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Abstract

Background: Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes
leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a
new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a
reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle
atrophy.

Results: The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic
and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a
phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and
two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation
results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins,
i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition
recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the
evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin
and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle
atrophy reported in the Comparative Toxicogenomics Database (p-value < 0.05). Furthermore, we noticed that they
included several proteins that could not be characterized by the shortest path analysis. The three potential targets, i.e.
BMPR1B, ROCK, and LEPR, were manually validated with the literature.

Conclusions: In this study, we suggest a new approach to predict potential therapeutic targets of muscle atrophy with
an analysis of phosphorylation status simulated by Petri net. We generated a list of the potential therapeutic
targets whose inhibition recovers abnormally phosphorylated proteins in an atrophic state. They were evaluated
by various approaches, such as Western blotting, GO terms, literature, known muscle atrophy-related genes and
shortest path analysis. We expect the new proposed strategy to provide an understanding of phosphorylation
status in muscle atrophy and to provide assistance towards identifying new therapies.
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Background
Muscle atrophy is defined as the involuntary loss of
muscle mass, resulting in low quality of life, morbidity
and mortality [1]. It is associated with various diseases,
such as heart failure [2], chronic kidney disease (CKD)
[3] and cancer-cachexia [4], that occur in 80% of patients
with advanced cancer [5]. In recent years, many re-
searchers have been devoted to discovering drugs for
muscle atrophy. For example, Enobosarm, launched by
the biotech firm GTx in 2011, is a molecule that binds
to the testosterone receptor in the muscle in order to
stimulate muscle build-up [5]. Bimagrumab is an anti-
myostatin antibody developed by Novartis that prevents
myostatin (one of the main factors inducing muscle
atrophy) from activating the ACTRIIB receptor [1]. Un-
fortunately, these drugs have shown limited effects on
muscle atrophy [5, 6], and therefore new therapeutic
strategies are required for treating muscle atrophy. Here,
we present a new systematic approach to predict thera-
peutic targets for muscle atrophy.
For therapeutic target prediction, the effects of gene

inhibition (knock-down) are necessarily analyzed with a
general assumption that most drugs inhibit their targets.
shRNA knockdown, one of the in-vitro experiments, is a
popular and typical tool for the purpose. However, it is
time-consuming and labor-intensive to perform the ex-
periments in genome-scale, especially with a specific dis-
ease condition (e.g. atrophic state in this case). Thus, in
this study, we employed the Petri net, an in-silico
method, which enables dynamic simulations on a large-
scale network with incomplete kinetic parameters [7].
The Petri net facilitates genome scale analysis with low
cost and short time. Due to this beneficial characteristic,
Petri net has been frequently used to model and simu-
late perturbations of biological signaling networks in
previous studies. For example, the Lee D group applied
efficient dynamic simulation of EGF-induced signal
transduction pathways with colored Petri net [8]. In
Derek Ruths’ work, the signaling Petri net-based simulator
was employed for the MAPK and AKT signaling network
in breast cancer cell lines for computing the response to
TSC2 and mTOR inhibitions [9]. In addition, the Jin
group proposed an enhanced Petri net model to predict
the synergistic effects of drug combinations, which was
simulated for signaling pathways and protein-protein in-
teractions related to EGFR and BCL2 [10].
In this study, we focused on phosphorylation status in

an atrophic state. Phosphorylation plays one of the key
regulatory roles in signal transduction by sequentially ac-
tivating/deactivating various proteins and enabling cells
to respond to external stimuli [11]. Due to their import-
ant roles, abnormally phosphorylated proteins are in-
volved in many diseases [12, 13]. In muscle atrophy, as
well, some proteins are abnormally phosphorylated, such

as FOXO and SMAD [14, 15]. Here, we assumed that
muscle atrophy could be treated if abnormally phosphor-
ylated proteins in the atrophic state are recovered.
Therefore, in this study, a potential therapeutic target
for muscle atrophy is defined as a gene whose inhibition
is capable of recovering phosphorylation status from the
atrophic state, which is depicted in Fig. 1.
We predicted therapeutic targets for muscle atrophy

by analyzing phosphorylation status among reference,
atrophic and each gene-inhibited state, which were com-
puted by Petri net simulations on large-scale phosphor-
ylation network. Here, we developed a phosphorylation-
specific Petri net model whose token represents the
amount of phosphate and that involves two types of
transitions (phosphorylation or de-phosphorylation) and
two types of places (activation with or without phos-
phorylation). The difference between the phosphoryl-
ation status of reference and atrophic states were
validated by Western blotting experiments detecting five
marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1
and FOXO3. Among 331 kinases and phosphatases, all
of which link to the five validated marker proteins in the
integrated network, we generated 37 potential thera-
peutic targets whose inhibition recovers the five abnor-
mally phosphorylated proteins in atrophic states. The
predicted therapeutic targets were validated by the genes
associated to muscle atrophy reported in the Compara-
tive Toxicogenomics Database (CTD) [16], and they
were compared with that of the shortest path analysis.
Furthermore, they were evaluated by the enriched gene
ontology terms and KEGG pathways, and three of them
(i.e. BMPR1B, ROCK, and LEPR) were verified by litera-
ture evidence.

Methods
Methods overview
A myocyte-specific phosphorylation network consisting
of 1985 nodes (protein) and 7283 edges (phosphoryl-
ation and de-phosphorylation) were constructed from
four public databases, i.e., KEGG pathway [17], DEPOD
[18], PhosphoNetworks [19] and Human Protein Atlas
[20] (Fig. 2a). Firstly, on the myocyte-specific phosphor-
ylation network, the phosphorylation status of reference
and atrophic states were computed by employing a
phosphorylation-specific Petri net model devised in this
study (Fig. 2b). Then, the saturated phosphorylation sta-
tus of the pre-determined marker proteins, which are
known to be abnormally phosphorylated in the atrophic
state, were validated by Western blotting experiments
(Fig. 2c). For therapeutic target prediction, we addition-
ally performed 331 Petri net simulations on the atrophic
state with each gene inhibition (Fig. 2d, ith gene-
inhibited state). Then, we selected proteins whose inhib-
ition recovers the phosphorylation status from atrophic
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to reference state in terms of the five validated proteins
in (Fig. 2c, e, and f). Finally, the predicted therapeutic
targets were evaluated using the genes associated to
muscle atrophy reported in CTD and by literature evi-
dence (Fig. 2g).

Phosphorylation network construction
We constructed an integrated phosphorylation network,
whose nodes represent proteins and whose edges repre-
sent either phosphorylation or de-phosphorylation. To

this end, we retrieved phosphorylation and de-
phosphorylation interactions from three databases, the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway [17], the Dephosphorylation Database (DEPOD)
[18] and PhosphoNetworks [19]. KEGG pathway is a
collection of manually drawn pathways representing
various molecular interaction and reactions, where 3529
phosphorylation and 1140 de-phosphorylation interac-
tions were extracted. DEPOD is a manually curated de-
phosphorylation database collecting interactions between

Fig. 1 Strategy for identifying potential therapeutic targets for muscle atrophy. We have a list of marker proteins showing different phosphorylation
status in atrophic compared to reference states. Gene K inhibition on the atrophic state recovers their phosphorylation status to that of reference state,
whereas gene Q inhibition deepens the phosphorylation status to that of atrophic state. Thus, in this example, gene K has more potential to be a
therapeutic target for muscle atrophy

a b c

d e f

g

Fig. 2 Methods overview
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human phosphatases and their substrates, where 888 de-
phosphorylation interactions were extracted. PhosphoNet-
works contains kinase-substrate relationships retrieved
from recent high-throughput protein microarrays as well
as manually curated literature, where 4337 phosphoryl-
ation interactions were extracted.
The kinases, phosphatases and their substrate proteins

in the extracted interactions were mapped to Entrez ID.
We deleted 215 duplicated interactions and removed 10
conflicted interactions with literature evidence, which
resulted in 9669 interactions (7737 phosphorylation and
1932 de-phosphorylation interactions) among 2326 pro-
teins. In order to consider muscle cell (myocyte)-specific
conditions on the constructed network, we removed in-
teractions that included non-detected proteins in myo-
cytes reported in The Human Protein Atlas [20]. This
finally resulted in 7283 interactions (5891 phosphoryl-
ation and 1392 de-phosphorylation interactions) among
1985 proteins, which consist of 409 kinases, 117 phos-
phatases and the other 1459 proteins that are not char-
acterized as kinases and phosphatases but only their
substrates. The statistics are summarized in Fig. 3a.
A phosphorylation or de-phosphorylation event occurs

when the enzyme, such as kinase or phosphatase, is acti-
vated. We needed to determine the activation condition
of the 409 kinases and 117 phosphatases in terms of
their phosphorylation status because we utilize phos-
phorylation status, instead of activity status, in the Petri
net model. We basically assume that most kinases and
phosphatases are activated with phosphorylation. This is
based on several reports in the literature showing that
phosphorylation leads to an activation of the substrate
[21, 22] and an external stimuli leads to the consecutive
activation of several down-stream kinases with phos-
phorylation (phosphorylation cascade) [23]. However, we
do not believe that all kinases and phosphatases are

activated with phosphorylation. Among the 409 kinases
and 117 phosphatases, we characterized 19 kinases and
6 phosphatases that are activated without phosphoryl-
ation (i.e. inhibited with phosphorylation) based on the
information in KEGG pathways. Here, we determined
that an enzyme K is activated without phosphorylation
if both activation and de-phosphorylation or both in-
hibition and phosphorylation are concurrently assigned
for a certain enzyme Q to K in KEGG pathways. The
other 390 kinases and 111 phosphatases were regarded
to be activated with phosphorylation based on the as-
sumption (Fig. 3b).

Petri net configuration
In the Petri net model used in this study, the proteins
are represented by places (1985 places), and phosphoryl-
ation and de-phosphorylation interactions are repre-
sented by transitions (7283 transitions), and the amount
of phosphates is represented by the number of tokens,
an integer. The amount of phosphates in a specific pro-
tein (the phosphorylation status) is represented by the
number of tokens in the corresponding place, whose
value is an integer that is equal to or greater than zero.
For the purpose of the study, we developed a
phosphorylation-specific Petri net configuration that in-
volves two types of transitions and two types of places,
which is quite different from a typical Petri net model.
There are two types of transitions, phosphorylation

(5891 transitions) and de-phosphorylation (1392 transi-
tions), whose corresponding Petri net transitions were
depicted in Fig. 4a. Basically, the number of tokens in an
input place is not changed by any firing transition, which
reflects that the phosphorylation reaction of an enzyme
(kinase or phosphatase) does not change the amount of
phosphates of itself. On the other hand, the number of
tokens in an output place increases by one when a

a b

Fig. 3 Network configuration. a Statistics of the edges and nodes in the network (b) Statistics of the kinases and phosphatases, which are a part
of the nodes, according to an activation condition
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phosphorylation is fired, and it decreases by one when a
de-phosphorylation is fired. It reflects real phosphoryl-
ation/de-phosphorylation that attach/remove phosphates
to/from a substrate. The number of tokens enabling
transitions (enabling threshold) was determined as 35,
which is the most robust among eleven candidate
thresholds (refer to the enabling threshold of the Petri
net model in Methods).
We also presented the two types of places as intro-

duced in the above section. It should be noted that the
criteria for the two types of places is an activation condi-
tion of the enzymes, such as activation with phosphoryl-
ation or without phosphorylation, and not a function of
the enzymes, such as kinase or phosphatase that has
been already considered in transitions. For an input
place that is activated with phosphorylation (309 kinases
and 111 phosphatases), its transition is enabled when
the number of tokens in the input place is greater than
the enabling condition, 35. On the other hand, for an in-
put place that is activated without phosphorylation (19
kinases and 6 phosphatases), its transition is enabled
when the number of tokens in the input place is less
than 35 (Fig. 4b).

Petri net simulation
We performed Petri net simulations on the phosphoryl-
ation network for three states, i.e. reference, atrophic
and each gene-inhibited state. To reduce computation
time in the massive simulations on the large-scale net-
work, we partially adopted the Petri net simulation pro-
cedure presented in Derek Ruths’ work [9]. In one Petri
net simulation, we first set a random value between zero
and twice the enabling threshold (i.e. 70) to every place,
which is a random initial marking, where a marking is a
distribution of tokens over all places. Then, for each 100
blocks, we generate a list of transitions in a random
order, i.e., a shuffled transition list. For each transition in

the shuffled transition list, we apply state-specific pertur-
bations (Fig. 5b) and check if the transition is enabled,
followed by firing the transition if it is enabled (Fig. 5a).
In state-specific perturbations, there is no perturb-

ation for the reference state. On the other hand, for
atrophic state, high activity is assigned to myostatin
that is a protein inhibiting muscle cell growth and in-
ducing muscle atrophy [24]. This perturbation is con-
sistent with the Western blotting condition that
continuously treats the myostatin to normal muscle for
its transition to atrophic muscle. Due to the absence of
myostatin from the network, we assigned high activity
to its direct targets instead of myostatin itself. In each
gene-inhibited state, we set zero activity to each place
on the atrophic state (Fig. 5b). Here, among 526
phosphorylation-related enzymes (409 kinases and 117
phosphatases), we only performed 331 gene-inhibited
state simulations for 256 kinases and 72 phosphatases
that are linked to the five validated markers in wet ex-
periments (see Intermediate validation of the Petri net
model in Methods). After performing all transitions in
the shuffled transition list, we executed a biological
degradation process by reducing 10% of the tokens in
every place and write the resulting marking to a file.
Due to randomness in assigning the initial marking

and shuffling transition list, 10 Petri net simulations
were performed for the reference, atrophic and each
gene-inhibited state, respectively (10 iterations). We no-
ticed that tokens were saturated at the final block (the
100th block) for most places in all three states, and for
each state we computed the phosphorylation status of
1985 proteins by averaging the final markings (the mark-
ing of 100th block) of the 10 iterations. As a result, we
obtained the phosphorylation status of 1985 proteins in
one reference, one atrophic, and 331 gene inhibited
states (Fig. 5c). All of the Petri net simulations were per-
formed by Python codes developed in this study.

a b

Fig. 4 Petri net configuration for the two types of transitions and the two types of places. a Two types of transitions in the Petri net model that
depict phosphorylation and de-phosphorylation. b Two types of places in the Petri net model that apply different enabling conditions
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Intermediate validation of the petri net model
From three Western blotting experiment papers [15, 25–27],
atrophy marker proteins were collected as six proteins
(RELA, SMAD2, SMAD3, FOXO1, FOXO3 and AKT1)
showing different phosphorylation states between normal
and myostatin-induced atrophic muscle. The myostatin-
induced atrophic muscle is induced by treatment with
myostatin to normal muscle in a certain period, which
is consistent with the Petri net configuration for atro-
phic state that gives high activity to the myostatin
place. The Western blotting results show that three
proteins are hyper-phosphorylated (RELA, SMAD2,

SMAD3) and the others are hypo-phosphorylated
(FOXO1, FOXO3, AKT1) in an atrophic muscle com-
pared to normal muscle (Fig. 6a).
For the six marker proteins, the differences in the

simulation results between reference and atrophic state
were compared to those of the Western blotting experi-
ments in Fig. 6a. Here, we did not focus on the amount
of changes, but rather the directions of the changes. As
a result, we observed the same directions of changes in
the five proteins (RELA, SMAD2, SMAD3, FOXO1, and
FOXO3) except for the AKT1 protein (Fig. 6b). An im-
perfection in the phosphorylation network might be one

c

a b

Fig. 5 A high-level procedure of Petri net simulations for three states and their results. a Common procedures for all of three states except for
state-specific perturbations. b State-specific perturbations for each of three states. Before checking each transition, we give perturbations to relevant
places according to each state. For the reference state, there is no perturbation. For the atrophic state, high activity is assigned to myostatin
that induces muscle atrophy. For each gene-inhibited state, zero activity is assigned to each place on the atrophic state. c Simulation results.
The final markings (the marking of 100th block) of the ten iterations were averaged to get the phosphorylation status for one reference, one
atrophic and 331 gene inhibited states

a b

Fig. 6 The changes in phosphorylation status for six marker proteins. a The changes measured in Western blotting between normal and atrophic
muscle. b The changes calculated in Petri net simulation between reference and atrophic state. We identified the coincident directions of changes in
the five proteins (RELA, SMAD2, SMAD3, FOXO1, and FOXO3)
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of the reasons for the inconsistency with AKT1 protein.
With these coincident directions in the five proteins, we
decided to use the five validated proteins as the marker
proteins to predict potential of therapeutic targets. As
mentioned in the above section, Petri net simulations in
the gene-inhibited state were only performed for 331
genes that link to these five validated markers.

Enabling threshold of the petri net model
The Petri net simulation results highly depend on the
enabling threshold we selected. Thus, we selected the
most robust threshold, i.e. 35, among the eleven enab-
ling thresholds (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and
50). To do this, for each enabling threshold, ten simula-
tions were performed in reference and atrophic states,
respectively, with consideration of randomness in assign-
ing initial marking and shuffling transition list. Then, for
each simulation, we generated a list of the ranked places
by their final marking (the marking of 100th block),
which describes the saturated phosphorylation status.
Among the ten list of the ranked places in an enabling
threshold, we calculated rank correlations in a pair-wise
manner with the spearman rank correlation, which results
in 45 rank correlations (except for the correlation of it-
self). When averaging the 45 rank correlations, the enab-
ling threshold of 35 yields the highest rank correlation
(0.791), which indicates that the threshold of 35 is the
most robust among the eleven thresholds. Thus, we de-
cided to use 35 as the enabling threshold (Additional file 1:
Figure S1).

Therapeutic target prediction
As the strategy introduced in Fig. 1, a potential thera-
peutic target for muscle atrophy is defined as a gene
whose inhibition is capable of recovering phosphoryl-
ation status from an atrophic state with respect to the
five validated marker proteins. To do this, for the five
validated marker proteins, we measured the directions
of changes from the reference to atrophic state, and we
also computed the directions of changes from the atro-
phic to each of 331 gene-inhibited states (Fig. 7). Then,
by comparing the two types of directions, we selected
the genes showing opposite directions in four or five
marker proteins among the five. To get more robust re-
sults, we executed each gene-inhibited state three times,
i.e., totaling 331*10*3 simulations, and we finally selected
the genes showing opposite directions in four or five
marker proteins in all three comparisons (Fig. 7).

Results
Characterized therapeutic targets
With the process introduced in the Methods, among
331 candidate enzymes, we finally characterized 37
therapeutic targets (30 kinases and 7 phosphatases)
whose inhibition recovers phosphorylation status from
an atrophic state in terms of the five marker proteins.
They are listed in the Additional file 2: Table S1 with the
number of markers recovered. For example, we plotted
the simulation results in the reference, atrophic and
PTPRS-inhibited states. The PTPRS is a member of the

Fig. 7 Selection process for potential therapeutic target prediction
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protein tyrosine phosphatase (PTP) that is determined
as one of the 37 potential therapeutic targets (Fig. 8). To
avoid a crowded figure, we only depicted simulation re-
sults of two places (SMAD3 and PTPRS) instead of all
1985 places. SMAD3 is one of the five marker proteins,
and we noticed that its phosphorylation status is greater
in atrophic state compared to the reference state, i.e.,
hyper-phosphorylation, in accordance with the Western
blotting experiments. Also, its status decreased in the
PTPRS-inhibited state compared to the atrophic state,
which indicates the recovery from the atrophic to refer-
ence state, which is a condition for a therapeutic target
in this study. To obtain the status in the PTPRS-
inhibited state, we averaged three simulation results.
The phosphorylation status of PTPRS is zero in the
inhibited state.

Enrichment analysis to GO terms and KEGG pathways
Functional enrichment tests were performed on the 37
potential therapeutic targets against Gene Ontology
(GO) terms and KEGG pathways [17, 28], and their
enriched terms (adjust p-value < 0.001) were specified in
Additional file 2: Table S2. We noticed that the enriched
GO terms include several actin-related terms such as
regulation of actin cytoskeleton organization, regulation
of actin filament bundle assembly, and regulation of
actin filament-based processes. Actin is one of the main
structural proteins in muscle, and it switches on the
serum-response factor (SRF) pathway that has a role in
muscle development and maintenance. Therefore, muta-
tions in the actin protein lead to alterations in the SRF
pathway that could promote muscle cell degeneration
and cause myopathy or muscular dystrophy [29]. The
enriched KEGG pathways also include one actin-related
pathway, i.e., regulation of actin cytoskeleton, and one
muscle contraction pathway, i.e., vascular smooth
muscle contraction.

Evaluation with genes associated with muscle atrophy in
the CTD
For an quantitative evaluation for the 37 potential targets,
we generated a list of genes associated with muscle atro-
phy (MESH: D009133) from the Comparative Toxicoge-
nomics Database (CTD) [16]. As the first evaluation, we
obtained the three proteins, i.e. AKT1, IGF1R, and
GSK3B, explicitly described as therapeutic targets of the
muscle atrophy, and they were compared to the 37 poten-
tial targets via the hypergeometric test, which yields
p-value of 0.034 (Additional file 2: Table S3). Then,
we increased the size of the gold standard set by adding
inferred genes in CTD up to 40 genes. To this end, the
muscle atrophy associated genes in CTD are sorted by
their inference scores, and we determined 20 (z-score >
1.43), 25 (z-score > 1.15), 30 (z-score > 0.89), 35 (z-score >
0.83), and 40 (z-score > 0.78) among 331 considered genes
as the gold standard. The hypergeometric tests were
performed on the 37 potential therapeutic targets with the
five gold standards, and their results are depicted in
Table 1 (refer to Additional file 2: Table S3 for more
detail description). As a result, three of five compari-
sons produced significant results (p-value < 0.05).
Here, the inferred genes in CTD are genes associated

with muscle atrophy, which include not only genes cur-
ing the disease (therapeutic targets) but also genes caus-
ing the disease (causing genes) as well as genes effected
by the disease (effected genes). It can be a reason for not
very high predictive power. In addition, an imperfect
network model also can be an explanation of this low
performance because there are still unknown phosphor-
ylation reactions in a cell.

Comparison to the shortest path analysis
Various types of proximity measures in biological net-
works have been developed to elucidate drug efficacies
or mechanisms [30]. Among them, the shortest path
analysis is typical and most widely used measure. For

Fig. 8 Plot of the simulation results in the reference, atrophic, and PTPRS-inhibited states. We only depicted two proteins, i.e., SMAD3 (one of the
five marker proteins) and PTPRS (inhibited protein), to avoid a crowded figure. The status of SMAD3 becomes lower in the PTPRS-inhibited than
the atrophic state that indicates the recovery from the atrophic to reference state, which is a condition for a therapeutic target in this study
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example, recently, the shortest path analysis has been
applied on multi-level biological networks for an infer-
ence of unknown drug-disease relationship [31]. In this
section, we compared the potential targets by Petri net
simulation to those inferred by the shortest path analysis
(SPA). To this end, we computed the average shortest
path length from each of the 331 candidate proteins to
the five marker proteins, and then, we selected the top
55 genes resulting in the shortest length, which are de-
termined as atrophy-related genes by the SPA. We tried
to get 37 genes, which is the same number of genes se-
lected in this study, for a fair comparison; however, 44
genes from 12th to 55th ranked genes have the same
shortest path length. A hypergeometric test between the
two sets of genes (the 37 genes by Petri net and 55 genes
by SPA) showed a non-significant result with p-value
0.136. This indicates that the Petri net-based potential
targets are not connected to the marker proteins within
a short length. We noticed that their shortest path
lengths yield a range from 2 to 5 and their average is
3.07, which is larger than the average shortest path
length of all 331 candidate proteins, 3.06. Among the 37
Petri net-based targets, 15 proteins are longer in length
than the overall average, 3.06. It could be frustrating be-
cause our results are not reproduced in a shortest path
analysis, which is one of the most popular static network
analysis. However, on the other hand, we think that Petri
net simulation can characterizes atrophy-related gene
sets, which cannot be predicted by the shortest measure.

Literature evidence
We validated several predicted therapeutic target genes by
literature searches. BMPR1B is a member of the bone
morphogenetic protein (BMP) receptor family, which is re-
ported as a positive regulator of muscle mass in Winbanks’
work [32]. Rho-associated kinase (ROCK) is a regulator of
the actomyosin cytoskeleton that induces contractile force
generation. Hudson’s group identified that ROCK is highly
correlated with the phosphorylation level of myosin phos-
phatase that regulates myosin light chains [33]. Moreover,
in Li’s experiments, an inhibitor of ROCK2 attenuated the
Angiotensin II induced contraction in human airway
smooth muscle cells [34]. LEPR is a receptor of leptin

hormone that regulates adipose-tissue mass, and its ex-
pression is highly up-regulated in the condition of skeletal
muscle disuse atrophy in humans [35].

Discussion
Among several well-known simulation tools including
Petri net, Random walk and ordinary differential equa-
tion (ODE), we consider that Petri net is the most ap-
propriate tool for this work. The size of the constructed
phosphorylation network is so large (7283 interactions)
that we cannot employ ODE, whose kinetic parameters
are incomplete. Additionally, it is not possible to employ
Random walk for this study that particularly focuses on
phosphorylation status, which involves two types of in-
teractions and two types of nodes.
We expected that myostatin direct targets, such as

ACVR1 and ACVR1B, would be included in the pre-
dicted therapeutic targets because their inhibition pro-
duces almost the same effect as the inhibition of
myostatin, which should recover the phosphorylation
status from an atrophic state for the all five marker pro-
teins; however, ACVR1 and ACVR1B are excluded.
When they were inhibited, the numbers of markers re-
covered are 5, 5, 3 for ACVR1 and 4, 5, 3 for ACVR1B
for the three simulations in the gene-inhibited state,
which does not satisfy the selection criteria for potential
therapeutic targets. We recognize that the criteria
should be modified so as not to miss such obvious tar-
gets, and this will be carried out in further work.

Conclusions
In this study, we suggested a new approach to predict
potential therapeutic targets for muscle atrophy based
on the phosphorylation status of the reference, atrophic
and gene-inhibited states, which were simulated by Petri
net. The simulation results between the reference and
atrophic states were validated with Western blotting ex-
periments detecting five marker proteins. We generated
a list of the potential therapeutic targets whose inhib-
ition recovers the five abnormally phosphorylated pro-
teins in the atrophic state, and they were evaluated by
various approaches, such as GO terms, the literature,
and genes associated with muscle atrophy. We expect
the new proposed strategy can provide an understanding
of phosphorylation status in muscle atrophy and provide
assistance towards identifying its therapeutics.

Additional files

Additional file 1: Figure S1. An average of rank correlations among ten
simulations in pair-wise manner for each of eleven thresholds. We se-
lected the enabling threshold 35 that show the highest rank correlation
in the reference and atrophic states. (DOCX 51 kb)

Table 1 Results of the hypergeometric test compared to
muscle atrophy-associated genes from the CTD

# of muscle atrophy associated
genes from CTD

p-value of hypergeometric
test

20 (z-score > 1.43) 0.172

25 (z-score > 1.15) 0.046

30 (z-score > 0.89) 0.036

35 (z-score > 0.83) 0.028

40 (z-score > 0.78) 0.059
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