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Abstract

Background: Cell surface proteins have provided useful targets and biomarkers for advanced cancer therapies. The
recent clinical success of antibody-drug conjugates (ADCs) highlights the importance of finding selective surface
antigens for given cancer subtypes. We thus attempted to develop stand-alone software for the analysis of the cell
surface transcriptome of patient cancer samples and to prioritize lineage- and/or mutation-specific over-expression
markers in cancer cells.

Results: A total of 519 genes were selected as surface proteins, and their expression was profiled in 14 cancer
subtypes using patient sample transcriptome data. Lineage/mutation-oriented analysis was used to identify
subtype-specific surface markers with statistical confidence. Experimental validation confirmed the unique
over-expression of predicted surface markers (MUC4, MSLN, and SLC7A11) in lung cancer cells at the protein
level. The differential cell surface gene expression of cell lines may differ from that of tissue samples due to
the absence of the tumor microenvironment.

Conclusions: In the present study, advanced 3D models of lung cell lines successfully reproduced the predicted
patterns, demonstrating the physiological relevance of cell line-based 3D models in validating surface markers from
patient tumor data. Also QSurface software is freely available at http://compbio.sookmyung.ac.kr/~qsurface.
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Background
Cell surface proteins have provided major targets and
biomarkers for anticancer therapies. In colorectal cancer,
the expression of surface proteins such as CDH17,
CD138 and members of the integrin family is related
with tumor progression [1]. Another surface protein,
SEZ6L2 was identified a novel prognostic marker in
non-small cell lung cancer (NSCLC) [2]. Epidermal
growth factor receptor (EGFR) is over-expressed cell
types and plays a key role in cancer progression. Indeed,
many drugs targeting EGFR have been developed [3]. In

addition, HER2, a plasma membrane-bound protein and
member of the ErbB family, is significantly over-
expressed in 10–15% of breast cancers, referred to
HER2-positive breast cancer [4, 5].
More recently, cell surface proteins have been success-

fully used as targets for antibody-drug conjugates (ADC)
as part of cancer therapy [6–8]. ADCs are composed of
antibodies for targeting and cytotoxic drugs and linker
proteins for attaching to and cleaving the target. Once
ADCs reach and attach to the target antigen on the cancer
cell surface, receptor-mediated endocytosis internalizes the
antibody and cytotoxic drug. Thus, surface antigens for
ADCs should exhibit tumor-specific expression for the se-
lective targeting of ADCs, and facilitate receptor-mediated
endocytosis. A complete list of tumor-specific cell surface
markers will help identify potential antigens for this type
of advanced therapy.
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The Cancer Genome Atlas (TCGA) is one of the largest
datasets from pan-cancer analyses [9]. The released multi-
omics dataset includes genome, transcriptome and prote-
ome data for tissue samples from thousands of cancer
patients, covering ~ 30 cancer types. The proteome data-
set, generated using reverse-phase protein arrays (RPPA),
is limited in the availability of specific antibodies [10]. For
TCGA, the expression data for a few hundred proteins are
available [11]. However, TCGA transcriptome data in-
cludes the expression profiles of ~ 20,000 genes, enabling
the identification of selectively overexpressed genes
corresponding to surface proteins [12].
As an analysis tool to find differentially expressed

genes, cBioPortal [13, 14] is useful but has limitation of
comparative analyses using two or more omics datasets.
For example, cBioPortal doesn’t provide extensive ana-
lyses using both somatic mutation and gene expression
datasets. In addition, cell surface genes and proteins are
not classified in cBioPortal.
In the present study, we developed stand-alone software,

QSurface, to analyze lineage- and/or mutation-specific cell
surface transcriptome marker from cancer patients’ sam-
ples obtained from TCGA. Selected expression markers
were validated at the protein level using lung adenocarcin-
oma (LUAD) cell lines. Notably, the gene expression of
extracellular/membrane proteins exhibits inconsistent pat-
terns between cell lines and patient tissue samples [15]. In
the present study, we attempted to overcome this problem
using advanced 3D sphere-based assays which provided a
physiologically relevant microenvironment for the tested
cell lines [16]. The present software and assay method will
provide fast and efficient tools to identify novel tumor-
specific cell surface markers for advanced cancer therapies
such as ADCs.

Method
Data acquisition
RNA sequencing version 2 (RNASeqV2) data from pa-
tients’ tumor and normal tissue samples were downloaded
from TCGA website (http://cancergenome.nih.gov/) in
2015. The RNASeqV2 data were sequenced using the
Illumina HiSeq 2000 and Illumina Genome Analyzer (GA)
platforms. We selected 658 tumor samples with matched
normal samples obtained from the same patient in 14
cancer types, satisfying the requirement more than 10
samples (Additional file 1: Table S1). The expression level
of each gene was normalized using RNA-Seq by Expect-
ation Maximization (RSEM) count estimates method and
we converted the data to the log2 scale. For breast invasive
carcinoma (BRCA), two tumor patients were duplicated
using primary and metastatic samples. We excluded two
metastasis samples.
TCGA provides multi-dimensional datasets, which

means that one samples has genotype and expression

data together. We obtained the somatic mutation dataset
from cBioPortal. The curated dataset has been processed
from published literature. Somatic mutations are curated
and annotated with information of variant effects, pre-
dicted from SIFT [17] and Polyphen-2 [18] algorithms.
To analyze only non-synonymous mutations including
truncating mutation and deleterious missense mutation,
we excluded neutral mutations predicted from two
algorithms. The criteria of non-synonymous mutations
are SIFT score < 0.05 or Polyphen-2 score > 0.85. Gene
expression data were integrated with these processed
mutation data. After annotating tumor samples, 555
tumor samples are remained for analysis (Additional
file 1: Table S1).

Selection of cell surface genes
We selected ‘cell surface’ (Gene Ontology term
GO:0009986) from the cellular components category to
identify cell surface genes from the AmiGO website,
October 2016 [19, 20]. A total of 524 genes belonging to
the ‘cell surface’ category were located in the external
part of the cell wall or plasma membrane. Among of
these genes, 519 genes remained for analysis after
mapping using the TCGA RNASeqV2 data.

Statistical analysis
To identify differentially expressed cell surface genes, we
used log2 delta and t-test P-values. We calculated log2
delta as the average difference in the expression levels
for lineage-specific cell surface genes between tumor
and normal samples and for mutation-specific cell sur-
face genes between mutant and wild-type tumor samples
per lineage.

2D cell culture
Three types of cell lines, an STK11 mutant type (A549,
H460, H23, and H1993), STK11 wild type (H522, H322M,
HCC-827, and H1975), and STK11-recoverd type (A549-
STK11, H460-STK11, H23-STK11, and H1993-STK11)
were used for validation experiments. HCC-827 and
H1975 cells were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA), respect-
ively. All other STK11 mutant and wild-type cell lines were
obtained from the National Institutes of Health, National
Cancer Institute (NCI, Frederick, MD, USA). STK11 mu-
tant cell lines and wild-type cell lines were cultured in
RPMI 1640 (HyClone Laboratories, Logan) supplemented
with 10% fetal bovine serum (HyClone Laboratories) and
1% antibiotics (GIBCO BRL, Thermo Fisher Scientific).
STK11-recoverd cell lines were cultured in the same
medium with added 1μg/ml puromycine. A total of 1~ 3 ×
105 cells per well were seeding on a 6well culture plate for
monolayer cell culture during 5 days.

Hong et al. BMC Systems Biology 2018, 12(Suppl 2):17 Page 2 of 130

http://cancergenome.nih.gov


3D cell culture
Cancer stem-like cell (CSLC) spheres were cultured in
serum-free conditioned DMEM/F-12 medium supple-
mented with 20-ng/ml EGF, 20-ng/ml basic fibroblast
growth factor, and B27 (Thermo Fisher Scientific). The
cells were maintained in a humidified atmosphere of 5%
CO2 and 95% air at 37 °C and the culture medium was
refreshed every 2 to 3 days. The culture plates for stem-
like cells (SLCs) were coated with a 5-mg/ml solution of
poly-2-hydroxyethyl methacrylate (Sigma-Aldrich) in
95% ethanol. The same amount of cells as 2D cell
culture was seeded in a 6-well plate for sphere culture.

Western blot
Total cell extracts were prepared by incubating the cells in
lysis buffer (RIPA Cell lysis buffer containing 150 mM so-
dium chloride, 1% Triton X-100, 1% sodium deoxycholate,
0.1% SDS, 50 mM Tris-HCl, pH 7.5, and 2 mM EDTA,
sterile solution, GenDEPOT) on ice for 30 min. Cell debris
was removed by centrifugation, and the total protein levels
in the supernatants were quantified using the Bradford
method (Bio-Rad). Equal amounts of protein (50 μg) were
heated at 95 °C for 5 min, electrophoretically resolved
using 12% SDS-PAGE, and then transferred to nitrocellu-
lose membranes (Millipore). The membranes were
blocked with TBST [20 mM Tris-HCl, pH 7.6, and 0.1%
Tween-20] containing 5% skim milk for 1 h and then
hybridized as indicated to specific primary antibodies

(1:1000 dilution) at 4 °C overnight. The membranes were
washed and hybridized to HRP-conjugated secondary
antibodies for 1 h at room temperature. Specific bands
were visualized using an enhanced chemiluminescence
(ECL) detection system (Thermo, Logan, UT, USA) and
an LA3000 luminescence image analyzer (Fujifilm, Tokyo,
Japan). Antibodies against MUC4 and SLC7A11 were pur-
chased from Abcam PLC. Antibodies against Mesothelin
and GAPDH were purchased from Cell Signaling.
GAPDH was used as a loading control. The anti-STK11
antibody was purchased from Santa Cruz.

Results and discussion
Implementation of QSurface
We implemented QSurface, a tool for exploring lineage-
and/or mutation-specific gene expression of all potential
surface proteins (Fig. 1a). Genes for surface proteins
were defined using the category information in Gene
Ontology database [20].
Users can browse differential gene expression of 29

known target antigens that are currently under phase I
or II clinical trials [6, 21, 22] (Additional file 1: Table
S2). Candidate genes are separated into two groups,
overexpressed in diverse tumors and over-expressed in
specific tumors.
To identify lineage-specific gene expression, users can

search differentially expressed genes by selecting a spe-
cific lineage, for example, lung adenocarcinoma tumor

Fig. 1 Overview of QSurface. a Graphical user interface of QSurface front page. b Snapshot of lineage-oriented profiling for lung adenocarcinoma (LUAD)
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LUAD (Fig. 1a). A volcano plot is used to display the ex-
pression differences between tumor and normal samples.
Firstly, a total of 20,531 genes and 519 cell surface genes
are visualized in grey and yellow colors, respectively.
The significant differentially expressed genes are shown

in red color in the plot and listed as a table after submit-
ting criteria (log2Delta > 1.0 and P-value < 0.01) in the
top of the window (Fig. 1b upper). By clicking a hit gene
(SLC7A11) from the list, the box plot and the waterfall
plot will be popped up to show the expression pattern
between tumor and normal samples and the lineage spe-
cificity (in this case LUAD) among all samples for the
selected hit gene SLC7A11 (Fig. 1b bottom). Lastly, the
comparison of gene expression pattern between tumor
and normal samples among all cancer types is available
for the hit gene by clicking “Comparison plot” in the
bottom of the window.
Furthermore, mutation-specific hits can be also

displayed by adding mutation criteria together with
lineage information. Users can obtain over-expressed
hits enriched in mutant samples over wild type samples
for a given lineage. The overall data processing and
analytical flow are described in Fig. 2.
To summarize, QSurface is a tool to analyze lineage-

and/or mutation-specific gene expression of all potential
surface proteins between tumor and normal samples or

Fig. 2 Dataflow and data processing of QSurface. Lineage-oriented
profiling uses paired tumor and normal samples in RNA sequencing
data, and mutation-oriented profiling uses somatic mutation data
and only tumor samples in RNA sequencing data

Fig. 3 Hierarchical clustering of cell surface genes and known antigens for ADCs. a A heatmap of 519 cell surface genes and 14 cancer types.
Heatmaps of ADC target genes differentially expressed on the diverse cancer types in (b) and other ADC target differentially expressed on the
specific cancer types in (c). Cancer types are described in parentheness and significantly overexpressed target genes (log2Delta > 1 and p
value < 0.01) in the specific cancer type are shown in red. QCanvas was used to cluster and draw heatmaps [32]
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mutant and wild-type samples. It is helpful to find
potential cell surface marker using difference of gene
expression with statistical confidence. QSurface is a
stand-alone Java tool that can be run on any operating
system. JavaStat and JFreeChart library packages were
used to calculate Student’s t-test and draw all plots,
respectively.

Lineage-based analysis of cell surface genes and known
target antigens
We analyzed the profile of 519 cell surface genes in 14 can-
cer lineages to show how many genes are over-expressed
on diverse tumor samples or specific tumor samples via
normal samples. The differentially expressed genes were
classified into 5 groups (Fig. 3a). The genes Cluster 1 and 2
were over-expressed in multiple diverse lineages, while
those in Cluster 5 were over-expressed in a subset of

lineages and down-regulated in lung, prostate and liver can-
cer types. However, the genes belonging to Clusters 3 and 4
were relatively down-regulated in tumors compared to nor-
mal samples. Many of the genes in Cluster 4 were uniquely
overexpressed in the kidney cancer type (KIRC). The
lineage-wide distribution of all genes and 519 cell surface
genes, and potential cell surface maker genes is shown in
Additional file 1: Fig. S1.
Some of target antigens for ADCs are known to be

expressed on tumor and normal tissue [23]. For example,
target antigens over-expressed on specific cancer type,
SLC34A2, translating NaPi2b, have high expressed in nor-
mal patients [24]. In case of RCC, membrane EGFR was
expressed higher than tumor samples via normal samples.
But the expression of cytoplasmic EGFR protein is lower
than normal samples [25]. As described in Section 3.1, a
total of 29 known target antigens of ADCs were analyzed

Fig. 4 Comparison of MUC4 (a), MSLN (b) and SLC7A11 (c) expression profiles in 14 cancer types. Patient tumor samples with STK11 mutation
and the corresponding normal samples are colored in red and blue, respectively. The number of patient samples with STK11 mutation BRCA = 1,
HNSC = 1 and LUAD = 6
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in Fig. 3b and c. The 17 target antigens of ADCs which
were known as over-expressed on diverse tumors, are ac-
tually classified into two groups (Fig. 3b). The upper clus-
ter (CA6, KIT, EGFR, ITGA5, EPHA2, F3, FGFR2, FOLR1
and MSLN) exhibited lineage-dependent, limited expres-
sion patterns, while the bottom cluster (CA9, DDL3,
EFNA4, LYPD3, TPBG, CDH3, PVRL4, and TACSTD2) is
over-expressed on diverse tumors. The other 12 antigens
of ADCs which were known as over-expressed on specific
tumors, showed the over-expression on diverse lineages
(Fig. 3c). Our analysis confirmed that seven genes (CD70,
ENPP3, ERBB2, SLC44A4, FOLH1, SLC39A6 and
STEAP1) were significantly over-expressed in the kn0own
target lineages (in red), except ENPP3 in KIRP with
log2Delta 1.06 and P-value 0.03.

Identification of mutation-specific expression of surface
genes
We analyzed the mutation-oriented profiles of gene ex-
pression in diverse lineages using QSurface. For example,
the genes MUC4, MSLN, and SLC7A11 were predicted as
STK11 mutation-specific cell surface markers in lung can-
cer samples (Fig. 4). Although MUC4 is not annotated
using a ‘cell surface’ GO term, this transmembrane glyco-
protein is differentially expressed on diverse cancer cell
types, including LUAD [26, 27]. In the present study,
MUC4 over-expression was observed in LUAD tumors
compared to normal samples. Interestingly, this over-
expression was highly associated with STK11 mutation in
LUAD samples (log2Delta = 2.76, P-value = 0.002) (Fig.
4a). MSLN (or Mesothelin) is a known target gene
over-expressed by the cells of solid tumors, particularly
mesothelioma and LUAD [28]. MSLN-targeted ADC can-
didates are currently under investigation in phase I/II

clinical trials for diverse cancer types. In the present ana-
lysis, we observed that MSLN expression was selectively
associated with STK11 mutant samples (log2Delta = 4.74,
P-value = 9.E-04) (Fig. 4b). Lastly, SLC7A11 is classified as
a cell surface GO term, and this gene is known to be
highly expressed by colon, kidney, and liver cancer cells
[29]. Mutation-oriented analysis also revealed the strong
association of SLC7A11 expression with STK11 muta-
tions. The present mutant-oriented analysis of surface
markers improved the statistical confidence in the select-
ivity of the expression of these genes in diverse cancer lin-
eages. In the present study, MUC4, MSLN, and SLC7A11
showed high log2Delta values of 2.76, 4.74, and 1.55, with
P-values of 0.002, 9.e-04, and 0.04, respectively.

Validation of surface markers with advanced 3D assays
Cancer cell culture system are classified into two-
dimensional (2D) and three-dimensional (3D) cancer
models [30]. Compared to a typical 2D monolayer can-
cer model, the 3D model mimics the in vivo environ-
ment because solid tumors grow in three-dimensions
creating a unique microenvironment and facilitating
cell-cell communication [31]. We measured the protein
expression of the three surface markers (MUC4, MSLN
and SLC7A11) in lung cell lines under 2D and 3D cul-
ture conditions. In the 2D system, the expression
showed no difference between the STK11 mutant and
wild-type cell lines of LUAD (Fig. 5a, Additional file 1:
Fig. S2). However, the protein level of MUC4, MSLN,
and SLC7A11 were significantly increased in STK11 mu-
tant cell lines (Fig. 5b), confirming the transcription-
level prediction of QSurface from patient samples. This
result demonstrates the physiological relevance of the
3D sphere model for reproducing the expression feature

Fig. 5 Comparison of MUC4, MSLN, SLC7A11 protein expression among STK11 mutant, recovered, and wild-type cell lines in 2D and 3D culture
models. (a) P-values in 2D culture model are 0.04, 0.23, and 0.11 for MUC4, MSLN, and SLC7A11 resp. (b) P-values in 3D culture model are 0.01,
0.11, and 0.008 for the same order

Hong et al. BMC Systems Biology 2018, 12(Suppl 2):17 Page 6 of 130



of surface markers identified or predicted from patient
samples. This validation confirms that QSurface provides
useful and reliable tools for identifying mutation/
lineage-specific surface markers and/or target antigens
for ADCs.

Conclusions
This study presents QSurface, rapid and efficient tools to
identify novel tumor-specific cell surface markers for ad-
vanced cancer therapies. QSurface provides two analyzing
method, lineage−/ and mutation-oriented profiles. To iden-
tify potential surface genes, QProfile used fold changes to
find sensitivity of gene expression on given conditions. By
using QSurface, we obtained 3 STK11-mutant specific ex-
pression markers, MUC4, MSLN, and SLC7A11 in LUAD.
Furthermore, advanced 3D cell line models of lung cancer
successfully reproduced the predict patterns by QSurface.
And it demonstrates the physiological relevance of cell
line-based 3D models with patient tumor data and con-
firms that QSurface is useful and reliable tools for identify-
ing mutation/lienage-specific cell surface markers.

Additional files

Additional file 1: Table S1. Data description of TCGA RNA sequencing
data. Table S2. List of antibody-drug conjugates. Figure S1. Distribution
of tumor sample-specific gene expression in 14 cancer types. Totally
20,531 genes, 519 cell surface marker, and significant cell surface hits
(log2Delta > 1 and p-value < 0.01) are illustrated in grey, yellow, and red,
respectively. Figure S2. Western blot analysis of the MUC 4, MSLN and
SLC7A11 expression on STK11 mutant, restored and wild type cell lines.
(A) gene expression on STK11 mutant, restored and wild-type cell lines
on 2D culture status and (B) on 3D culture status. (DOCX 1902 kb)
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