
RESEARCH Open Access

Hierarchical combinatorial deep learning
architecture for pancreas segmentation of
medical computed tomography cancer
images
Min Fu1,2†, Wenming Wu3†, Xiafei Hong3, Qiuhua Liu1,2, Jialin Jiang3, Yaobin Ou1*, Yupei Zhao3* and Xinqi Gong2*

From The 11th International Conference on Systems Biology (ISB 2017)
Shenzhen, China. 18-21 August 2017

Abstract

Background: Efficient computational recognition and segmentation of target organ from medical images are
foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance
of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation
algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature
Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge.

Method: In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas
segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling
structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-
scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using
the CT scans, we supply and train our network, thus get an effective pipeline.

Result: Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in
the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.
36% DSC (Dice Similarity Coefficient) value in testing data.

Conclusion: The results of our experiments show that our advanced model works better than previous networks in
our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our
new single object segmentation model has practical meaning in computational automatic diagnosis.
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Background
Recently, due to the great development in deep neural
network and increasing medical needs, Computer-Aided
Diagnosis (CAD) system has become a new fashion. The
high morbidity of pancreas cancers leads to great inte-
rest in developing useful CAD methods for diagnosis
and treatment, in which accurate pancreas segmentation
is fundamentally important. Therefore, developing an
advanced pancreas segmentation method is necessary.
Nowadays, pancreas segmentation from Computed

Tomography (CT) images is still an open challenge. The
accuracy of pancreas segmentation in CT scans is still
limit to 73% Dice Similarity Coefficient (DAC) on the
patients without pancreatic cancer lesion [1–6], since
the pancreas with cancer lesion are more challenging to
be segmented. Previous efforts in pancreas segmentation
are all referred as MALF (Multi-Atlas Registration &
Label Fusion), a top-down model fitting method [1–4].
To optimize the per-pixel organ labeling process, they
are all based on applying volumetric multiple atlas regis-
tration [7–9] and robust label fusion approach [10–12].
Recently, a new bottom-up pancreas segmentation

method [5] has been reported, based on probability
maps, which are aggregated to classify image regions, or
super-pixels [13–15], into pancreas or non-pancreas
label. By leveraging mid-level visual representations of
image, this method aims to enhance the segmentation
accuracy of highly deformable organs, such as the
pancreas segmentation. Furtherly, this work has been
improved [6] by using a set of multi-scale and multi-
level deep Convolutional Neural Networks (CNN) to
confront the high complexity of pancreas appearance in
CT images.
In the past few years, deep CNN has become popular in

the computer vision community, owing to its ability to ac-
complish various state-of-the-art tasks, such as image
classification [16–18], semantic segmentation [19, 20] and
object detection [21–24]. And there is a recent trend of
applying it in edge detection, object segmentation and
object detection [25] in medical imaging, and a series of
deep learning based approaches have been invented. Fully
Convolution Network (FCN) [20] adopts a skip architec-
ture combining information from a deep layer and a shal-
low layer, which could produce accurate and detailed
segmentations. Besides, the network could take input in
arbitrary size and produce correspondingly-sized output.
Holistically-nested edge detection (HED) [26] has been
developed to perform image-to-image training and predic-
tion. This deep learning model leverages fully convolu-
tional neural networks and deeply-supervised nets, and
accomplishes the task of object boundary detection by
automatically learning rich hierarchical representations
[17]. In the observation that only adopting the features
from the last convolutional stage would cause losing some

useful richer hierarchical features when classifying pixels
to edge or non-edge class, richer convolutional features
network (RCF) has been developed. Combining the
multistage outputs, it accomplishes the task of edge
detection better.
However, when it comes to the single object segmenta-

tion (pancreas segmentation), the RCF does not achieve
great performance as in edge detection, because the
detailed texture information of the object caught by the
network is not accurate enough. To overcome this diffi-
culty, we propose a novel multi-stage up-sampling struc-
ture into the network, to accomplish the task of single
object segmentation (pancreas segmentation) more per-
fectly. In the following method section, we will explain
our dataset, the detail of the multi-layer up-sampling
structure,the loss function we used, the whole workflow,
and the evalution criteria.Besides, the experiment result
will be shown in the results section.

Methods
Dataset
Our dataset are the real pancreas cancer CT images
from the General Surgery Department of Peking Union
Medical College Hospital. There are totally 59 patients,
including 15 patients with non-pancreas diseases, and 44
with pancreas-related diseases, with a sum of 236 image
slices. With the informed consent, patients’ information,
including name, gender, age, are confidential. At the slice
level, one patient has 4 abdomen CT images in different
phases, such as non-enhanced phase, arterial phase, portal
phase, delayed phase. Additionally, the five sorts of
pancreas-related diseases included in the dataset are:
PDAC (Pancreatic Ductal Adenocarcinoma), PNET
(Pancreatic Neuroendocrine Tumors), IPMN (Intraductal
Papillary Mucinous Neoplasia), SCA (Serous CystAdenoma
of the pancreas), and SPT (Solid Pseudopapillary Tumour
of the pancreas) (Fig. 1).

Multi-layer up-sampling structure
Network architecture
Inspired by the previous work on deep convolutional
neural network [17, 26], we design our network by
modifying the RCF network [27]. Based on Holistically-
nested Edge Detection (HED) network, it is an edge
detection architecture aiming to extract visually salient
edges and object boundaries from natural images [27].
The whole network contains a feature extraction net-

work and 5 feature fusing layers with up-sampling layers.
The feature extraction network contains 13 conv layers
and 4 pooling layers [27], which are divided into 5 stages
(shown in Fig. 2). Different from the traditional classifi-
cation network, there is no fully connected layer in the
network. Besides, to get richer interior information and
improve the overall performance, the RCF network
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Fig. 1 Examples of the six types (including non-disease) of abdomen CT image for (a) Healthy, (b) PNET, (c) PDAC, (d) IPMN, (e) SCA, (f) SPT. From
row1 to row4 are non-enhanced phase, arterial phase, portal phase, delayed phase

Fig. 2 Architecture of our network. Part (a) shows the main structure of our network. In the feature extract network, each color box stands for a
conv layer, and the conv layers are divided into 5 different stages in different colors. Furtherly, each stage is connected to a features fusing layer.
After that, an up-sampling structure is used to de-convolute the extracted features to the initial size. Part (b) and (c) separately show the up-
sampling structure of the RCF network and ours
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combines the hierarchical features extracted from the 5
stages of the convolutional layers.
Each stage combines a feature fusing layer, i.e., each

convolutional layer in each stage is connected to a
convolutional layer with kernel size 1*1 and channel
depth 21 and then the resulting is accumulated using
an element-wise layer to attain hybrid features [26],
and a 1*1–1 convolutional layer follows them. After
the feature fusing layer, an up-sampling structure
(also called de-convolution) is used to up-sample the
feature map to the input image size. Beneficial from
the non-full-connection layers and up-sampling
structures, the network can duel with input images in
arbitrary size and output the response-size probability
map.
In the up-sampling process, the images outputted by

the last layer has to be resized as the input images, thus
more detailed texture information is added into the
images. The starting point of our network design lies in
the construction of this detailed texture information.

The novel network proposed by us is shown in the
part (a) of Fig. 2. Compared with RCF, our modifications
can be described as following: We adopt the multi-layer
up-sampling structures to replace the four de-
convolutional layers. Then on the stage 2 to 5, the 1*1–1
conv layer is connected by the multi-layer up-sampling
structure, and the output images of them are combined
in the fusion stage.
Our novel structure consists of several up-sampling

layers that include diverse convolutional kernels. We
initialize them with bilinear interpolation. Then in the
training process, the convolutional kernels in the
layers continuously learn and adjust the parameters
during iteration and repeated optimization.
Compared with the task of edge detection, single

object segmentation requires the model containing
far more accurate detailed texture information. In
the previous RCF network, the de-convolutional
layer could produce the loss pixels and resize the
images, but resulting from the simple bilinear

Fig. 3 Example of multistage output. The first column is the original input from our datasets. And from row 1 to row 6 are the six classes of
pancreas disease, namely healthy, PNET, PDAC, IPMN, SCA, SPT. From the column 2 to column 6 are the output of stage 1 to 5 from our model
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interpolation, the information added is too coarse to
segment the object. As we all know, in an image,
there are strong relationships between the neighbor
pixels, and it is an ideal method to produce a miss-
ing pixel by using its nearest neighbors. However,
adopting only one step of up-sampling may lead to
produce a pixel by comparably far ones since too
much pixels are missed in the images. In contrast, a
multi-layer up-sampling structure ensures that a
missing pixel is produced by its neighbors by multi-
step up-sampling, and furtherly guarantees higher
quality of output on each stage. Additionally, differ-
ent from simple bilinear interpolation, the pattern,
that the convolutional kernels adjust the parameters
during the training process, assures the up-sampling
operation and the whole model fit the local dataset
better by producing a set of optimized parameters.
The comparison of up-sampling structure in the
RCF network and ours is shown in the part (b) and
(c) in the Fig. 2.
Hence, we acquire multi-stage outputs with more

accurate detailed texture information helpful to single
object segmentation. We show the intermediate results
from each stage in Fig. 3. Compared with the five

outputs of RCF, they are obviously in higher quality.
And the quantized advantages are shown in section 3.

Loss function
To train and optimize our segmentation model, we
adopt per pixel loss function [26], and thus necessary
to have the ground-truth maps. Each CT scan has
been labeled by an annotator with medical knowledge.
The ground-truth maps show the edge possibility of
each pixel. 0 means that the annotator does not label
at this pixel, and 1 means that the annotator labels at
this pixel. Additionally, the negative sample consists
of pixels with possibility value equal to 0, and the
positive sample consists of other pixels.

L Wð Þ ¼
XjIj

i¼1

XK

k¼1
l X kð Þ

i ;W
� �

þ l Xfuse
i ;W

� �� �
;

ð1Þ

K means the number of stages making output. As
shown in the Equation1, the loss value of each image
is the addition of loss value of each pixel, which is
made of loss value of each stage-out and fusion

stage. lðXðkÞ
i ;W Þ denotes the loss value of a pixel in

Fig. 4 Workflow of the segmentation process. The data with manually label are used to training and optimization. When the whole architecture
is trained, the architecture receives the input CT images and directly output the pancreas segmentation result
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the k-th stage. Similarly, lðXfuse
i ;W Þ denotes the loss

value of a pixel in the fusion stage. Xi is the activa-
tion value (feature vector) at pixel i. W is all the
parameters in our network. |I| is the number of all
pixel in an image.

l Xi;Wð Þ ¼ α � log 1−P Xi;Wð Þð Þ if yi ¼ 0
β � logP Xi;Wð Þ otherwise

�
ð2Þ

P(Xi;W) is the edge possibility value at pixel i. P
denotes the standard sigmoid function.

α ¼ λ � Yþj j
Yþj j þ Y −j j

β ¼ j Yþ j
j Yþ j þ j Y − j

8>><
>>:

ð3Þ

To balance the negative and positive sample, we adopt
the hyper-parameter λ (λ is set as 1.1 when training). Y+

denotes the positive sample of an image, and Y− denotes
the negative sample of an image.

Workflow of our segmentation
We implement a deep learning framework based on our
new multi-layer up-sampling neural network for pan-
creas segmentation (Fig. 4). The segmentation pipeline
consists of two modules, model training and
optimization (Fig. 4).
In the model training module, firstly we preprocess

both the original CT images and the ground truth
images. The original images are in different size about
400 pixels*500 pixels. We resize the images’ height to
256 pixels and keep the ratio of each image’s height and
width. Reducing the size of the images can not only
speed the model training, but also retain more informa-
tion of the original data.
After resizing the image size, to enlarge the training

dataset and prevent the deep learning model over-
fitting, we do the data augmentation basing on [28],
such as translation transform and scale transform.
After that, we trained our multi-layer up-sampling
neural network based on Convolution Neural Net-
work (CNN). Since the dataset is still small, we adopt
transfer learning, i.e., fine-tuning our CNN models
pre-trained from BSDS500 dataset [26] (a natural
dataset for edge detection) to our medical CT image
tasks, which [29] has examine why transfer learning
from pre-trained natural dataset is useful in medical
image tasks. After pre-training, the model gets an ori-
ginal set of parameters, and then was fine-tuned in
our dataset, so that the network could easily converge
in our dataset with a higher speed.

Our advanced model outputs a probability map of
each training data. The probability map is in
response-size with the input image, whose pixels are
the probability of the corresponding pixel’s belonging
to pancreas. Besides, to highlight the pancreas, we
rescale the probability map from the grey [0, 1] to
[0,255] and do the gray value inversion, so in the
probability map, darker region has higher probability
to be pancreas.
The optimization module is divided into 3 steps:

fusing, maximum connected area and threshold filter.
In the fusing step, a set of probability maps belonging
to the same input image is fused into a new image.
To predict a specific pixel, we simply count the
probability maps with its probability larger than 0.
Then the specific pixel of a fuse image is made up of
the mean of true positive pixel. In the maximum
connected area step, after transforming the fuse image
to binary image, we search the fused image’s pixels to
find the non-zeros neighbors of current pixel, and ob-
tain one or several connected areas. Then we select
the region with maximum area. In the filter step, we
simply get a mask showing the maximum connected
area, and use it to segment the pancreas from the
original input image.

Evaluation criteria
Here, P is the prediction image, G is the ground-truth
image, and S is the area of foreground in certain image.
Then we have the following criteria:
Precision (also called positive predictive value), is the

fraction of correctly predicted foreground area among
that in prediction

Precision ¼ S P⋂Gð Þ
S Pð Þ ð4Þ

where S(P ⋂G) is the interaction area in foreground of P
and G.
Recall (also known as sensitivity), is the fraction of cor-

rectly predicted foreground area over that in ground-truth.

Recall ¼ S P⋂Gð Þ
S Gð Þ ð5Þ

Table 1 Compare the three segmentation models’ performance
in four measurements: precision, recall, DSC and Jaccard index

PRECISION RECALL DSC JACCARD

mean Std mean Std mean Std mean Std

rcf 74.35 18.97 79.83 16.70 74.91 15.25 61.98 17.44

ours 76.83 18.53 78.74 17.19 75.92 15.17 63.29 17.45

ours-ms 77.36 17.96 79.12 16.27 76.36 14.34 63.72 17.05
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Dice Similarity Coefficient (DSC), measures the simi-
larity of prediction image and ground-truth image. The
definition of DSC is the same as F1 score. Here we also
give its relationship with precision and recall.

DSC P;Gð Þ ¼ 2�S P∩Gð Þ
S Pð Þ þ S Gð Þ ¼

2
S Pð Þ

S P∩Gð Þ þ
S Gð Þ

S P∩Gð Þ
¼ 2

1
precision

þ 1
recall

¼ 2 � precision � recall
precisionþ recall

ð6Þ
Jaccard similarity coefficient, also known as Inter-

section over Union (originally coined coefficient de
communauté by Paul Jaccard), is a statistic used for
comparing the similarity and diversity of prediction
image and ground-truth image. It is defined as the
size of the intersection area divided by the size of the
union area:

Jaccard P;Gð Þ ¼ S P⋂Gð Þ
S P⋃Gð Þ

¼ S P⋂Gð Þ
S Pð Þ þ S Gð Þ−S P⋂Gð Þ ð7Þ

All of the criterias ranges from 0 to 1, with best value
at 1 and worst at 0.

Results
In our experiment, we randomly split the dataset of 59
patients into 5-folds, training and testing folds, with 10,

10, 10, 10 and 9 for each one. Then we do data augmen-
tation, such as zooming in, flipping, rotating for each
training data and enlarge the data into 128 times, and
the whole dataset up to 30,208 images.
Besides, our CNN model is pre-trained in BSDS500

dataset and fine-tuned in our dataset with stochastic
gradient descent (SGD) algorithm and step-wise learning
schedule to optimize. The model is implemented by a
deep learning framework CAFFE [30] and run over one
NVIDIA QUADRO M4000 GPU.
Using 5-fold cross-validation, we could achieve a mean

of precision of 76.83%, a mean of recall of 78.74%, a
mean of DSC of 75.92%, and the mean of JACCARD of
63.29%. Apart from the recall one, all of them are higher
than the RCF network. At the same time, our method
with multi-scale input (OURS-MS) reaches 77.36%, 79.
12%, 76.36%, 63.72% in mean of precision, recall, DSC
and Jaccard. Table 1 show the detailed performance of
three models.

Fig. 5 The Precision-Recall curve. The blue, orange and green curves stand for the performance of RCF, our model and OURS-MS.

Table 2 Model’s performance in different types of pancreas
cancer (with healthy type)

PRECISION RECALL DSC JACCARD

mean Std mean Std mean Std mean Std

Healthy 80.95 14.94 86.53 9.03 82.41 9.45 71.10 12.73

PNET 75.39 21.06 67.37 21.08 68.95 18.45 55.26 19.26

PDAC 76.22 18.83 82.50 12.52 77.08 12.61 64.29 15.63

IPMN 70.44 22.42 74.86 22.42 71.90 21.71 60.04 24.04

SCA 80.51 9.76 83.62 8.90 81.51 7.03 69.38 10.28

SPT 75.03 21.47 74.72 14.28 71.45 11.49 56.81 14.43
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In the pancreas segmentation task, the number of
positive samples is much less than that of negative sam-
ples, which means that the Precision-Recall (PR) curve
can better reflect the performance of the prediction [31].
Figure 5 shows the Recall value can reach more than
90% while the Precision value is still more than 60%,
which means that we could attain excellent reservation
of the pancreas organ area in a decent precision.
Our model’s performances in different types of pan-

creas cancer are shown in Table 2. We can see that the
values of four measurements are comparably high, and
the standard deviations are not too big, which means
that our model is robust in different types of pancreas
cancer.
Our model’s performances in different phases are

shown in Table 3. We can see that the values of four
measurements are comparably high, and the standard

deviations are not too big, which means that our model
is robust in different phases.
Figure 6 shows some examples of the pancreas

segmentation result, a comparison of ground-truth and
output of our model. The red curve is ground-truth
annotation, and the green curve highlights the output.
We can easily find that the two curves of four images
share high similarity, and high accuracy has been gained
in our model. Images in row1 get the best performance,
where the DSC values are around 94%, images in row2
get the DSC value on quartile2, around 79%, and those
in row3 reach the DSC values around 70%, which is on
the quartile1.

Conclusions
We summarize our contributions as follow. In this
paper, we design an automatically pancreas segmentation
architecture based on deep learning model, and get a 76.
36% DSC value.
We extend the Richer Convolutional Feature network

to pancreas segmentation and improve the RCF network
with multi-layer up-sampling structure and get over 1%
better performance in pancreas segmentation. Besides,
we find that, in experiment, testing with multi-scale
input and training with data augmentation, especially
rotation, can improve the performance of the network.
Significantly, our model is robust in different types of

pancreas cancer and different phases of CT images.

Fig. 6 Some examples of pancreas segmentation result. Red curve shows the ground truth while green for the predicted. Row1 are in the best
performance, row2 are on the quartile2 and row3 on the quartile1

Table 3 Model’s performance in different phases. The Phase1 to
Phase4 are non-enhanced phase, arterial phase, portal phase,
delayed phase

PRECISION RECALL DSC JACCARD

Mean std mean std mean std mean std

Phase1 80.22 18.26 79.78 16.57 78.04 15.40 66.29 18.59

Phase2 76.68 20.45 77.86 20.33 75.43 18.03 63.19 18.76

Phase3 74.64 18.52 78.61 15.04 74.71 13.56 61.36 16.18

Phase4 76.46 16.79 78.82 15.84 75.91 13.00 62.84 16.16
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