA
from the above enrichment analysis. From the gene coex-
pression network of BRCA (Fig. 2), we see some breast
cancer associated genes are isolated, such as ‘TNF’, ‘CD55’,
‘IL1A’. In OV network, these genes are highly correlated
and clustered into one module. This may show that due to
the tumor, the correlations of some cancer related genes
decrease in BRCA.

Enrichment analysis for module 36
This module includes 6 densely connected genes in both
diseases, which has a p-value 0.46 in t-test for the struc-
ture difference. Of the 6 genes, 5 genes GSTM1, GSTM2,
GSTM3, GSTM4, GSTM5 encode the glutathione
S-transferase that belongs to the mu class. These genes

ba

c

Fig. 4 Enrichment results for module 14. a GO terms with p-value< 10−4; b KEGG terms with p-value< 0.01; c DO terms with p-value< 0.01
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function in the detoxification of electrophilic compounds
such as carcinogens, therapeutic drugs, environmental
toxins and products of oxidative stress, by conjugation
with glutathione. Thus this module is enriched by the
related biological processes such as: ‘glutathione deriva-
tive metabolic process’, ‘xenobiotic metabolic process’,
‘sulfur compound biosynthetic process’, etc.. It is also
enriched by the related pathways such as ‘glutathione
metabolism’, ‘drug metabolism-cytochrome P450’, ‘chemi-
cal carcinogenesis’, and so on. Another gene is BCAR3,
which is associated with estrogen resistance and breast
cancer. It is translated to the breast cancer anti-estrogen
resistance protein 3. Although this module is not enriched
by BRCA and OV in DO significantly, it is related to the
treatment of breast cancer [39].

Enrichment analysis for module 38
Module 38 includes 11 genes. Figure 6 shows the mod-
ule structure in both cancers. The connection probabil-
ity in these two networks is statistically the same with
t-test, although the detailed connections are different.

Table 5 Enriched GO terms with GSEA for module 14

GO ID Description Set Size p-value

GO:0010467 Gene expression 14 0.04

GO:0010468 Regulation of gene expression 14 0.04

GO:0034645 Cellular macromolecule biosyn-
thetic process

14 0.04

GO:0006351 Transcription, DNA-templated 13 0.04

GO:0006355 Regulation of transcription, DNA-
templated

13 0.04

GO:0016070 RNA metabolic process 13 0.04

GO:0018130 Heterocycle biosynthetic process 13 0.04

GO:0019438 Aromatic compound biosynthetic
process

13 0.04

GO:0032774 RNA biosynthetic process 13 0.04

GO:0034654 Nucleobase-containing
compound biosynthetic process

13 0.04

GO:0044271 Cellular nitrogen compound
biosynthetic process

13 0.04

GO:0051252 Regulation of RNA metabolic pro-
cess

13 0.04

GO:0097659 Nucleic acid-templated transcrip-
tion

13 0.04

GO:1901362 Organic cyclic compound biosyn-
thetic process

13 0.04

GO:1903506 Regulation of nucleic
acid-templated transcription

13 0.04

GO:2000112 Regulation of cellular macro-
molecule biosynthetic
process

13 0.04

GO:2001141 Regulation of RNA biosynthetic
process

13 0.04

This module is enriched by 36 GO terms with adjusted
p-value less than 0.05. The gene number involved in the
related biological processes is at most 4. It is enriched by
3 diseases including ovarian cancer. Four of the 14 genes
are associated with OV using DO enrichment. One typi-
cal gene is ‘WT1’, which connects to several other genes
in the OV network, while it has no connections in the
BRCA network. This gene is necessary for the develop-
ment of the ovaries in females, and thus is associated
with ovarian cancer. The ‘WT1’ protein has been found
to bind a host of cellular factors such as p53. It has been
ranked as the No.1 target for cancer immunotherapy by
the National Cancer Institute. However, it has no associa-
tions with BRCA to the best of our knowledge. A densely
connected subnetwork in this module is Kallikrein-related
peptidases (KLK5, KLK6, KLK7, KLK8, KLK10). This
gene family can be taken as the novel cancer biomarkers
as shown in [40]. The potential of KLKs as diagnos-
tic, prognostic, and treatment monitoring biomarkers for
many types of malignancies has been extensively investi-
gated including breast cancer and ovarian cancer. Overall,
this module is closely related to cancers including breast
cancer and ovarian cancer, and is more associated with
ovarian cancer.

Discussion and conclusion
Breast cancer and ovarian cancer are important causes
of death for women. Both of them are harmone driven
and are known to have some common susceptible genes
such as BRCA1 and BRCA2. Several published works
have studied both cancers together with the assumption
that they have the same etiologies. Coexpression network
modules for both breast cancer and ovarian cancer have

Fig. 5 GSEA GO enrichment for module 14
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ba

Fig. 6 Network structure of module 38. a BRCA; b OV

been studied separately by several researchers. However,
there are no comparisions between the coexpression net-
work modules between breast cancer and ovarian cancer.
By comparing themodules in both cancers, we aim at find-
ing more relations between both cancers including both
the similarities and the differences.
In this work, we compared the coexpression network

modules of both cancers by simultaneously identifying the
modules of both cancers. By projecting the genes into a
lower space representation, we did hierarchical cluster-
ing of all the genes with complete linkage of spearman
distance to get the modules. 43 modules were identified
to be enriched by at least one of GO, KEGG pathway,
and DO terms. In most of these modules, density in OV
network is larger than that in BRCA network. There are
31, 25 and 18 modules enriched by GO, KEGG pathway,
and DO terms, respectively. By checking the details of
each enriched term, we found that one module (module
14) is enriched by GO, KEGG and DO terms related to
breast cancer. Among all GO and KEGG enriched terms,
several have been validated. And there are 7 genes asso-
ciated with breast cancer in this module. However, there
is no enrichment information related to ovarian cancer.
Another module 38, which is enriched by ovarian cancer
in DO, is closely related to several cancers including breast
cancer and ovarian cancer, and is more associated with
ovarian cancer. From the analysis of the genes in module
36, we found that it is related to the treatment of breast
cancer, although it is not enriched by breast cancer terms
in DO.
Comparison of the identified modules shows the differ-

ences of breast cancer and ovarian cancer on the module
level. Different modules are enriched by the two cancers
significantly. It also shows some common properties of
both cancers such as the KLKs family in module 36. More
importantly, by simultaneous clustering of both cancers,
the potential cancer related modules can be identified.
For example, module 14 is significantly enriched by breast

cancer related terms, but much connection information
is borrowed from the ovarian cancer network. This may
imply the associations between this module and breast
cancer.
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