
SOFTWARE Open Access

SCNS: a graphical tool for reconstructing
executable regulatory networks from
single-cell genomic data
Steven Woodhouse1,2,3, Nir Piterman4, Christoph M. Wintersteiger3, Berthold Göttgens1,2* and Jasmin Fisher3,5*

Abstract

Background: Reconstruction of executable mechanistic models from single-cell gene expression data represents a
powerful approach to understanding developmental and disease processes. New ambitious efforts like the Human
Cell Atlas will soon lead to an explosion of data with potential for uncovering and understanding the regulatory
networks which underlie the behaviour of all human cells. In order to take advantage of this data, however, there
is a need for general-purpose, user-friendly and efficient computational tools that can be readily used by biologists
who do not have specialist computer science knowledge.

Results: The Single Cell Network Synthesis toolkit (SCNS) is a general-purpose computational tool for the
reconstruction and analysis of executable models from single-cell gene expression data. Through a graphical
user interface, SCNS takes single-cell qPCR or RNA-sequencing data taken across a time course, and searches for logical
rules that drive transitions from early cell states towards late cell states. Because the resulting reconstructed models are
executable, they can be used to make predictions about the effect of specific gene perturbations on the generation of
specific lineages.

Conclusions: SCNS should be of broad interest to the growing number of researchers working in single-cell genomics
and will help further facilitate the generation of valuable mechanistic insights into developmental, homeostatic and
disease processes.

Keywords: Executable biology, Gene regulatory networks, Developmental biology, Single cell

Background
Executable gene regulatory network models have been
successfully built and used to obtain a better mechanistic
understanding of developmental, homeostatic and dis-
eased cellular decision making processes [1]. Executable
models capture essential qualitative details of a bio-
logical process and aim to mimic the order of events
and the long-term behaviour of the system. These
models are amendable to the use of state space analysis
[2] and model checking algorithms [3] to analyse all of
the many possible executions of the model and generate
new predictions that can be tested experimentally. An
executable model can also be used to obtain a global

dynamic picture of how the system responds to various
perturbations. Successful examples of executable model-
ling include the Boolean network models of sea-urchin
development [4, 5] and of blood stem cells [6]. However,
these models were manually curated and are the result
of knowledge of the structure of the network built up
over decades of laboratory experimentation.
We previously introduced an approach for synthesis-

ing executable gene regulatory network models directly
from single-cell gene expression time course data sets,
without the need of prior knowledge of the topology of
the network or a detailed specification of its behaviour,
which for many systems does not exist [7]. We have
now developed the Single Cell Network Synthesis tool
(SCNS) into a general-purpose computational tool for
the reconstruction and analysis of executable models
from single-cell gene expression data. The tool is con-
trolled via a web-based graphical interface.

* Correspondence: bg200@cam.ac.uk; jf416@cam.ac.uk
1Department of Hematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge CB2 0XY, UK
5Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Woodhouse et al. BMC Systems Biology (2018) 12:59
https://doi.org/10.1186/s12918-018-0581-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-018-0581-y&domain=pdf
mailto:bg200@cam.ac.uk
mailto:jf416@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

SCNS is a tool for understanding differentiation, devel-
opmental, or reprogramming journeys, reconstructing
models from single-cell data taken across a time course.
This mechanistic model explains the molecular changes
underlying the biological process. SCNS takes single-cell
qPCR [7–9] or RNA-sequencing data [10–14], and treats
expression profiles as binary states, where a value of 1
indicates a gene is expressed and 0 indicates that it is
not. It then constructs a state transition graph, where
pairs of states are connected by an edge if they differ in
the expression of exactly one gene (Fig. 1a). This graph
is then used as the basis to reconstruct Boolean logical
regulatory rules, by searching for rules that drive transi-
tions from early cell states towards late cell states.
Because the resulting models are executable, they can be
used to make predictions about the effect of specific
gene perturbations on the generation of specific lineages,
or to suggest strategies for improving reprogramming
efficiency.

An asynchronous Boolean network models a gene
regulatory network by abstracting away details of tran-
scription, translation and molecular binding reactions.
Instead the status of each gene is modelled as either
active (on) or inactive (off), while retaining the stochas-
tic nature of events, and capturing the regulatory logic
determining whether a gene is activated or not by Bool-
ean update functions. Once such a model has been
constructed, it can be executed, resulting in a series of
single-gene changes. Asynchronous simulation of a
Boolean network allows all possible interleavings of indi-
vidual transitions, and therefore allows transitions to
happen at different rates. The long-term behaviour over
all of these possible executions can then be analysed.
Since a Boolean network has a finite number of states,
every execution eventually converges to either a single
stable state or a cycle of states, called an attractor [2].
Stable state attractors are thought to correspond to the
mature, differentiated cell types of the system [2, 15, 16].

Fig. 1 Tool overview. When SCNS is first started, the user is presented with the ‘Load Data’ page, asking them to upload a .CSV file containing
their single-cell gene expression data. a The state transition graph page, which allows visualisation of the data, selection of initial and target cell
classes, and running of synthesis. b The analysis page, which shows the computed stable states of the synthesised model and allows combined
overexpression/knockout perturbations to be run

Woodhouse et al. BMC Systems Biology (2018) 12:59 Page 2 of 7

For each gene, SCNS finds a set of Boolean rules that are
compatible with the data, if more than one such compat-
ible rule exists. The set of models resulting from taking the
union of all these possible rules is then analysed. SCNS can
be used to find (and display as a heatmap) stable state
attractors, and to introduce every single or combined in-
silico overexpression or knockout perturbation. The stable
states are dynamically recomputed with the chosen per-
turbation and re-displayed (Fig. 1b). SCNS does not cur-
rently compute complex (loop) attractors, because of the
difficulty of compactly representing these visually. How-
ever, models can be exported to the BioModelAnalyzer tool
(http://biomodelanalyzer.org/); or SBMLQual format and
imported into other analysis tools in order to find complex
attractors.
In the last few years reconstruction of Boolean net-

work models from biological data or behavioural specifi-
cations has become a topic of active research. For
example, the RE:IN tool from Dunn et al. [17], the
method of Xu et al. [18], CellNOpt [19], and the
methods of Sharan and Karp [20] and Videla et al. [21].
However, the above methods cannot directly be com-
pared to SCNS because they reconstruct models from
different sources of data – prior knowledge of the gene
regulatory network topology together with desired stable
state specifications under wild type and/or perturbed
conditions. BTR is a more comparable method, which
uses single-cell expression data to refine an existing
Boolean network for a system [22]. However, detailed
prior knowledge in the form of an existing Boolean net-
work for the system must exist. SingCellNet [23] uses
single-cell data but only infers network topology, and
the current implementation can only be applied to very
small data sets.
We are aware of one tool, the Pseudotime-network-

inference method of Hamey et al. [24], which is directly
comparable to SCNS, as it reconstructs logical models
from single-cell gene expression time course data.
Pseudotime-network-inference requires a-priori informa-
tion about the topology of the network, which is inferred
via partial correlation. It then fits Boolean rules compat-
ible with this topology by examining a path through a
linear pseudotime ordering, rather than paths through a
branching state graph. In the Example section, below,
we compare the interactions predicted by SCNS to those
of (partial) correlation.

Implementation
The SCNS algorithm
The SCNS algorithm solves the following problem:
We are given a set of variables V = {v1, v2, …, vn},

which correspond to genes measured, and an undirected
state graph S = (N, E), where each vertex n ∈ N is
uniquely labelled with a Boolean state s = (x1, …, xn),

which corresponds to an active/inactive map of the
genes, and there is an edge {s1, s2} ∈ E iff s1 and s2 differ
in the value of exactly one variable, v. The edge {s1, s2} is
labelled with v. In addition, we are given a designated set
I⊆N of initial vertices, which correspond to the mea-
surements at an early time point, and a set F⊆N of final
vertices, which correspond to the measurements at a
final time point, along with a threshold ti, which,
intuitively, indicates how tight a matching with the ex-
perimental data we are looking for, and a maximum
number of activators ai and repressors ri for each vari-
able vi ∈ V. We would like to find an update function ui:
{0,1}n→ {0,1} for each variable vi ∈ V, such that the
asynchronous Boolean network that arises from these
rules satisfies the following conditions. Let U = {ui | vi ∈
V} be the set of update functions. We note that the
asynchronous Boolean network defines a directed graph
over a set of vertices that is larger than N.

1. Every final vertex f ∈ F is reachable from some initial
vertex j ∈ I by a directed path p. Further, for every
vi-labelled directed edge (s1, s2) ∈ p we have that
ui(s1) = s2(v1)

2. For every variable vi ∈ V, let Ni be the set of states
without an outgoing vi-labelled arc. For every i the
number of states s ∈ Ni such that ui(s) = s(vi) is
greater or equal to ti. That is, the number of edges
leaving the original state space N is bounded.

We restrict our search to update functions of the form
f1 ∧ ¬ f2, where f1 and f2 are monotone Boolean formulae
(contain ∧ and ∨ gates, but no negation). The variables
of f1 are activators of f and the variables of f2 are repres-
sors. We look for functions with a maximum of ai acti-
vators and ri repressors.
The algorithm has three phases. We begin by building

a directed graph from the given undirected state graph
S = (N, E), by considering which of the underlying
directed edges in E are compatible with some Boolean
update function, and pruning those that are not. This
phase is implemented via enumerative search, and after
termination leaves us with a directed state graph G,
which could include both directions or neither direction
for a given edge.
To ensure reachability, we then construct, for each

pair of initial node i ∈ I and final node f ∈ F, the shortest
path from i to f in the directed graph G that was built in
the previous phase of the algorithm. These paths can be
computed via a breadth–first search.
The search for Boolean update rules compatible with

these paths is then encoded as a Boolean satisfiability
(SAT) problem. The update functions of each variable
can be sought after separately, giving rise to reasonably
sized satisfiability queries.

Woodhouse et al. BMC Systems Biology (2018) 12:59 Page 3 of 7

http://biomodelanalyzer.org/

For full details, we refer the reader to [25, 26].

Finding stable state attractors
To analyse together all synthesised models, we first form
a combined Boolean network that makes a transition if
all sub-models do. If some sub-model has a stable state
attractor s, s will also be an attractor of this combined
model.
Given a set of compatible update functions {fi1, …, fin}

for gene xi, the update function for the combined model is
defined as: f ’i = (¬xi ∧ (fi1 ∧ … ∧ fin)) ∨ (xi ∧ (fi1 ∨ … ∨ fin))
To find a stable state s = (v1, …, vn) of the resulting

combined Boolean network we encode the search as a
Boolean satisfiability (SAT) problem: (f ’1(s) ↔ v1) ∧ … ∧
(f ’n(s) ↔ vn).
To simulate overexpression of gene xi, we set the tar-

get function as the constant function f ’i(x) = 1. To simu-
late knock out, we set it to the constant function f ’i(x) =
0.

Software architecture and implementation
The architecture of SCNS is divided into two compo-
nents: the backend and the frontend. The backend,
which performs all computations necessary for the re-
construction and analysis of Boolean network models, is
written in F# and makes use of the Z3 SMT solver [27].
The frontend, which implements the web-based

graphical user interface and sends requests to the
backend, is written in Javascript/HTML and uses the
Angular library [28].
Cloud computation is implemented using the MBrace

library [29, 30].
SCNS runs on Windows, Linux and macOS, but sup-

port for cloud computation is currently only supported
on Windows.

Configuration of parameters
In order to synthesise a matching Boolean network,
SCNS requires the configuration of three parameters per
gene. These are the maximum number of allowed acti-
vating inputs to the gene’s update function, the max-
imum number of allowed repressing inputs, and a
threshold parameter. The threshold is a measure of how
well a rule fits the data (higher is better).
In order to successfully find rules for each gene under

consideration, it is often necessary to experiment with
different parameter values. We recommend that one be-
gins with loose parameters (larger number of activators
and repressors, lower threshold parameter), then, once a
matching logical rule has been found for a gene, to
tighten these parameters (lower the number of inputs
and increase the threshold) and re-run. This can be re-
peated until all genes have a matching rule.

The tool and source code are available at [31], under
an MIT open source license.

Results
SCNS is controlled via a web-based graphical user
interface
SCNS runs locally as a desktop application but is con-
trolled through a web-based graphical user interface.
When SCNS is first started, the user is presented with
the ‘Load Data’ page, asking them to upload a .CSV file
containing their single-cell gene expression data. This
file should have rows corresponding to cells and col-
umns corresponding to genes. Each entry should be a
true or a false, indicating whether the cell expresses the
given RNA or not. In addition, the first column, the
“Class” column, should give the class of the cell. This in-
dicates the cell type or day of measurement and is used
to indicate which cell states should be considered initial
states and which final states during synthesis.
The browser then automatically switches to the ‘STG’

page, where a state transition graph automatically con-
structed from the uploaded data is displayed (Fig. 1a).
On this page the user can use two text controls to select
initial and target cell classes. The ‘Synthesise’ button can
then be pressed to begin synthesising Boolean network
rules. The browser switches to the ‘Results’ page and
Boolean update functions are displayed in a table as they
become available. Reconstructed models can be exported
to BioModelAnalyzer (BMA); or SBMLQual format,
allowing import into analysis tools such as BMA, GIN-
sim and BoolNet.
Once a set of models has been found, the user can

navigate to the ‘Analysis’ tab to view the computed stable
state attractors. They can then use two text box controls
to select any single or combined overexpression or
knockout perturbation. The stable states will be dynam-
ically recomputed with the chosen perturbation and re-
displayed on the page (Fig. 1b).

SCNS synthesises asynchronous Boolean network models
SCNS uses an optimised version of the algorithm de-
scribed in Woodhouse et al. [26] to synthesise an asyn-
chronous Boolean network model from the state
transition graph. SCNS is based upon viewing single-cell
gene expression profiles as though they were states of an
asynchronous Boolean network, and then solving the
problem of reconstructing a Boolean network from
its state space, as explained above. This algorithm
uses a combination of enumerative search, graph
reachability and Boolean satisfiability solving to ex-
tract gene regulatory network models that best
match the state space data.

Woodhouse et al. BMC Systems Biology (2018) 12:59 Page 4 of 7

SCNS supports easy deployment of computation to the
cloud for performance
For data sets of up to a few thousand cells, SCNS can
typically reconstruct a Boolean network model on your
desktop machine within minutes. For larger data sets,
SCNS can be configured to deploy computation to your
Azure cloud account and parallelise operations across
compute nodes.

Example – application to pre-implantation
embryonic data
We applied SCNS, using its improved optimised version
of our synthesis algorithm and graphical user interface,
to a recently published data set consisting of 1529 cells
from early-stage human embryos [11], and extracted a
connected core regulatory network for human preim-
plantation development (Fig. 2).
The CSV input for this example is available in the sup-

plementary data (Additional file 1), and the parameters
used to reconstruct the network are shown in Table 1.
We filtered the data, selecting expression values for 20
transcription factors thought to be involved in preim-
plantation development. To discretise the RNA-seq data
prior to uploading, we mapped zero reads to false and
positive reads to true. We note that for qPCR data, false
can instead correspond to measurements below the ex-
perimentally determined limit of detection. The time
point or cell type of a cell is encoded as a “Class” field in
the CSV file.

Fig. 2 Extracted regulatory network for human preimplantation development. Blue edges indicate activation; red edges indicate repression.
Square boxes represent AND operations. Circles connecting edges indicate multiple compatible update rules

Table 1 Parameters used on example data set

Gene Number of activators Number of repressors Threshold %

ARGFX 2 0 70

CDX2 3 0 70

DLX5 1 0 80

GATA2 1 0 90

GATA3 1 0 90

GATA4 1 0 80

GATA6 1 0 80

GCM1 2 0 70

HAND1 1 2 70

HNF1B 1 0 80

HNF4A 1 2 60

KLF17 1 1 80

LBH 1 0 70

NANOG 1 0 70

OVOL1 1 0 100

POU5F1 2 0 80

PRDM14 1 1 60

PRDM16 1 0 10

SOX17 2 0 70

SOX2 3 0 80

Initial cells = E3, Target cells = E7_target

Woodhouse et al. BMC Systems Biology (2018) 12:59 Page 5 of 7

Comparison to (partial) correlation networks
We compared the network constructed by SCNS to the
networks inferred via correlation and partial correlation,
which are the standard approaches for inferring gene
regulatory links from single-cell gene expression data
[32–34], and are used as the basis of predictions of
Pseudotime-network-inference [24] and RE:IN [17]. We
calculated the number of directed links predicted by
SCNS which are in the top 100 undirected correlating
pairs predicted by correlation/partial correlation. We
performed this analysis on the same 20 transcription
factors that were analysed by SCNS. For this analysis we
used Spearman correlation, but Pearson gives very
similar results.
Of the 16 edges predicted by SCNS, 4/16 (25%) and 6/

16 (38%) were not in the top 100 edges inferred by par-
tial correlation and correlation, respectively. The fact
that the majority of directed links predicted by SCNS
are also (undirected) correlation relationships is perhaps
to be expected, but the missing links illustrate how
SCNS can detect potential gene regulatory interactions
that are not apparent from correlation alone.
In particular, the negative link from DLX5 to HAND1

is not detected by correlation, as it is masked by positive
correlation due to the positive link back from HAND1
to DLX5. The negative link from HNF1B to PRDM14 is
also not associated with any negative correlation and the
positive link from DLX5 to SOX2 is not associated with
any positive correlation. Every method which relies on
establishing network topology via correlation may miss
such potential interactions.

Benchmarks
To assess the efficiency of our tool we reconstructed
models from four data sets: two synthetic data sets of
varying sizes, the preimplantation data set from the
Example section (above), and the embryonic blood data
set from [7], with differing parameters. The results of
these experiments are shown in Table 2. All experiments
terminated within a few hours and were run on an Intel
Xeon @ 3.70 GHz with 16 GB of RAM and on a single
thread.

Conclusions
We previously applied this method to understanding the
process of early blood development in the embryo,
which is poorly understood due to the small number of
cells present at this stage [7]. Several model predic-
tions were validated experimentally, demonstrating
that the genes HoxB4 and Sox17 directly regulate the
hematopoietic factor Erg, and that forcing expression
of Sox7 blocks blood development.
We have now applied SCNS, using its improved opti-

mised version of our synthesis algorithm and graphical

user interface, to a recently published data set consisting
of 1529 cells from early-stage human embryos [11], and
extracted a connected core regulatory network for
human preimplantation development.
Reconstruction of executable mechanistic models from

single-cell expression data represents a powerful
approach to understanding developmental and disease
processes. Understanding these networks can lead to
important insights for the programmed generation of
clinically-relevant cell types important for regenerative
medicine, as well as into the design of molecular therap-
ies to target cancerous cells. SCNS, as a general-purpose
graphical tool for automated reconstruction and analysis
of executable models from single-cell gene expression
data, should be of wide interest to the growing number
of researchers working in single-cell genomics.

Availability and requirements
Project name: Single Cell Network Synthesis Toolkit
Project home page: https://github.com/swoodhouse/
SCNS-GUI
Operating systems: Windows, Linux, macOS
Programming language: F# and Javascript
Other requirements: .NET or Mono. R
License: MIT

Additional file

Additional file 1: CSV input file for human preimplantation
development example data set. (CSV 85 kb)

Funding
Research in the Gottgens lab is supported by infrastructure support funding
from the Wellcome Trust to the Wellcome Trust and MRC Cambridge Stem
Cell Institute. Steven Woodhouse is a postdoctoral researcher supported by
Microsoft Research.

Availability of data and materials
The datasets generated and analysed during the current study are available at [31].

Table 2 Performance of SCNS on example data sets

Genes States Gene inputs Run time (seconds)

11 214 2 0.5

11 214 3 4

11 214 4 11

17 1772 2 13

17 1772 3 50

17 1772 4 249

20 690 2 6

20 690 3 79

20 690 4 628

33 1448 2 1084

33 1448 3 6533

33 1448 4 Out of memory

Woodhouse et al. BMC Systems Biology (2018) 12:59 Page 6 of 7

https://github.com/swoodhouse/SCNS-GUI
https://github.com/swoodhouse/SCNS-GUI
https://doi.org/10.1186/s12918-018-0581-y

Authors’ contributions
SW developed the tool and applied to biological data. SW, NP and CMW
developed the algorithm. BG and JF conceived the study. SW, BG and JF
wrote the paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Department of Hematology, Cambridge Institute for Medical Research,
University of Cambridge, Cambridge CB2 0XY, UK. 2Wellcome Trust - Medical
Research Council Cambridge Stem Cell Institute, University of Cambridge,
Tennis Court Road, Cambridge CB2 1QR, UK. 3Microsoft Research Cambridge,
21 Station Road, Cambridge CB1 2FB, UK. 4Department of Informatics,
University of Leicester, University Road, Leicester LE1 7RH, UK. 5Department of
Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.

Received: 18 February 2018 Accepted: 10 April 2018

References
1. Fisher J, Henzinger TA. Executable cell biology. Nat Biotechnol. 2007;25:1239–49.
2. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G. Synchronous versus

asynchronous modeling of gene regulatory networks. Bioinformatics. 2008;
24:1917–25.

3. Claessen K, Fisher J, Ishtiaq S, Piterman N, Qinsi W. Model-checking signal
transduction networks through decreasing reachbility sets. In: 25th conference
on comptuer aided verification. Berlin: Springer-Verlag; 2013. p. 85–100.

4. Davidson EH, et al. A genomic regulatory network for development. Science
(80-). 2002;295:1669–78. https://doi.org/10.1126/science.1069883.

5. Davidson EH. The regulatory genome: gene regulatory networks in
development and evolution. 2006.

6. Bonzanni N, Garg A, Feenstra KA, Sch J, Kinston S, Miranda-saavedra D, et al.
Hard-wired heterogeneity in blood stem cells revealed using a dynamic
regulatory network model. Bioinformatics. 2013;0:1–9.

7. Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC,
et al. Decoding the regulatory network of early blood development from
single-cell gene expression measurements. Nat Biotechnol. 2015;33:269–76.
https://doi.org/10.1038/nbt.3154.

8. Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K, et al.
Single-cell expression analyses during cellular reprogramming reveal an
early stochastic and a late hierarchic phase. Cell. 2012;150:1209–22. https://
doi.org/10.1016/j.cell.2012.08.023.

9. Pina C, Fugazza C, Tipping A, Brown J, Soneji S, Teles J, et al. Inferring rules
of lineage commitment in haematopoiesis. Nat Publ Gr. 2012;14:287–94.
https://doi.org/10.1038/ncb2442.

10. Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-
cell messenger RNA sequencing reveals rare intestinal cell types. Nature.
2015;525:251–5. https://doi.org/10.1038/nature14966.

11. Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al.
Single-cell RNA-seq reveals lineage and X chromosome dynamics in human
preimplantation embryos. Cell. 2016;165:1012–26.

12. Krishnaswamy S, Spitzer MH, Mingueneau M, Bendall SC, Litvin O, Stone E, et al.
Systems biology. Conditional density-based analysis of T cell signaling in single-
cell data. Science. 2014;346:1250689. https://doi.org/10.1126/science.1250689.

13. Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, et al. Genetic programs in
human and mouse early embryos revealed by single-cell RNA sequencing.
Nature. 2013;500:593–7. https://doi.org/10.1038/nature12364.

14. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al.
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nat Biotechnol.
2015;33:155–60. https://doi.org/10.1038/nbt.3102.

15. Waddington CH. The strategy of the genes. A discussion of some aspects of
theoretical biology. With an appendix by H. Kacser. Strateg genes a discuss
some …; 1957. p. ix +-262. https://doi.org/10.1007/3-540-32786-X_7.

16. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape.
Cell. 2007;128:635–8.

17. Dunn S-J, Martello G, Yordanov B, Emmott S, Smith a G. Defining an
essential transcription factor program for naive pluripotency. Science (80-).
2014;344:1156–60. https://doi.org/10.1126/science.1248882.

18. Xu H, Ang Y-S, Sevilla A, Lemischka IR, Ma’ayan A. Construction and
validation of a regulatory network for pluripotency and self-renewal of
mouse embryonic stem cells. PLoS Comput Biol. 2014;10:e1003777.

19. Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK,
et al. CellNOptR: a flexible toolkit to train protein signaling networks to data
using multiple logic formalisms. BMC Syst Biol. 2012;6:133.

20. Sharan R, Karp RM. Reconstructing Boolean models of signaling. J Comput
Biol. 2013;20:249–57. https://doi.org/10.1089/cmb.2012.0241.

21. Guziolowski C, Videla S, Eduati F, Thiele S, Cokelaer T, Siegel A, et al.
Exhaustively characterizing feasible logic models of a signaling network
using answer set programming. Bioinformatics. 2013;29:2320–6. https://doi.
org/10.1093/bioinformatics/btt393.

22. Lim CY, Wang H, Woodhouse S, Piterman N, Wernisch L, Fisher J, et al. BTR:
training asynchronous Boolean models using single-cell expression data.
BMC Bioinformatics. 2016;17:355.

23. Chen H, Guo J, Mishra SK, Robson P, Niranjan M, Zheng J. Single-cell
transcriptional analysis to uncover regulatory circuits driving cell fate
decisions in early mouse development. Bioinformatics. 2015;31:1060–6.

24. Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Göttgens B.
Reconstructing blood stem cell regulatory network models from single-cell
molecular profiles. Proc Natl Acad Sci U S A. 2017;114:5822–9. https://doi.
org/10.1073/pnas.1610609114.

25. Woodhouse S. Synthesising executable gene regulatory networks in
haematopoiesis from single-cell gene expression data. 2017.

26. Woodhouse S, Piterman N, Koksal A, Fisher J. Synthesizing executable gene
regulatory networks from single-cell gene expression data. In: Computer
aided verification (CAV). Cham: Springer; 2015. http://research.microsoft.
com/apps/pubs/default.aspx?id=244559.

27. Z3 theorem prover. https://github.com/Z3Prover/z3. Accessed 17 Apr 2018.
28. AngularJS. https://angularjs.org/. Accessed 17 Apr 2018.
29. Dzik J, Palladinos N, Rontogiannis K, Tsarpalis E, Vathis N. MBrace: cloud

computing with monads. In: Proceedings of the seventh workshop on
programming languages and operating systems; 2013. p. 7.

30. MBrace. http://mbrace.io/. Accessed 17 Apr 2018.
31. SCNS github repository. https://github.com/swoodhouse/SCNS-GUI.

Accessed 17 Apr 2018.
32. Moignard V, Macaulay IC, Swiers G, Buettner F, Schütte J, Calero-nieto FJ, et al.

Characterization of transcriptional networks in blood stem and progenitor cells
using high-throughput single-cell gene expression analysis; 2013. p. 1–11.

33. Ståhlberg A, Andersson D, Aurelius J, Faiz M, Pekna M, Kubista M, et al.
Defining cell populations with single-cell gene expression profiling:
correlations and identification of astrocyte subpopulations. Nucleic Acids
Res. 2011;39:e24.

34. Wilkinson AC, Kawata VKS, Schütte J, Gao X, Antoniou S, Baumann C, et al. Single-
cell analyses of regulatory network perturbations using enhancer-targeting TALEs
suggest novel roles for PU.1 during haematopoietic specification. Development.
2014;141:4018–30. https://doi.org/10.1242/dev.115709.

Woodhouse et al. BMC Systems Biology (2018) 12:59 Page 7 of 7

https://doi.org/10.1126/science.1069883
https://doi.org/10.1038/nbt.3154
https://doi.org/10.1016/j.cell.2012.08.023
https://doi.org/10.1016/j.cell.2012.08.023
https://doi.org/10.1038/ncb2442
https://doi.org/10.1038/nature14966
https://doi.org/10.1126/science.1250689.
https://doi.org/10.1038/nature12364
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1007/3-540-32786-X_7
https://doi.org/10.1126/science.1248882
https://doi.org/10.1089/cmb.2012.0241
https://doi.org/10.1093/bioinformatics/btt393
https://doi.org/10.1093/bioinformatics/btt393
https://doi.org/10.1073/pnas.1610609114
https://doi.org/10.1073/pnas.1610609114
http://research.microsoft.com/apps/pubs/default.aspx?id=244559
http://research.microsoft.com/apps/pubs/default.aspx?id=244559
https://github.com/Z3Prover/z3
https://angularjs.org
http://mbrace.io
https://github.com/swoodhouse/SCNS-GUI
https://doi.org/10.1242/dev.115709

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	The SCNS algorithm
	Finding stable state attractors
	Software architecture and implementation
	Configuration of parameters

	Results
	SCNS is controlled via a web-based graphical user interface
	SCNS synthesises asynchronous Boolean network models
	SCNS supports easy deployment of computation to the cloud for performance

	Example – application to pre-implantation embryonic data
	Comparison to (partial) correlation networks

	Benchmarks
	Conclusions
	Availability and requirements
	Additional file
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

