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Abstract

Background: Expression-based phenotype classification using either microarray or RNA-Seq measurements suffers
from a lack of specificity because pathway timing is not revealed and expressions are averaged across groups of cells.
This paper studies expression-based classification under the assumption that single-cell measurements are sampled
at a sufficient rate to detect regulatory timing. Thus, observations are expression trajectories. In effect, classification is
performed on data generated by an underlying gene regulatory network.

Results: Network regulation is modeled via a Boolean network with perturbation, regulation not fully determined
owing to inherent biological randomness. The binary assumption is not critical because the resulting Markov chain
characterizes expression trajectories. We assume a partially known Gaussian observation model belonging to an
uncertainty class of models. We derive the intrinsically Bayesian robust classifier to discriminate between wild-type
and mutated networks based on expression trajectories. The classifier minimizes the expected error across the
uncertainty class relative to the prior distribution. We test it using a mammalian cell-cycle model, discriminating
between the normal network and one in which gene p27 is mutated, thereby producing a cancerous phenotype.
Tests examine all model aspects, including trajectory length, perturbation probability, and the hyperparameters
governing the prior distribution over the uncertainty class.

Conclusions: Simulations show the rates at which the expected error is diminished by smaller perturbation
probability, longer trajectories, and hyperparameters that tighten the prior distribution relative to the unknown true
network. For average-expression measurement, methods have been proposed to obtain prior distributions. These
should be extended to the more mathematically difficult, but more informative, expression trajectories.

Keywords: Intrinsically Bayesian robust classifier, Optimal Bayesian classifier, Bayesian trajectory classifier, Single-cell
expression trajectory, Gene regulatory network, Boolean network, Bayesian partially observed Boolean dynamical
system

Background
Phenotype classification is a salient issue for translational
genomics, for instance, classification of normal versus
cancerous cells, of different stages of tumor development,
or different prospective drug response. Both expression
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microarray and RNA-Seq measurements have received
much interest; however, they suffer from a lack of speci-
ficity. First, pathway timing is not reflected in the data and,
second, expressions are averaged across groups of cells,
so that individual cell responses are not detectable. New
technologies are being developed for profiling individual
cells using RNA-Seq or quantitative PCR [1]. Individual
cells can be captured via standard methods, such as flow
cytometry, glass capillaries, or laser [2], and be measured
at various time points.
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Genes have interactions with each other, which can
determine how they are behaving over time and define
the dynamics of gene regulatory networks (GRNs). One
way of showing the dynamics of GRNs over discrete time
points is Boolean networks with perturbation (BNp) [3].
A BNp is a Markov chain, in which the state of a gene
(0 for off and 1 for on) at the current time is a function of
the states of its predictor genes at the previous time plus a
small random Boolean noise. Network inference could be
done using RNA-Seq time series measurements [4].

Suppose we have single-cell measurements sampled
with a sufficient rate to detect regulatory timing. In effect,
this would mean that classification would be done on data
reflecting an underlying gene regulatory network. In [5]
we proposed a classifier to classify the state trajectories
of the two classes: wild-type and mutated, each having its
own BNp. We derived the Bayes classifier and computed
the Bayes error. We analyzed the effects of the length
of the trajectories, perturbation probability, and different
mutations on the Bayes error.

In [6] and [7] we assumed an observation model on
the state dynamics of the BNps, from which the expres-
sion values of the genes are obtained. As the parameters
of the model were all unknown and the network func-
tions were partially known, we proposed an expectation-
maximization (EM)-based algorithm to estimate these
parameters and functions, and then plugged them into
the Bayes classifier. In [6] we assumed that the expres-
sion trajectory data come from single-cell measurements
and compared that with a multiple-cell scenario, in which
instead of trajectories we have the averaged expressions of
all genes over all cells, which translates to an average over
all states.

In this paper we extend the single-cell trajectory classifi-
cation to the Bayesian framework. We propose the intrin-
sically Bayesian robust (IBR) classifier for the trajectorires.
The IBR classifier is a specific type of the obtimal Bayesian
classifier (OBC), first introduced in [8, 9] for the classifica-
tion of static data. In fact, the difference between the OBC
and IBR classifiers is that in the OBC the expectation of
the class-conditional densities is taken over the posteriors
of the parameters to obtain the effective class-conditional
densities, whereas in the IBR classifier the expectation
is taken over the priors. The IBR/OBC concept has been
applied to linear and morphological filtering [10, 11],
and IBR Kalman filtering [12]. Regarding the prior dis-
tributions, prior construction methods using the pathway
knowledge have been studied in the literature, such as
[13, 14]. Bayesian methods for finding differentially expressed
genes can be used for the aim of classification [15].

Here we apply the IBR classifier to the classification of
trajectories. As opposed to [6, 7], where we estimate the
parameters, here we assume that the parameters belong to
an uncertainty class governed by a prior distribution. We

assume that there are two classes: wild-type (S = 0) and
mutated (S = 1). We introduce a Bayesian version of the
partially observed Boolean dynamical system (POBDS),
proposed in [16], as the observation model. We use a beta
prior distribution for the prior probability of the class
S = 0 and also for the gene perturbation probability. Since
the observation model given the states is Gaussian, we
employ the normal-gamma distribution as the prior dis-
tribution of the mean and precision (inverse of variance)
of the Gaussian model.

In the simulation part, we employ a mammalian cell-
cycle gene regulatory network [17] consisting of 10 genes
as the BNp for the class S = 0 and its mutated version as
the BNp for the class S = 1. We analyze the effects of all
the hyperparameters of the model and the length of the
observed trajectories on the classification error. The pro-
posed classifier is computationally efficient because we
use the sum-product method to reduce the complexity to
m × 2n, where m is the length of the observed trajectory
and n is the number of genes in the network. Being linearly
dependent on time points, m, makes the classifier very fast
even for longer trajectories.

Methods
In a Boolean network (BN) for n genes, each gene value
xi ∈ {0, 1}, for i = 1, · · · , n, at time k + 1 is determined by
the values of some predictor genes at time k via a Boolean
function fi : {0, 1}n → {0, 1}. In practice, fi is a function
of a small number of genes, Ki, called the in-degree of the
gene xi in the network. The in-degree of the network is
K = maxi=1,··· ,n Ki. A gene network can be represented as
a graph with vertices representing genes and edges repre-
senting regulations. There is a state diagram of 2n states
corresponding to the truth table of the BN, representing
the dynamics of the network. Given an initial state, a BN
will eventually reach a set of states, called an attractor
cycle, through which it will cycle endlessly. Each initial
state corresponds to a unique attractor cycle, and the set of
initial states leading to a specific attractor cycle is known
as the basin of attraction (BOA) of the attractor cycle.

State model
We allow stochasticity in our state model by using Boolean
networks with perturbation (BNps) instead of determin-
istic BNs. For BNps, perturbation is introduced with a
probability pk by which the state of a gene in the network
can be randomly flipped at time k. We assume that there is
an independent identically distributed (i.i.d.) random per-
turbation vector at each time k, denoted by nk ∈ {0, 1}n,
such that the i-th gene flips at time k if the i-th component
of nk is equal to 1. Therefore, the dynamical model can be
expressed as

Xk+1 = f(Xk) ⊕ nk+1, k = 0, 1, 2, · · · , (1)
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where Xk = [x1(k), x2(k), · · · , xn(k)]T is a binary state
vector, called a gene activity profile (GAP), at time k, in
which xi(k) indicates the expression level of the i-th gene
at time k (either 0 or 1); f = [

f1, f2, · · · , fn
]T : {0, 1}n →

{0, 1}n is the vector of the network functions, in which
fi shows the expression level of the i-th gene at time
k + 1 when the system lies in the state Xk at time k;
nk = [n1(k), n2(k), · · · , nn(k)]T is the perturbation vec-
tor at time k, in which n1(k), n2(k), · · · , nn(k) are i.i.d.
Bernoulli random variables for every k with the param-
eter pk = P(ni(k) = 1) for i = 1, · · · , n; and ⊕ is
component-wise modulo 2 addition.

The existence of perturbation makes the corresponding
Markov chain of a BNp irreducible. Hence, the network
possesses a steady-state distribution π describing its long-
run behavior. If pk is sufficiently small, π will reflect
the attractor structure within the original network. We
can derive the transition probability matrix (TPM) if we
know the truth table and the perturbation probability of
a BNp. As a result, the steady-state distribution π can be
computed as well.

Prior for state parameter
In this paper, we assume that we know the underlying
Boolean networks for both the wild-type and mutated
classes, and the only uncertain parameter at the state level
is the perturbation probability pk . Since 0 < pk < 1, we
can employ the beta prior for pk , for all k = 1, 2, · · · , as

g(pk) ∼ Beta(a, b) = �(a + b)

�(a)�(b)
pa−1

k (1 − pk)
b−1, (2)

where a and b are known parameters. Since in reality pk
is close to zero, we can choose a and b in such a way that
this fact is satisfied. To this end, we can use the mean and
variance of pk :

E
[
pk
] = a

a + b
, Var

[
pk
] = ab

(a + b)2(a + b + 1)
.

(3)

Observation model
We define a Bayesian partially-observed Boolean dynami-
cal system (BPOBDS) as the model for the gene expression
data. In this model, we assume that the gene expressions
come from Gaussian distributions whose parameters are
governed by prior distributions whose parameters (the
hyperparameters of the observations) are a function of the
hidden Boolean states. If yj(k) is the expression value of
the j-th gene at time k, then the observation model is

p
(
yj(k)|θj(k), λj(k)

) ∼ N
(
θj(k), λj(k)−1) , (4)

for j = 1, 2, · · · , n and k = 1, 2, · · · , where θj(k) and
λj(k) denote the mean and precision, respectively, of the
Gaussian distribution.

Priors for observation parameters
We employ the well-known normal-gamma prior distri-
bution for θj(k) and λj(k):

p(λj(k)) ∼ Gamma(α0, β0),
p(θj(k)|λj(k), xj(k)) ∼ N

(
μj(k), (κ0λj(k))−1) ,

where μj(k) = μ0 + δ0xj(k), (5)

where α0, β0, κ0, μ0, and δ0 are known positive hyperpa-
rameters, and xj(k) is the hidden Boolean state of gene j at
time k. The intuition behind the prior (5) is that when gene
j at time k is on or off, that is, xj(k) = 1 or 0, the hyper-
mean of the expression for that gene is μj(k) = μ0 + δ0 or
μj(k) = μ0, respectively, at time k. In (5), μ0 is the base-
line expression level and δ0 is the expression coefficient.
The hyperparameters α0, β0, and κ0 determine the level of
uncertainty, by which we can control the variance of the
outputs. We assume the same values of hyperparameters
for all genes at all times.

IBR classifier
If one knows the feature-label distribution, then the error
of any classifier can be found and an optimal (Bayes)
classifier minimizes classifier error. If the feature-label dis-
tribution is unknown but belongs to an uncertainty class

 of feature-label distributions, then we desire a classifier
to minimize the expected error over the uncertainty class.
Given a classifier ψ , from the perspective of mean-square
error (MSE), the best error estimate minimizes the MSE
between its true error (a function of parameter θ ) and
an error estimate. This Bayesian minimum-mean-square-
error (MMSE) estimate is given by the expected true error,
ε̂(ψ) = Eθ [ε(ψ , θ)], where ε(ψ , θ) is the error of ψ

on the feature-label distribution parameterized by θ and
the expectation is taken relative to the prior distribution
π(θ) [18].

An IBR classifier minimizes the Bayesian MMSE esti-
mate. If ψ (x) = 0 if x ∈ R0 and ψ (x) = 1 if x ∈ R1,
where x is a multidimensional vector of data, and R0 and
R1 partition the sample space, then [8]

ε̂ (ψ) = Eπ [c]
∫

R1
f
 (x|0) dx+(1 − Eπ [c] )

∫

R0
f
 (x|1) dx,

where

f
 (x|y) =
∫


y
fθy (x|y) π

(
θy
)

dθy

is the effective class-conditional density for class y, 
y
being the space for θy, fθy (x|y) is the class-conditional den-
sity, and c is the prior probability of the class 0. The IBR
classifier is given by [8]

ψIBR (x) =
⎧
⎨

⎩

0 if Eπ [c] f
 (x|0) ≥
(1 − Eπ [c] ) f
 (x|1)

1 otherwise
. (6)
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Trajectory-based IBR classifier
Let 
s = [

p2:m, θ1:n(1 : m), λ1:n(1 : m)
]

denote the param-
eters of the class S = s, for s = 0, 1, where p2:m
means the parameters p2, p3, · · · , pm, and similarly for
θ1:n(1 : m) and λ1:n(1 : m). Furthermore, let fs denote the
Boolean network function of the class S = s and X =
[X1, X2, · · · , Xm] denote the Boolean state trajectory at m
consecutive times points at which Y has been observed.
The n × 1 Boolean vector Xk = [x1(k), x2(k), · · · , xn(k)]T

has the states of the n genes at time k, which are hidden
and not observed.

Suppose that we obtain the expressions of n genes at
m consecutive time points. Let Yk = [

y1(k), · · · , yn(k)
]T

denote the n × 1 expression vector of n genes at time k,
and Y = [Y1, · · · , Ym] denote a time trajectory of length
m, containing the expression vectors at the m consecutive
times. The problem is to optimally classify this observed
trajectory Y to the class 0 (wild-type) or class 1 (mutated).
Let c and 1 − c be the prior probabilities of the class S = 0
and class S = 1, respectively. Since we are uncertain about
c, we use a beta prior

g(c) ∼ Beta (ac, bc) = � (ac + bc)

�(ac)�(bc)
cac−1(1−c)bc−1, (7)

with mean

E[c] = ac
ac + bc

, (8)

where ac and bc are known parameters.
According to (6), the IBR classifier for the trajectories is

ψIBR(Y) =
⎧
⎨

⎩

0 if E[c] p(Y|S = 0) ≥
(1 − E[c] )p(Y|S = 1)

1 otherwise
, (9)

where p(Y|S = s) is the effective class-conditional density
of the trajectory Y in the class S = s for s = 0, 1.

Effective class-conditional densities of trajectories
The joint distribution of Y , X , and 
s given the class S = s
can be factorized as

p (Y ,X , 
s|S = s) = g(p2:m)P (X |p2:m, S = s)
× p (Y|θ1:n(1 : m), λ1:n(1 : m))

× p (θ1:n(1 : m), λ1:n(1 : m)|X ) .
(10)

In deriving (10), it is assumed that the state parame-
ters {p2:m} are independent of the observation parameters

{θ1:n(1 : m), λ1:n(1 : m)}. Due to the independence
assumption in the priors,

g(p2:m) =
m−1∏

k=1
g(pk+1)

=
m−1∏

k=1

�(a + b)

�(a)�(b)
pa−1

k+1(1 − pk+1)
b−1,

(11)

p (θ1:n(1 : m), λ1:n(1 : m)|X )

=
m∏

k=1

n∏

j=1
p(θj(k)|λj(k), xj(k))p(λj(k))

=
m∏

k=1

n∏

j=1

1
√

2π(κ0λj(k))−1

β
α0
0

�(α0)

× exp
(

− (θj(k) − μj(k))2

2(κ0λj(k))−1

)

λj(k)α0−1 exp(−β0λj(k)).

(12)

If we assume that the conditional expressions, given the
parameters, of the n genes at m time points are indepen-
dent, the likelihood of Y given the parameters in (10) can
be written as

p (Y|θ1:n(1 : m), λ1:n(1 : m))

=
m∏

k=1

n∏

j=1
p
(
yj(k)|θj(k), λj(k)

)

=
m∏

k=1

n∏

j=1

1
√

2πλj(k)−1
exp

(

− (yj(k) − θj(k))2

2λj(k)−1

)

.

(13)

We should note that the independency assumption
in (13) is only for the observations, whereas the genes
have interactions at the state level, following the under-
lying Boolean network, so that they cannot be consid-
ered independent. Due to the Markov property in (1),
p (X |p2:m, S = s) in (10) can be factored as

P(X |p2:m, S = s) =

P(X1|S = s)
m−1∏

k=1
P(Xk+1|Xk , pk+1, S = s),

(14)

where P(Xk+1|Xk , pk+1, S = s) is the probability of tran-
sitioning from state Xk at time k to state Xk+1 at time
k + 1, given the perturbation probability pk+1, in the class
S = s, and P(X1|S = s) is the probability of the first
state X1 in the class S = s. Let xi denote the n × 1
Boolean vector of the state i, for i = 1, 2, · · · , 2n. Given the
perturbation probability pk+1, the conditional transition



Karbalayghareh et al. BMC Systems Biology 2018, 12(Suppl 3):23 Page 5 of 37

probability matrix (TPM) at time k + 1, which is a 2n × 2n

matrix, in the class S = s can be derived from (1) as

A(s)
i,j (k + 1) = P

(
Xk+1 = xj|Xk = xi, pk+1, S = s

)

= pd(xj ,fs(xi))
k+1 (1 − pk+1)

n−d(xj ,fs(xi)),
(15)

where d
(
xj, fs

(
xi)) is the Hamming distance between the

two Boolean vectors xj and fs
(
xi).

For obtaining p(Y|S = s), we need to integrate out the
joint distribution p(Y ,X , 
s|S = s) in (10) with respect to

s and X :

p (Y|S = s) =
∑

X

∫


s
p (Y ,X , 
s|S = s)

=
∑

X

{

P(X1|S = s)
m−1∏

k=1

∫

pk+1

g(pk+1)p
d(Xk+1,fs(Xk))
k+1

× (1 − pk+1)
n−d(Xk+1,fs(Xk))dpk+1

×
m∏

k=1

n∏

j=1

∫

θj(k)

∫

λj(k)

p
(
yj(k)|θj(k), λj(k)

)

×p
(
θj(k)|λj(k), xj(k)

)
p
(
λj(k)

)
dθj(k)dλj(k)

}
.

(16)

Fortunately, as the priors are conjugate, we can analyti-
cally solve the integrals in (16). We will use the following
lemmas to do so.

Lemma 1 Let P = (0 1) be the domain of pk+1. The
following equation holds:

K1 �
∫

P
g(pk+1)p

d(Xk+1,fs(Xk))

k+1

× (1 − pk+1)
n−d(Xk+1,fs(Xk))dpk+1

= �(d(Xk+1, fs(Xk)) + a)�(n − d(Xk+1, fs(Xk)) + b)

�(a)�(b)�(a + b + n)�(a + b)−1 .

(17)

Proof See Appendix 1 in Additional file 1.

We assume that the observations Y occur in the steady
state. As a result, in (16), P(X1|S = s) is the steady-state
probability of the state X1 in the class S = s, for s = 0, 1.
The following lemma gives the steady-state distribution.

Lemma 2 Let π
(s)
i = P

(
X1 = xi|S = s

)
denote the

steady-state probability of the i-th state in the class S = s,
and π(s) =

[
π

(s)
1 , · · · , π(s)

2n

]
be the 1 × 2n vector of the

steady-state distribution. Then π(s) can be calculated from

π(s) = π(s)M(s),
2n∑

i=1
π

(s)
i = 1, (18)

where M(s) is the transition probability matrix of the class
S = s with the entries

M(s)
i,j = �

(
d
(
xj, fs

(
xi))+ a

)
�
(
n − d

(
xj, fs

(
xi))+ b

)

�(a)�(b)�(a + b + n)�(a + b)−1 .

(19)

Proof See Appendix 2 in Additional file 1.

Lemma 3 Let 
 = (−∞ ∞) and � = (0 ∞) be the
domains of θj(k) and λj(k), respectively, for j = 1, · · · , n,
and k = 1, · · · , m. The following equation holds:

K2 �
∫




∫

�

p(yj(k)|θj(k), λj(k))

× p(θj(k)|λj(k), xj(k)) p(λj(k)) dθj(k)dλj(k)

= 1
(2π)

1
2

(
κ0
κ1

) 1
2 �(α1)

�(α0)

β
α0
0

β
α1
1

,

(20)

where

κ1 = κ0 + 1,

α1 = α0 + 1
2

,

β1 = β0 + κ0
(
yj(k) − μ0 − δ0xj(k)

)2

2(κ0 + 1)
.

(21)

Proof See Appendix 3 in Additional file 1.

Summing out X
Using (16), (17), (19), and (20), we have

p(Y|S = s) =
∑

X1

· · ·
∑

Xm

⎧
⎨

⎩
π

(s)
X1

m−1∏

k=1

�(d(Xk+1, fs(Xk)) + a)�(n − d(Xk+1, fs(Xk)) + b)

�(a)�(b)�(a + b + n)�(a + b)−1

×
m∏

k=1

n∏

j=1

1
(2π)

1
2

(
κ0
κ1

) 1
2 �(α1)

�(α0)

β
α0
0

β
α1
1

⎫
⎬

⎭
.

(22)

We use the sum-product algorithm [19] to efficiently
compute the summation in (22). Define the 2n × 1 vector
�(k) by

�i(k) =
(

β
α0
0

(2π)
1
2

(
κ0

κ0 + 1

) 1
2 �

(
α0 + 1

2
)

�(α0)

)n

×
n∏

j=1

⎡

⎢
⎣β0 +

κ0
(

yj(k) − μ0 − δ0xi
j

)2

2(κ0 + 1)

⎤

⎥
⎦

−(α0+ 1
2
)

,

(23)

for i = 1, · · · , 2n, where xi
j is the j-th entry of the Boolean

state xi. We define an auxiliary 2n ×1 vector �(s)(k) at the
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time k, for k = 1, · · · , m, which is initialized and updated
as follows:

�(s)(1) =
(
π(s)

)T ◦ �(1),

�(s)(k + 1) =
[

M(s)T
�(s)(k)

]
◦ �(k + 1), (24)

for k = 1, · · · , m − 1, where T denotes the transpose,
and ◦ is the Hadamard product. Once we have calculated
�(s)(m), the summation of (22) is equal to the l1 norm
‖ �(s)(m) ‖1, which is the summation of the all 2n entries
of �(s)(m). Therefore, (22) can be written as

p(Y|S = s) =‖ �(s)(m) ‖1 . (25)

Results and discussion
In this section, we consider a mammalian cell-cycle gene
regulatory network [17], depicted in Fig. 1, for evaluating
our proposed trajectory-based IBR classifier. This GRN
consists of n = 10 genes, whose interactions are shown
in Fig. 1. The Boolean functions of the corresponding
Boolean network for this GRN are given in Table 1 [17].
We define class S = 0 as the wild-type class, whose net-
work function f0 is in Table 1. The value of the gene CycD
is determined by extracellular signals, and we assume it is
f1 = 0. According to [17], one mutated case which leads to
cancer is when the gene p27 in the network is shut down
and cannot be activated by its regulating genes, that is,
f3 = 0. Therefore, we define class S = 1 as the mutated
class with the network function f1, which is the same as
Table 1 with f3 = 0. We analyze the effects of the hyperpa-
rameters and m on the classification error in Figs. 2, 3, 4, 5,
6, 7, 8 and 9. In the simulations, we have set ac = bc = 10

Fig. 1 Mammalian cell-cycle gene regulatory network

and μ0 = 10. Therefore, the prior probability c of the class
S = 0 will have the mean value E[c] = 0.5.

Figure 2 shows the classification error versus m for a =
1, 3, 5, when the values of the other hyperparameters are
b = 100, α0 = 100, β0 = 104, δ0 = 40, and κ0 = 100.
We see that the classification error decreases by increas-
ing m and converges to zero. This means that for long
enough trajectories we can have perfect classification. The
value of the hyperparameter a determines the amount of
uncertainty for the gene perturbation probability pk at
time k. From a biological perspective, we know that pk
should be small. As a result, we have chosen b = 100, and
a = 1, 3, 5, leading to the mean values of pk , respectively,
as E

[
pk
] = a

a+b ≈ 0.01, 0.03, 0.05. For a given b, the big-
ger value of a allows a wider range of pk , which results in
higher classification error.

Figure 3 represents the classification error versus m for
different values of α0 and β0, when a = 1, b = 100, δ0 =
40, and κ = 100. As the precision (inverse of variance)
has a Gamma(α0, β0) distribution, its mean and variance
are equal to E [λ] = α0

β0
and Var [λ] = α0

β2
0

= E[λ]
β0

. Figure 3
shows the error curves for the two cases α0

β0
= 10−3 and

2 × 10−3, each having a different value of β0, leading to a
different variance of λ. As such, we can see the effects of
both the mean and variance of the precision λ. Whenever
α0
β0

increases, there is lower variance in the outputs, which
results in lower errors. We also notice from Fig. 3 that for
a given value of α0

β0
, increasing β0 decreases the error, the

reason being that increased β0 yields lower variance for
the precision.

Figure 4 plots the error versus α0 for a = 1, 3, 5, when
m = 5, b = 100, δ0 = 40, κ0 = 100, and β0 = 105. For all
values of a, the classification error is a decreasing function
of α0. Similarly, Fig. 5 gives the error versus β0 for a =
1, 3, 5, when α0 = 10 and the other hyperparameters are
the same as in Fig. 4. Figure 5 shows an increasing trend
of classification error as β0 grows.

Figure 6 shows the error as a function of a, when m = 5,
b = 100, δ0 = 40, κ0 = 100, α0 = 100, and β0 = 105.
When a grows, the uncertainty of the perturbation proba-
bility grows as well. The error is an increasing function of
a. Similarly, Fig. 7 is for error versus b, when a = 1, and the
others are the same as in Fig. 6. In Fig. 7 the classification
error is decreasing as b increases.

Figure 8 illustrates the error versus κ0, for m = 5,
a = 1, b = 100, δ0 = 40, α0 = 100, and β0 = 105.
From (5), the hyperparameter κ0 controls the variance
of the mean parameters θj(k). When κ0 increases, the
uncertainty of θj(k) is reduced and its density peaks at
μ0 and μ0 + δ0 for the unexpressed and expressed states,
respectively. Consequently, we expect better error rates
for higher κ0. Accordingly, in Fig. 8 the classification error
is a decreasing function of κ0.
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Table 1 Definitions of Boolean functions for the wild-type mammalian cell-cycle BN with 10 genes

Order Gene Regulating function

x1 CycD f1 = Extracellular signals

x2 Rb f2 = (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ CycD ∧ CycB)

x3 p27 f3 = (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ (CycE ∧ CycA) ∧ CycD ∧ CycB)

x4 E2F f4 = (Rb ∧ CycA ∧ CycB) ∨ (p27 ∧ Rb ∧ CycB)

x5 CycE f5 = (E2F ∧ Rb)

x6 CycA f6 = (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10)) ∨ (CycA ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10))

x7 Cdc20 f7 = CycB

x8 Cdh1 f8 = (CycA ∧ CycB) ∨ Cdc20 ∨ (p27 ∧ CycB)

x9 UbcH10 f9 = Cdh1 ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))

x10 CycB f10 = (Cdc20 ∧ Cdh1)

Figure 9 illustrates the error versus δ0, the expression
coefficient, for m = 5, a = 1, b = 100, κ0 = 100,
α0 = 100, and β0 = 105. Having larger δ0 means that
the mean values of data for each gene in the unexpressed
and expressed cases are well separated, which leads to
lower classification error. As expected, in Fig. 9 the error
is decreasing as δ0 gets larger.

Conclusions
In this paper, we propose a trajectory-based intrinsically
Bayesian robust classifier for classification of single-cell
gene-expression trajectories. We assume that the expres-
sions of the n genes, whose interactions are known in
terms of a Boolean network, are observed in m consecu-
tive time points, for both the wild-type class (S = 0) and
mutated class (S = 1). As the parameters have uncertainty,
we assign priors for them. We assume a beta distribution
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Fig. 2 Classifier error versus m in cell-cycle network

as a prior for both the probability of the class S = 0 and the
gene perturbation probabilities at each time. We assume
a normal-gamma distribution for the mean and preci-
sion of the expressions at each time and for each gene,
given the underlying states. As such, we derive closed-
form solutions for the effective class-conditional densities
of the trajectories in each class, by which we define the
IBR classifier. The performance of the IBR classifier is
evaluated in a cell-cycle gene regulatory network with 10
genes, for which we know the Boolean networks of the
two classes. We have analyzed the effects of m and all the
hyperparameters on the classification error.

In this paper we have assumed the form of the prior
distributions, including the hyperparameter values. Once
this is done, the analysis is mathematical: derive the effec-
tive class-conditional densities. As is generally the case
with Bayesian methods, two issues arise: how are the
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Fig. 3 Classifier error versus m in cell-cycle network
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Fig. 4 Classifier error versus α0 in cell-cycle network

priors developed and how robust are the methods to
the prior assumptions? Both issues have been extensively
studied in regard to the OBC, of which the IBR classifier is
the special case in which there is no update to a posterior.

In [9] robustness of the OBC relative to various mod-
eling assumptions has been investigated, including false
assumptions on the covariance structure and falsely
assuming Gaussianity. In [20], similar robustness issues
have been considered for the MMSE error estimator,
which is required for defining the OBC.
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Fig. 5 Classifier error versus β0 in cell-cycle network
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Fig. 6 Classifier error versus a in cell-cycle network

Regarding prior construction, the question is how to
transform existing scientific knowledge into a prior distri-
bution. Because the IBR classifier and other IBR filtering
methods involve prior distributions on the underlying sci-
entific model, for instance, the stochastic process (power
spectra) in Wiener filtering and the feature-label distri-
bution in classification, uncertainty arises from insuffi-
cient scientific knowledge, the prior characterizes that
uncertainty, and, in effect, constrains the optimization rel-
ative to that uncertainty. For IBR/OBC classification in
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Fig. 7 Classifier error versus b in cell-cycle network
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Fig. 8 Classifier error versus κ0 in cell-cycle network

the context of uncertain gene regulatory networks, prior
construction methods based on constrained optimization
have been developed for both Gaussian [21] and discrete
[22] gene regulatory networks under the assumption of
static observations. Future work involves extending these
prior-construction methods to trajectories, which should
be possible, albeit, with more difficult mathematical anal-
ysis and substantially more computation.

Another issue to be addressed in future work is extend-
ing the trajectory-based IBR classifier to optimal Bayesian
classification, which will require analytic representation
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Fig. 9 Classifier error versus δ0 in cell-cycle network

of the effective class-conditional densities relative to a
posterior distribution derived from the prior distribution
utilizing sample data.
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