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Abstract

Background: Gene Ontology (GO) is one of the most popular bioinformatics resources. In the past decade, Gene
Ontology-based gene semantic similarity has been effectively used to model gene-to-gene interactions in multiple
research areas. However, most existing semantic similarity approaches rely only on GO annotations and structure, or
incorporate only local interactions in the co-functional network. This may lead to inaccurate GO-based similarity
resulting from the incomplete GO topology structure and gene annotations.

Results: We present NETSIM2, a new network-based method that allows researchers to measure GO-based gene
functional similarities by considering the global structure of the co-functional network with a random walk with
restart (RWR)-based method, and by selecting the significant term pairs to decrease the noise information. Based on
the EC number (Enzyme Commission)-based groups of yeast and Arabidopsis, evaluation test shows that NETSIM2
can enhance the accuracy of Gene Ontology-based gene functional similarity.

Conclusions: Using NETSIM2 as an example, we found that the accuracy of semantic similarities can be significantly
improved after effectively incorporating the global gene-to-gene interactions in the co-functional network, especially
on the species that gene annotations in GO are far from complete.
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Background

Recently, significant improvement in high-throughput
biology technologies has led to an exponential increase
in biological data. Gene Ontology (GO) is one of the
most popular bioinformatics resources used to interpret
the result of biological experiment. GO provides struc-
tured, controlled vocabulary of terms to describe genes
by three types of attributes that are molecular function,
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biological process and cellular component [1]. In each cat-
egory, terms are structured as a directed acyclic graph
(DAG). GO provides a convenient and important way to
study functional similarity. GO-based semantic similarity
has been successfully used in many research areas, such
as gene function prediction [2-5], gene network analysis
[6, 7], homology analysis [8], gene association visualiza-
tion [9] and missing value imputation [10, 11].

In the past decade, a lot of approaches have been pro-
posed to calculate gene functional similarity based on
gene ontology [12-23]. Based on the information used in
similarity calculation, these measurements can be loosely
classified into four groups: path length-based methods,
node-based methods, integrative methods and network-
based methods.
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The methods in the edge-based group calculate simi-
larity by considering the topology structure information
of GO [24, 25]. A recently proposed approach, named
Relative Specificity Similarity (RSS), takes two types of
length information into account: the edge length from
given term pair to their closest leaf terms; and the edge
length to their lowest common ancestor (LCA) [25]. The
experiment result shows that this method is superior in
correlation with sequence and Pfam similarities. However,
the edge-based methods are fully relied on the topology of
GO DAG. This type of methods cannot differentiate the
terms at the same topological level [14].

For the node-based methods, the approaches rely on
the specific taxonomy. One of the proposed approaches
exploit the information content (IC) of the most informa-
tive common ancestor (MICA) to measure the similarity
between two GO terms [26]. Let t be a MICA term.
We calculated its IC as —log(|G¢|/|Groot]). Gr and Groor
represent gene sets annotated to term ¢ and root respec-
tively. This method is further improved by taking the path
length from the term pair to its MICA into account [12].
The evaluation test shows that the results are consistent
with protein sequence similarities. However, node-based
approaches only take the annotations into account, ignor-
ing the topology information of the GO.

In the integrative group, the approaches are proposed
to use more information in GO. Hybrid Relative Speci-
ficity Similarity (HRSS) uses four types of information
(information content, structure topology, annotations and
MICA) to calculate the semantic similarity [25]. InteGO
method proposed a rank-based method to integrate mul-
tiple existing similarity methods, called seed methods,
to consider more aspects of GO [17]. InteGO2 method
selects the most appropriate methods from a set of meth-
ods by a voting method and integrates these selected
methods based on a metaheuristic search method [9]. The
evaluation test shows that the integrative method per-
forms better than the seed method. However, all these
methods are only based on the GO, neglecting the inac-
curate representation and missing information of GO. For
example, 37% of the Arabidopsis genes have experimental
annotations of all three domains of GO [27]. Therefore,
low-quality similarity may result from the incomplete
information in GO.

A network-based method, called NETSIM, was recently
proposed to address these problems by integrating gene-
gene associations and GO topology structure and anno-
tations [19]. The experiment based on metabolic reaction
map shows that semantic similarity can be enhanced by
incorporating gene-gene associations. Unfortunately, only
part of the information in gene co-function network was
used, since NETSIM only considered the direct link in the
network. Other than the directly connected gene pairs,
the indirect gene-gene interactions contained in the gene
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co-function network should also be considered. How-
ever, considering indirect interactions may also import the
noise information.

In this paper, we proposed a novel network-based
method named NETSIM2, by considering both direct and
indirect interactions in the gene co-function network with
a random walk based method, and by selecting the sig-
nificant term pairs for similarity calculation to decrease
the effect of the imported noise information. Comparing
with the existing approaches, NETSIM2 has the following
advantages:

e Comparing with the state-of-art methods, NETSIM2
performs better than existing methods by
incorporating gene co-functional network effectively.

¢ A random walk with restart-based method is
developed to take both direct and indirect
interactions into account.

e A standard score-based method is proposed to select
the significant GO-term pairs to measure the
semantic similarity.

Methods

NETSIM2 calculates the semantic similarity between two
genes in three steps (see Fig. 1). First, given a gene
co-functional network, it computes the relevance score
between two genes based on a random walk with restart
method. Second, it calculates the similarity between
two GO terms by combining the information from co-
functional network and GO. Finally, it selects the signifi-
cant GO-term pairs to measure the similarity of two genes
using a standard score-based method.

Calculating the relevance score between genes

In this step, we consider both the direct and indirect inter-
actions in the gene co-functional network to calculate

/ Gene Ontology / / Co;]f:trx:)lrc:(nal /

Calculating the relevance score between two genes
based on a random walk with restart method

Calculating the similarity between two GO terms

Measuring the similarity of two genes using the
significant GO-term pairs selected with a standard
score-based method

Fig. 1 The workflow of NETSIM2
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Fig. 2 Performance comparison of different measures on GO’'s molecular function terms in yeast (a) and Arabidopsis (b)

the relevance score between two genes. A gene network
includes not only the direct interactions but also the asso-
ciations between indirectly connected genes. In this step,
we adopted the random walk with restart (RWR) [28]
algorithm to measure the relevance score between two
genes. The relevance score between genes could be rep-
resented by the stationary probability calculated by RWR.
Comparing with the direct interactions, the relevance
score defined by RWR can capture the global structure
information of the co-functional network [29]. Further-
more, comparing with the graph distance metrics (such
as shortest path), it can reveal the multi-facet relationship
between two genes [30].

In RWR method, a random process begins from gene .
It iteratively transmits to neighbors of i with the proba-
bility that is based on the weights of edges. Similarly, the
particle has the probability ¢ to go back to start gene i.
The association score between gene i and gene j could
be defined as the stationary probability 7[i,j] that the
iteration process will finally stop at gene j. Mathemati-
cally, given a co-functional network N (V, E), the relevance
scores between genes can be calculated by following steps.
First, given a weight matrix M corresponding to N, a nor-
malized weighted matrix M’ was generated. Then, the
RWR-based method could be described as follows.

rip1 =cM'ri+ (1 —ce; (1)
where r; is a |V| x 1 vector and e; is a |V| x 1 starting
vector (the i element is 1 and others 0). (1 — c) is defined
as the restart probability, which is between 0 and 1. Based
on Equation 1, r; can be defined as follows.

ri=Q0-0od—cM) e (2)

After this step, we can get a matrix R, which saved the
relevance scores between each pair of genes in N(V, E).

Calculating the similarity between two GO terms
In this step, we calculate the similarity between two GO
terms combining the information from co-function net-
work and GO based on the method we represented in our
previous work [19].

Let t; and £, be two terms. We define D(t1,t;) as the
gene set distance to compute the similarity between sets
of genes annotated by ¢ and t,. D(¢, £2) is defined as:

2 gicGy ngEGz dij + 3 gieGy nngGl djj
2|G1 U G2| - ZgiEGl ngEGQ dl/ - ZgiEGz ngEGl dl/

®3)

D(t1,t2) =

where G; and Gy are the gene sets annotated by #; and £,
respectively. dj; is the distance score between two genes,
dij = 1—R;j. R is the relevance score between gene i and j
calculated by RWR-based method. The gene set distances
of all term pairs are normalized between 0 and 1.

Then, we calculate the similarity between two terms
based on a “path-constrained annotation’, labeled as U. In
traditional lowest common ancestor (LCA)-based meth-
ods, all the descendants of LCA are considered. The “path-
constrained annotation" method only uses the terms that
are the most relevant to the compared terms. The set of
relevant terms includes three parts: the gene set annotated
by term ¢; and £, and the gene set annotated by the com-
mon parent p of £; and £, and its descendant terms that
are on the paths from ¢; or £, to p.

Table 1 The LFC scores of five methods for the molecular
function category on yeast data

Method Resnik Relevance Wang NETSIM NETSIM2
25% 0.07 0.14 0.08 0.15 0.64
50% 0.18 023 0.15 0.31 1.18
75% 0.36 042 0.25 058 1.76
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Fig. 3 Number of ECs for which NETSIM2, NETSIM, Wang and Relevance measures performed the best for yeast (a) and Arabidopsis (b) based on

Let #; and £, be two GO terms and p be their common
ancestor. Then, the similarity between ¢; and ¢, is defined
based on the equation proposed in our previous work [19].

2log|G| — 2logf (41, t2, p)
2log|G| — (log|G1| + log|Gal)

5 <1 _hut) Gp)
|G| G

S(t1,t2) =

(4)

where G, (or G) is the gene set annotated by common
ancestor term p (or root term) and its descendants. In the
equation, f(¢1, £, p) calculates the similarity based on the
path-constrained annotations, and is defined as follows.

ft1, ta,p) = D(t1, t2)* x |U(t1, 12, p)| + (1 — D(t1, 12)?)

x /1G1] X |Ga]
(5)

h(t1, tp) measures the specificity of the common parent,
and is defined as follows.

h(t1, ) = D(t1,t2)* x |G| + (1 — D(t1, £2)*)

(6)
x max(|G1l, |Ga|)

In Eq. 4, the left part measures the distance from term ¢;
and £, to p, and the right part calculates the distance from
p to root. It is noted that we selected the highest score as
the similarity between 1 and £, if there are more than one
lowest common ancestor.

Measuring the similarity of two genes
Considering both the direct and indirect interactions in
the gene co-functional network may import noise infor-
mation. In this step, to decrease the noise, we select the
significant term pairs to calculate the gene similarities.
Let g; and gj be two genes. T; and T; are the annotation
sets of g; and gj. Let T be the set of all terms contained
in a GO category. Given a term ¢, we calculate similari-
ties between t and each term in T/t, saved as S;. Let ¢

be a term in T/t. The standard score of similarity z, » is
defined as follows.
S(t,t) —
Zy = —— (7)
Ot
where 1, is the mean of the S; and oy is the standard devia-
tion of S;. If |z(¢, ¢) | is larger than 1.6 (p — value is less than
0.05), pair (¢,t') is considered as a significant term pair.
The gene similarity are calculated as follows:

ZteTi Sim <t’ T]/) + ZteT,- Sim (t’ TL/)

Genesimsng) = T3l + 1]
i j

(8)

where T]’ (T7}) is the term set selected from Tj (T;). To test
the similarity between term ¢ € T; and term set T}, we
first select a term set Tj’ from T}. Based on the standard
score, given term ¢, we can select two significant sets from
Tj: T}, = {¢'|(ze0 > 1.6)} or T}, = {¢| (210 < —1.6)}.
If |Tt’h’ > th’ |, then T]’ = Ty, else Tj’ = T, T
is obtained in the similar way. Choosing the significant
terms to calculate the gene similarity can decrease the
noise information. Each term ¢ € T;(T}) can find at least
a term in T;(T;) to make a significant term pair. For each

t € Ty, Sim (t, Ty’> = maxtyeTy/S (t, ty).

Results and discussion

Data preparation

We downloaded the GO structure and annotations from
GO website in Dec. 2016 (www.geneontology.org). In our

Table 2 The LFC scores of five methods for the molecular
function category on Arabidopsis data

Method Resnik Relevance Wang NETSIM NETSIM2
25% 0.12 0.25 0.22 0.26 1.69
50% 035 0.59 051 0.65 3.19
75% 0.75 1.27 1.07 1.87 5
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Fig. 4 Performance comparison on LFC scores of similarity measures on GO's biological process in yeast (a) and Arabidopsis (b)

work, only the is-a and part-of relationships were used.
We used gene associations included in YeastNet [31]and
AraNet [32] for evaluation test on yeast and arabidop-
sis respectively. The EC group of Yeast and Arabidopsis
were downloaded from http://www.yeastgenome.org/ and
http://ftp.plantcyc.org/Pathways respectively.

Performance evaluation criteria

NETSIM2 is evaluated based on the EC number (Enzyme
Commission) group information, which has been used in
previous research [18]. The idea is that genes that are
labeled by the same EC number have the similar func-
tion. Genes are grouped to different categories based on
their EC numbers (full four digits). Then, we test whether
the genes in the same category have higher similarity than
genes in different categories. Mathematically, we use the
logged fold change (LFC) measure [18] for quantitative
evaluation. The LFC score of EC number ¢; is calculated
as follows:

Y diff  (eire))

geG(er)

LFC(e) = 1 X G|

|EC]

2

¢ €EC;G(e)NG(e;))=H
©)

where G(e;) is gene set that includes genes labeled by
e;; EC is a set of ECs satisfying that no annotated genes
is included in ¢; (G(ej) N G(e;) = ¥); and dl’jj‘g(ei, g) is
defined as:

IG(e)l x > (1 — GeneSim(g,g') + c)
diff ,(eire)) = In et
g\6i¢) = IGep)| x Y. (1 — GeneSim(g,g*) + c)
g*€Gle)

(10)

G(e;) is the gene set of e; without g; G(e)) is the gene set
of ej; where c is a Laplacian smoothing parameter; g is
a gene assigned to e;. GeneSim(g,g') and GeneSim(g,g*)

are defined in Eq. 8. Equation 10 measures the difference
between the inter-EC distance and intra-EC distance.

Performance evaluation on molecular function category
The performance of NETSIM?2 was evaluated by compar-
ing the GO-based similarity between genes in different
EC categories and same category. In this subsection, the
gene similarities are calculated based on molecular func-
tion category and co-functional network. We used LFC
score as a criteria to compare five measures (Resnik [33],
Relevance [12], Wang [13], NETSIM [19] and NETSIM?2)
on both yeast and arabidopsis data.

NETSIM?2 performed the best in all tests. In yeast, the
LEC score of NETSIM2 was the highest in all tested mea-
sures (Fig. 2a, Table 1). Specifically, the median, 75th and
25th percentile value of LFC scores of NETSIM2 on yeast
were 1.18, 1.76 and 0.64, significantly higher than the
other measures. Interestingly, the performance of NET-
SIM2 was significantly higher than our previous measure
NETSIM, indicating that considering the global structure
of co-functional network can improve the performance.
Comparing the LFC scores on each EC group using NET-
SIM2, NETSIM, Relevance and Wang measure (top four
measures), the result shows that NETSIM2 has the high-
est LFC score in all 109 ECs, while NETSIM, Relevance
and Wang measure has the highest LFC score in 6, 4 and
5 ECs only (Fig. 3a).

Similarly, the LFC score of NETSIM2 was the high-
est in all evaluated measures in arabidopsis data (Fig. 2b,

Table 3 The LFC scores of five methods for the biological
process category on yeast data

Method Resnik Relevance Wang NETSIM NETSIM2
25% 0.01 0.08 0.10 0.06 0.11
50% 0.12 0.26 0.24 023 0.78
75% 031 049 047 0.64 337
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Table 2). Figure 2b shows that NETSIM2 performed sig-
nificantly better than other measurements in arabidopsis
data. Specifically, the 75th percentile of NETSIM?2 is 5,
which is the highest in all tested methods. The score of
NETSIM, Relevance, Wang and Resnik measure are 1.87,
1.27, 1.07 and 0.75 respectively. The 50th percentile of
NETSIM2 is 3.19, which is about 5 times of the second
best measure NETSIM (0.65). Comparing the LFC scores
on each EC group using NETSIM2, NETSIM, Relevance
and Wang measure (top four measures), the result shows
that NETSIM2 got the highest LFC score in all 457 ECs,
while the number for NETSIM, Relevance and Wang mea-
sure were 82, 61 and 74 respectively (Fig. 3b). It is noted
that we set the higher bound of the LFC scores as 5.

All these results indicate that NETSIM2 can improve the
precision of semantic similarity measurement on molec-
ular function category by incorporating co-function net-
work effectively.

Performance evaluation on biological process category

In this subsection, we evaluated NETSIM?2 on the biolog-
ical process category. The same LFC score (Eq. 9) were
used in the performance evaluation. We also evaluated
NETSIM2 on both yeast and arabidopsis data.

Overall, NETSIM2 performed better than other four
measures (NETSIM, Wang, Relevance and Resnik). In
yeast, the 75th and median percentile of LFC scores were
significant higher than other measures (Fig. 4a, Table 3),
indicating that considering the global structure of co-
function network and noise decrease can improve the
overall performance. Specifically, the 75th percentile of
LEC scores is 3.37, while the values of other measures
are all less than 1 (0.64, 0.47, 0.49 and 0.31 for NETSIM,
Wang, Relevance and Resnik respectively). Comparing the
LFC scores on each EC group using NETSIM2, NETSIM,
Relevance and Wang measure (top four measures), the
result shows that NETSIM2 has the highest LFC score in

all 109 ECs, while NETSIM, Relevance and Wang mea-
sure have the highest LFC score in 40, 17 and 24 ECs
respectively (Fig. 5a).

Similarly, NETSIM2 performs the best in all tested mea-
sures based on biological process category in arabidopsis
data (Fig. 4b, Table 4). The median and 75th percentile of
LEC scores for NETSIM?2 are 1.94 and 3.75, which are sig-
nificant higher than the second-best measure NETSIM,
which are 0.47 and 1.19 respectively (Fig. 4b and Table 4).
In addition, Only NETSIM2 performs best in 276 ECs
in the testing set arabidopsis ECs (Fig. 5b). For all ECs,
NETSIM?2 performs best, while the second best method
performs best on 170 ECs.

In evaluation on both molecular function and bio-
logical process category, NETSIM2 improves more on
arabidopsis data than yeast data. The reason may be
that yeast data in GO is more complete than ara-
bidopsis data. Therefore, incorporating co-functional net-
work can improve the performance significantly on the
arabidopsis data.

Conclusions

Gene Ontology (GO) is one of the most popular bioinfor-
matics resources used to describe the properties of genes
and gene products. Calculating GO-based gene functional
similarity has been widely used in multiple research areas.
However, the low-quality similarity may result from the
incomplete information of GO and the limited amount of

Table 4 The LFC scores of five methods for the biological
process category on Arabidopsis data

Method Resnik Relevance Wang NETSIM NETSIM2
25% 0.07 0.15 0.17 0.12 0.002
50% 0.17 043 040 047 1.94
75% 042 1.03 091 1.19 3.75
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annotations in GO. A recent measure, named NETSIM,
addresses these problems by considering both gene-gene
associations, GO DAG and annotations. Unfortunately,
only the local association information in gene co-function
network was used, since NETSIM only considers the
direct link in the network.

In this paper, we proposed a novel network-based
method, named NETSIM2, by considering the global
structure of the co-functional network with a RWR-based
method, and by selecting the significant term pairs to
decrease the noise information. NETSIM2 includes three
steps: firstly, given a gene co-functional network, the rel-
evance scores between two genes are calculated based on
a random walk with restart method; secondly, the similar-
ity between two GO terms is calculated by combining the
information from co-functional network and GO; finally,
the significant GO-term pairs are selected to measure
the similarity of two genes using a standard score-based
method. Experimental results using ECs on both molec-
ular function and biological process category show that
NETSIM?2 performs the best among all the measures on
both yeast and Arabidopsis data set. It also shows that
NETSIM2 can significantly improve the performance of
semantic similarity measurement especially on the incom-
plete species. It is note that we have proposed NETSIM in
our previous work to incorporate co-function network to
GO-based semantic similarities, which can be considered
as a simplified case of NETSIM?2.
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