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Abstract

Background: Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia that usually presents in infancy. In
order to explore the molecular mechanisms of wild and mutated samples from DBA patients were exposed to
bioinformatics investigation. Biological network of differentially expressed genes was constructed. This study aimed
to identify novel therapeutic signatures in DBA and uncovered their mechanisms. The gene expression dataset of
GSE14335 was used, which consists of 6 normal and 4 diseased cases. The gene ontology (GO), as well as Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and then protein—
protein interaction (PPI) network of the identified differentially expressed genes (DEGs) was constructed by
Cytoscape software.

Results: A total of 607 DEGs were identified in DBA, including 433 upregulated genes and 174 downregulated
genes. GO analysis results showed that upregulated DEGs were significantly enriched in biological processes,
negative regulation of transcription from RNA polymerase Il promoter, chemotaxis, inflammatory response, immune
response, positive regulation of cell proliferation, negative regulation of cell proliferation, response to mechanical
stimulus, positive regulation of cell migration, response to lipopolysaccharide, and defence response. KEGG pathway
analysis revealed the TNF signalling pathway, Osteoclast differentiation, Chemokine signalling pathway, Cytokine
-cytokine receptor interaction, Rheumatoid arthritis, Biosynthesis of amino acids, Biosynthesis of antibiotics and
Glycine, serine and threonine metabolism. The top 10 hub genes, AKTT, IL6, NFKB1, STAT3, STAT1, RAC1, EGRT, IL8,
RELA, RAC3, mTOR and CCR2 were identified from the PPl network and sub-networks.

Conclusion: The present study flagged that the identified DEGs and hub genes enrich our understanding of the

molecular mechanisms underlying the development of DBA, and might shine some lights on identifying molecular
targets and diagnostic biomarkers for DBA.
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Background
Diamond-Blackfan anemia (DBA) is a rare disease
mostly affecting child during infancy. This disease is
characterized by defect in red blood cells which result in
the reduction or absence of erythroid precursors in bone
marrow. The cephalic area is affected in most of the
cases but other parts such as heart, limb and tract were
also reported. This disease is a complicated disorder,
however, its evolution remains erratic [1, 2]. Diamond-
Blackfan anemia (DBA) is categorized as a rare genetic
diseases characterized by cancer predisposition, bone
marrow failure, pro-apoptotic haematopoiesis and
congenital anomalies. It is also known as the inherited
bone marrow failure syndromes (IBMFS) [3-5]. A wide
range of mutations have been identified in DBA patients,
from missense to nonsense mutations and from partial
to complete deletion of one allele. DBA is the only dis-
ease known to be caused by defect in ribosomal protein
[1, 2, 6, 7]. To date, DBA was reported as sporadic but
latest cases approximately 45% of cases are familial [8].
DBA can be caused by mutations in the RPL5, RPL11,
RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and
RPS26 genes [9]. However, RPS19 mutation account for
25% of the cases. RPS19 is one of the important proteins
which interact with 185 rRNA and form the ribosomal
small subunit 40S and perform its normal functioning of
translation [1, 6]. Other than protein synthesis, RPS19 is
also involved in many functions such as attraction of
monocytes. Loss of non-ribosomal function could be the
possible cause of DBA [10]. There is a case control study
reported that patient with DBA has reduced RPS gene
expression and so ribosomal synthesis defect is the
underlying cause of DBA [11]. Some missense mutations
in RPS19 was also reported to be involved in the reduc-
tion in the intracellular transport and stability of RPS19.
With such mutations in cells are also reported to reduce
differentiation and proliferation of erythroleukemic cell
lines or CD34+ [12-14]. Furthermore, Chiocchetti et al.
reported that RPS19 interact with PIM-1 oncoprotein in
DBA. RPS19 with FGF-2 and with some other proteins
of unknown function named S19-BP are also reported to
interact with each others [15—-17]. To date no definitive
treatment is available for this complicated disease.
Steroid therapy is widely used for the treatment which is
responsive in 60% of the patients but sometimes patients
suffered from severe complications such as iron over-
dose. DBA patients with steroid resistance required
blood transfusion for a life time. Some cases successfully
treated with interleukin-3 supplement [18], bone mar-
row transplantation [19] but not easy and affordable. It
is necessary to find a feasible and cost-effective way of
treatment.

Network based gene expression profiling is a proposed
methodology to discover therapeutic signatures by
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integrating multiple factors including disease genes, gene
expression intensities and proteins network [20-22].
Systems biology is one among such approaches, which
rely on a global approach by analyzing the whole
interacting network rather than a single protein, gene
or enzyme to be analyzed. Systems biology reported
that cellular protein does not function alone but these
genes/proteins are clustered together to form an in-
terconnected molecular networks to perform a spe-
cific function. Information regarding the individual
gene/protein and function of a living system can be
obtained through traditional approaches but systems
biology alternatively access the mechanism at a sys-
temic level. For this reason, systems biology employ
biological relationships to construct a network consist
of nodes (protein, enzyme, genes) interacting with an-
other partner [23-26].

Proteomics and transcriptomic modeling of molecular
networks from microarray data to discover potential bio-
markers in DBA has not yet been resolved. Therefore,
we used gene expression data by using computational
systems biology approach based on microarray dataset
analysis to identify the possible therapeutic gene/protein
signatures for the treatment of DBA. Initially statistical
approaches were applied to identify differentially
expressed genes (DEGs) based on nominal p-value and
false discovery rate (FDR). Furthermore, the subnetwork
modules were constructed and the obtained DEGs were
analyzed for the biological processes, molecular compo-
nents, KEGG pathways and cellular component analysis.
Finally, we mapped out hub genes from the differentially
expressed genes network that could act as possible drugs
targets.

Methods

Microarray data

Differential analysis of one channel microarray data (Ac-
cession No:GSE14335) [27] based on the GPL570 Affy-
metrix Human Genome U133A plus 2.0 Array platform
was retrieved from NCBI GEO (http://www.ncbinlm.
nih.gov/geo/) [28]. The dataset submitted by Avondo et
al. 2009 consists of ten samples including four DBA and
six control samples. Pre-processing and differential ana-
lysis of the dataset was carried out to conclude the final
results. In the pre-processing, a collectively phenotypic
and the samples information stored in .cel files were
combined to precisely approach the differential expression
step. The expression intensity values were subjected to
quantile normalization to remove the noise from the
microarray data [29] using an integrated GCRMA [30]
package of Rstudio v 3.0.2 [31]. Quantile normalization
is perhaps the most widely implemented method for
considering microarray data produced by Affymetrix
GeneChip platform. Following the normalization, an
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Table 1 The dataset divided into two groups based on mutation

No Group No Number of Samples Phenotype
1 Group | 4 RPS19 Mutated
2 Group Il 6 Normal

expression set was built which contain information re-
garding the assay probes, features, phenotype and the ex-
perimental setup. Based on the presence or absence of
RPS19 gene mutation, the data was divided into two
groups including the control and diseased (Table 1). The
methodolgical flow of the work as as defined by (ref [32])
is given in the Fig. 1.

DEGs screening

The expression set contains the log expression values was
used to design a model matrix to accurately adjust the
total 54,675 probes according to their phenotypic infor-
mation. This matrix includes a coefficient for the diseased
vs normal, rather than applying another approach to
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assign a separate coefficient to each condition and then
using a contrast to extract the difference. A pertinent stat-
istical test such as Student’s t-test [33] is applied to these
normalized gene expression levels. The resulting p-values
are adjusted by a multiple testing procedure (MTP) in
order to control certain quantity of per-family Type I
error, such as family-wise error rate (FWER) [34-36] and
false discovery rate (FDR) [37]. Differentially expressed
genes are identified based on a pre-specified threshold of
adjusted p-values. More detailed introduction of statistical
methods for detecting differentially expressed genes can
be found in [32, 38, 39]. Using Benjamin-Hochberg [40]
multiple testing method the FDR < 0.05 with fold-change
>1 and the adjusted p-value <0.05 was selected as the
threshold for DEGs identification.

Gene ontology and pathway enrichment analysis of DEGs
Gene ontology (GO) is a useful tool to annotate genes and
its products. Attributes of high throughput genomics and
transcriptomics data could be obtained through GO

-

Retrieval of Dataset
(GSE14335)

Samples Classification
(6 Control, 4 Diseased)

Analysis of the Data

DEGs Screening
Student’s t-test
multiple testing procedure (MTP)

Gene Ontology & Pathways
enrichment Analysis of DEGs

PPI Network Generation
and Analysis

Results

DEGs Screening
(FDR < 0.05 and fold-change = 1)
Total DEGs = 607
Upregulated= 433
Downregulated = 174

Aminoacids Biosynthetic,
Extracellular Region,
Receptor Binding,
Chemokine signaling

5 Top Sub-networks
and
10Hub genes were identified
(AKTI, IL6, NFKBI, STAT3, STAT1, RAC],
EGRI, IL8, RELA, RAC3, mTOR, CCR2)

results obtained from these analyses

Fig. 1 Schematic diagram for the gene expression dataset and protein-protein interaction network analysis. The flow is also showing the major




Khan et al. BMC Systems Biology 2018, 12(Suppl 4):39

analysis [41, 42]. KEGG (http://www.genome.jp/kegg/path-
way.html) provides a detail information about gene
function and pathways and also link the genomics
data with the high order functional information [43].
For the functional analysis DAVID (The Database for
Annotation, Visualization and Integrated Discovery)
(https://david.ncifcrf.gov/) is an essential online server
which can functionally annotate genes with high suc-
cess [44]. Here we used DAVID to label the mapped
DEGs to their functional class, pathways and GO en-
richment processes. A p-value <0.05 was defined as
significant threshold for the essential annotations.

Protein-protein interaction (PPI) network generation

PPI network of the total DEGs was retrieved from
STRING database [45] and GeneMANIA [46]. Current
STRING database contains 9,643,763 proteins and 2031
total organisms while GeneMANIA owned 747 data sets.
The interactions were loaded into the Cytoscape v 3.4
[47] and were analysed using different integrated
functions.

Network topological parameters

Numbers of topological parameters are available to
analyse and compare the network. Cytoscape is a
freely available software which provides an integrated
function “NetworkAnalyzer” to analyse the gene/pro-
tein network. Here we also used “NetworkAnalyzer” to
calculate the parameters for all the constructed net-
works. The primary parameters which were analysed
includes power law of node distribution, distribution
of node degree, clustering coefficient, network
centralization and density to distinguish the three
constructed networks [48].

Hub genes identification

Cytohubba is a well-known integrated plugin in
Cytoscape which analyse the network features and
rank the nodes in the network accordingly [49]. Cyto-
hubba uses 11 different methods to analyse the net-
work including the identification of hub genes/nodes
in a network. We used Cytohubba to find out the
hub genes in our constructed network of total DEGs
which could be the possible new drug targets for the
treatment of DBA.

Molecular complex detection analysis (MCODE)

MCODE is an automated algorithm which can be used as
an integrated plugin in Cytoscape provides a way to iden-
tify highly connected dense subnetwork in a PPI/gene net-
works [50]. To cluster the subnetworks in the total DEGs
we also used MCODE. The interconnected nodes in the
subgraphs were identified and selected for further analysis
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based on number of node. We used # > 10 as a parameter
for selecting highly interconnected sub-networks.

Results

Identification of differentially expressed genes

Analysing the network calculated R* = 0.26 which shows
that the network is scale-free. The complex biological
system is composed of thousands of genes and its prod-
ucts. These genes and products interact randomly and
form a complicated network.. Microarray expression
analysis may pose many regular variations. To overcome
these variations Normalization process is usually carried
out. These variations may reveal different expression
level then actual which is a major problem in gene
expression analysis. Statistical models are proposed to
perform normalization. Here, we also used “ArrayQuali-
tyMetrics” and “GCRMA” to perform normalization.
The density plots and boxplot of the data before and after
normalization is shown in the Fig. 2. Based on the defined
criteria (FDR < 0.05 and fold-change >1) we compared the
two types of samples in the dataset that result a total of 607
differentially expressed genes (Additional file 1: Table S1)
using R Bioconductor. Among the total DEGs 433 were
upregulated while the rest 174 were downregulated. Using
this criteria we identified some novel DEGs with important
functions.

GO term enrichment analysis of the up and
downregulated DEGs

Functional exploration of functional genomics data can
be obtained by utilizing GO analysis process. Here, we
also utilized a well-known functional annotation data-
base DAVID to understand the GO processes of iden-
tified DEGs. For enrichment analysis of DEGs we
selected GO biological processes, GO Molecular func-
tion, cellular component and KEGG pathways analysis.
In biological processes negative regulation of tran-
scription from RNA polymerase II promoter, chemo
taxis, inflammatory response, immune response, posi-
tive regulation of cell proliferation, negative regulation
of cell proliferation, response to mechanical stimulus,
positive regulation of cell migration, response to lipo-
polysaccharide, response to cytokine, regulation of cell
proliferation, positive regulation of tyrosine phosphor-
ylation of Stat3 protein, positive regulation of MAPK
cascade, positive regulation of transcription from RNA
polymerase II promoter, positive regulation of smooth
muscle cell proliferation, chemokine-mediated signal-
ing pathway, cellular response to lipopolysaccharide,
cellular response to tumor necrosis factor, cellular re-
sponse to hypoxia from upregulated while downregu-
lated genes were found to be involved in L-serine
biosynthetic process and cellular amino acid biosyn-
thetic process. In molecular function protein binding,
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receptor binding and chemokine activity were only ob-
served in upregulated genes. Upregulated genes were
enriched in TNF signaling pathway, osteoclast differ-
entiation, chemokine signaling pathway, cytokine-
cytokine receptor interaction, rheumatoid arthritis,
while the only three KEGG pathways found in the
downregulated genes were biosynthesis of amino
acids, biosynthesis of antibiotics and glycine, serine
and threonine metabolism. A detail of these processes
including the p-value and FDR (0.05) are given in the
Table 2 and Fig. 3.

PPI network analysis

PPI network is an important approach towards the un-
derstanding of biological problems and its elucidation.
Nodes and edges are the important combinations to
construct a network. The mapped DEGs identified by
comparing the data from control and diseased samples
were visualized in Cytoscape and hub genes were identi-
fied using Cytohubba. Identification of hub genes shown
in the Fig. 4 was followed by the identification of highly
interconnected dense sub-networks. The k-score was set
2.0, the node score cut off was set 0.2 while the

maximum depth for seed node was set 100 for efficiency.
MCODE was parameterized by using node degree > 10
which identified a total of 12 modules. Among the 12
modules only 5 were found to be under the defined
parameters (nodes >10 & node score >2.0). A total of
157proteins and 731 interactions were observed in these
sub-network modules. Initial confirmation of the hub
genes was carried out by comparing genes from the
sub-networks with the identified hub genes, which
revealed consistency in the results and confirm the exist-
ence of almost all the hub genes in the subnetworks.
Final functional annotation of sub-networks and hub
genes was carried out to confirm the reliability of our
initial results.

The five different subnetworks generated were as
shown in the Fig. 5 and their properties including score,
number of proteins and interaction are given in the
Table 3. The enrichment analysis of these sub-networks
also confirm the validity and they were found to be
involved in immune response, inflammatory re-
sponses, response to cytokines, chemotaxis, positive
and negative regulation of RNA polymerase II tran-
scription activities.
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Table 2 Gene Ontology/functional enrichment analysis of up and downregulated DEGs associated with DBA patients. The FDR and
p-value cut-off criteria was set > 0.05. The table is enriched with GO biological processes, Molecular Functions and KEGG pathways

Category

Term

GO-BP:0000122

GO-BP:0006935
GO-BP:0006954
GO-BP:0006955
GO-BP:0008284
GO-BP:0008285
GO-BP:0009612
GO-BP:0030335
GO-BP:0032496
GO-BP:0034097
GO-BP:0042127
GO-BP:0042517

GO-BP:0043410
GO-BP:0045944

GO-BP:0048661

GO-BP:0070098
GO-BP:0071222
GO-BP:0071356
GO-BP:0071456
GO-BP:0006564
GO-BP:0008652
GO-CC.0005576
GO-CC:.0005615
GO-CC:0048471
GO-MF:0005515
GO-MF:0005102
GO-MF:0008009
KEGG_Pathway
KEGG_Pathway
KEGG_Pathway
KEGG_Pathway
KEGG_Pathway
KEGG_Pathway
KEGG_Pathway
KEGG_Pathway

negative regulation of transcription from
RNA polymerase Il promoter

chemo taxis

inflammatory response

immune response

positive regulation of cell proliferation
negative regulation of cell proliferation
response to mechanical stimulus
positive regulation of cell migration
response to lipopolysaccharide
response to cytokine

regulation of cell proliferation

positive regulation of tyrosine
phosphorylation of Stat3 protein

positive regulation of MAPK cascade

positive regulation of transcription from
RNA polymerase Il promoter

positive regulation of smooth muscle
cell proliferation

chemokine-mediated signaling pathway
cellular response to lipopolysaccharide
cellular response to tumor necrosis factor
cellular response to hypoxia

L-Serine biosynthetic Process

Cellular amino acid biosynthetic process
extracellular region

extracellular space

perinuclear region of cytoplasm

protein binding

receptor binding

chemokine activity

TNF signaling pathway

Osteoclast differentiation

Chemokine signaling pathway
Cytokine-cytokine receptor interaction
Rheumatoid arthritis

Biosynthesis of amino acids

Biosynthesis of antibiotics

Glycine, serine and threonine metabolism

Count p-value False discovery rate
44 6.19E-11 1.10E-07
14 7.72E-07 0.001365
30 3.82E-10 6.77E-07
28 6.64E-08 1.17E-04
28 5.10E-07 9.02E-04
25 1.01E-06 0.001791
10 1.97E-06 0.003493
16 339E-06 0.005999
18 2.31E-08 4.10E-05
10 6.52E-07 0.001153
15 1.68E-05 0.029732
9 5.71E-07 0.001010
1 3.88E-06 0.006861
45 2.14E-07 3.78E-04
12 1.95E-08 345E-05
10 9.53E-06 0.016859
13 2.14E-06 0.003778
14 2.30E-07 4.07E-04
Al 1.80E-05 0.031815
4 1.35E-06 0.002131
5 3.07E-05 0.048645
60 1.27E-07 1.71E-04
61 6.12E-11 8.24E-08
30 333E-06 0.004483
209 1.90E-07 2.80E-04
24 2.07E-07 3.05E-04
9 3.05E-06 0.004492
22 791E-13 1.01E-09
16 3.16E-06 0.004022
18 1.52E-05 0.019366
20 2.02E-05 0.025631
12 2.97E-05 0.037766
9 322E-07 0.000387
12 3.11E-06 0.003751
6 2.62E-05 0.031616

Discussion

Many different computational approaches such as Single
Nucleotide polymorphism (SNPs) analysis, Genome wide
association studies (GWAS), diseasome, pathway bio-
markers, network module biomarkers and especially
gene expression microarray analysis are available to

analyze different genomics data and access significant in-
formation regarding the disease condition, ranging from
diagnosis to treatment [51]. All these approaches can be
used to access the available diverse data from different
levels including genomics, proteomics, transcriptomics,
metagenomics, epigenomics, and metabolomics to
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frequently aid the prediction and development of both
predictive and prognostic biomarkers. PPI network
analysis has been widely utilized to support the
process of understanding the mechanism of different
diseases, identifying drug targets and metabolic pro-
cesses. The systemic interactions of different proteins
in different biological process ranging from normal to
disease phenotypes are playing significant role. Ana-
lysing microarray gene expression dataset and the
identification of differentially expressed genes in a dis-
eased condition compared to the normal, provides a
way of targeting different nodes for the discovery of
novel drug candidates. It was reported that biomarkers
related to a disease through molecular network inter-
actions are more accurate and vigorous. Recently a
new method for the identification of miRNAs related
to cancer without the prior knowledge of miRNA ex-
pression profiling. This method also explains how

such miRNA aid the development and progression of
cancer [52]. Here, we used microarray gene expression
dataset submitted to GEO under accession number
GSE14335. Different statistical analysis were carried
out such as student-¢ test, Pearson correlation test and
Benjamin-Hochberg multiple testing method (FDR < 0.05
with fold-change >1) and the adjusted p-value (< 0.05) was
selected as the threshold for DEGs identification, which
result a total of 607 differentially expressed genes, of
which 433 were upregulated while the rest 174 were
downregulated. Among the downregulated genes COMP
(cartilage oligomeric matrix protein) was found to be to
most downregulated gene with the fold change value of —
4.003 followed by COL15A1 (collagen type XV alpha 1
chain) and WFDC1(WAP four-disulfide core domain 1)
with the fold change values of — 3.188 and - 3.050 respect-
ively. Of the identified upregulated DEGs, EGFL6 (EGF
like domain multiple 6) with fold change 4.27, TNFAIP3
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Fig. 4 The figure is illustrating the hub genes based on the degree of nodes. Red nodes are highly connected genes, yellow and orange colour
are medium and low connected nodes. The Red nodes act more to be hub genes

Red nodes are highly connected genes.

®

Orange colour and low connected nodes.

(TNF alpha induced protein 3) and SERPINB2 (serpin
family B member 2) with 4.49 and 5.33 fold change re-
spectively. Upon subjection to enrichment analysis these
DEGs revealed that they are involved in diverse array of
processes. Among them the most enriched GO biological
processes were immune response, positive and negative
regulation of cell proliferation, positive regulation of tran-
scription from RNA polymerase II promoter, extracellular
region, extracellular space and protein binding. However,
Positive regulation of cell proliferation, negative regulation
of cell proliferation, L-Serine biosynthetic Process, Cellular
amino acid biosynthetic process, Biosynthesis of amino
acids, Glycine, serine and threonine metabolism reported
to be associated with DBA [27]. Mapping of DEGs on
Cytoscape top 10 hub genes were identified using Cyto-
hubba. For hub genes degree in Cytohubba was set as a
parameter. Among the top hub genes AKT1 with highest
degree 171, IL6 and NFKB1 with 101, STAT3 with 99 and
MTOR with 75 degree was found in the total DEGs net-
work. These hub genes were also found in sub-networks
shown in the Table 3 which is a way of validating out
results.

The enrichment of hub genes given in the Table 4 re-
ports the same category of processes and thus validate
our results. RPS family is considered to be mostly
involved in the causing of DBA. Many different muta-
tions including missense and non-sense mutation in the

RPS19 is reported to be the most common. This mutant
condition is characterized by haploinsufficiency [53].
Among the hub genes, AKT1 was reported to be the
best target for the treatment of DBA. Hypothesis devel-
oped from different studies by Gazda & Sieff suggested
that restriction of recruitment of polysome to other
complexes for translation is regulated by AKT pathway.
Not only AKT but also mTOR was reported to be in-
volved in the restriction of forming such complexes
which result haploinsufficiency [54]. Gazda et al, 2006
in reported that Ribosomal Protein Gene Expression
Alters Oncogenic Pathways in DBA [55]. Functional
enrichment analysis also reported the AKT1 as the
negative regulator of transcription from RNA polymer-
ase II promoter Another study conducted by Payne et
al., 2012 and Stipanuk 2007, reported that treatment of
RPS19 and RPS14 defected cells using Zebrafish model,
skeletal muscle of rats and human CD34" cells reported
increased production of proteins. This condition was
justified by as that L-leucine activate mTOR pathway and
thus improves anemia in the DBA patients by promoting
mRNA translation. On the other hand Isoquinoline-5-
sulfonamides, Azepane derivatives, Aminofurazans, het-
erocyclic 6-5 fused rings compounds, Phenylpyrazole
derivatives and Thiophenecarboxamides and deriva-
tives are reported inhibitors reverse the negative role
AKT1 in diseases. Clinical trials of L-leucine mediated
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mTOR pathway activation and treatment of DBA is
under process [56, 57]. IL-6 with degree value of 101
in the hub genes could be another possible target for
DBA treatment. It has been confirmed while culturing
of DBA patient cells in a liquid containing IL-6 media

Table 3 Statistics for top 5 sub-networks identified in the PPI
network constructed from DEGs by MCODE algorithm using
Cytoscape

Sub-Network Score Proteins Interaction
1. 8.18 33 131

2. 2167 44 466

3. 567 18 48

4. 34 30 60

5. 445 32 69

reported decrease proliferation [58]. Furthermore, the
analysis reported by previous disseminate interfaces
interaction between RPS19 and the proto-oncogenic
protein PIM-1. This study explained that the interaction
RPS19 and the proto-oncogenic protein is mediated by
the cytokines in the intracellular environment. Likewise
many cytokines such as IL-6 and IL-8 are among the hub
genes reported in this study could be the biomarkers to be
probed for the robust treatment against the DBA infirmity
[16]. This bioinformatics pipeline proposed a list of poten-
tial cellular proteins which are identified as hub genes and
could be the targets for the treatment of DBA.

Conclusion

In this study computational systems biology approach
was utilized to effectively find DEGs that might lead to
DBA condition. A total of 607 DEGs were identified, of
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Table 4 Significant GO Biological terms and pathway analysis
for top 10 hub genes identified from the whole PPl network of
DEGs based degree of node

GO Term

cellular response to lipopolysaccharide,
response to cytokine, inflammatory response,
negative regulation of transcription from
RNA polymerase Il promoter,

immune response

Gene Degree

AKT1 171

IL6 101 cellular response to tumor necrosis factor,
positive regulation of smooth muscle cell
proliferation,

negative regulation of cell proliferation

NFKB1 101 positive regulation of macromolecule
biosynthetic process,
cellular response to tumor necrosis factor,

immune response

STAT3 99 positive regulation of cell proliferation,

response to cytokine, inflammatory response

STAT1 91 cellular response to tumor necrosis factor,

cellular response to lipopolysaccharide,
response to cytokine, immune response

RACT 88
EGR1 79
IL8 77

immune response
cellular response to hypoxia

cellular response to lipopolysaccharide,
response to cytokine,

inflammatory response, immune response,
regulation of cell communication

RELA 76 positive regulation of cell proliferation,

response to cytokine, inflammatory response
RAC3 75
mTOR 75

positive regulation of cell proliferation

positive regulation of macromolecule
biosynthetic process, inflammatory
response, immune response

which many new upregulated were identified in the
DBA samples. Overall, the current findings speculate a
potential association of these DEGs with DBA using in
silico gene expression patterns and network topological
analysis. Among the total identified DEGs EGEFLS6,
TNFAIP3 and SERPINB2 were top upregulated which
might implicate in the pathogenesis of DBA through
interacting with one another. These findings may pro-
vide new insights on the DBA pathogenesis, and lay the
foundation for the targeted therapy of the disease. We
envision our results from bioinformatics analysis will be
validated by experimental work.

Additional file

Additional file 1: Table S1. The identified differently expressed genes
are listed in the Table S1. Both upregulated and downregulated genes
are given based on the defined criteria. (XLSX 52 kb)
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