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Abstract

Background: Differential co-expression analysis, as a complement of differential expression analysis, offers
significant insights into the changes in molecular mechanism of different phenotypes. A prevailing approach to
detecting differentially co-expressed genes is to compare Pearson’s correlation coefficients in two phenotypes.
However, due to the limitations of Pearson’s correlation measure, this approach lacks the power to detect nonlinear
changes in gene co-expression which is common in gene regulatory networks.

Results: In this work, a new nonparametric procedure is proposed to search differentially co-expressed gene pairs in
different phenotypes from large-scale data. Our computational pipeline consisted of two main steps, a screening step
and a testing step. The screening step is to reduce the search space by filtering out all the independent gene pairs
using distance correlation measure. In the testing step, we compare the gene co-expression patterns in different
phenotypes by a recently developed edge-count test. Both steps are distribution-free and targeting nonlinear relations.
We illustrate the promise of the new approach by analyzing the Cancer Genome Atlas data and the METABRIC data for
breast cancer subtypes.

Conclusions: Compared with some existing methods, the new method is more powerful in detecting nonlinear type
of differential co-expressions. The distance correlation screening can greatly improve computational efficiency,
facilitating its application to large data sets.

Keywords: Distance correlation, Edge-count test, Differential co-expression, Breast cancer subtypes, Pathway
analysis, The cancer genome atlas

Background
The vast majority of human diseases are complex dis-
eases, in the sense that they are not the consequence
of an abnormality of a single gene, but a result of
changes in many genes. Thanks to the rapid advance of
high-throughput technologies, researchers nowadays can
investigate the association between a disease and tens of
thousands of genes simultaneously. Two types of analysis,
namely differential expression (DE) analysis and differen-
tial co-expression (DCE) analysis, have been extensively
applied in genetic association studies [1–4]. Differential
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expression analysis targets genes with differential expres-
sion levels in different phenotypes, while DCE analysis
detects gene pairs or gene sets that are differentially asso-
ciated or regulated in different groups. Over the past
years, there have been considerable tools developed for
DE analysis and other similar analyses such as differen-
tial methylation (DM) analysis. One can refer to Soneson
and Delorenzi (2013) [5] for a comprehensive review and
comparison of several most popular tools including edgeR,
DESeq, TSPM, baySeq, EBSeq and ShrinkSeq. Despite the
success of DE analysis, the progress on DCE analysis is
relatively slow partially due to the combinatorial nature of
the problem and the lack of powerful statistical test for
comparing multi-dimensional patterns.
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Current DCE analyses are mostly relied on Pearson’s
correlation coefficient [1, 2, 6, 7], which is sensitive to out-
liers and only measures the strength of linear dependence.
Some modified measures such as Spearman’s correlation
and biweight midcorrelation [1] are more robust to out-
liers, but still unable to capture nonlinear changes in
co-expression. In this paper, we introduce a new method
to generally test for DCE gene pairs without assuming
linear or monotonic relation between genes. First of all,
it is important to emphasize that the objective of this
work is to search for differential co-expressions of single
gene pairs, which is different from objective of approaches
that set out to find modules of differentially co-expressed
genes. To begin with, we give the formal definitions of
gene co-expression and DCE genes: “The co-expression
of two genes is defined as the dependence between their
expression levels. If the dependency structure in one phe-
notype is different from that in another, the two genes are
called DCE genes” [8]. For computational simplicity, most
existing methods assume that genes are jointly normally
distributed, i.e., the correlations between genes are linear.
Under this assumption, the DCE testing is equivalent to
testing the equality of two correlation coefficients, which
can be formulated as the following hypothesis testing

H0 : ρ1 = ρ2 vs Hα : ρ1 �= ρ2,

where ρ1 and ρ2 represent the true correlation coefficients
between gene A and gene B in two phenotypes. Let r1
and r2 be the sample correlation coefficients, by Fisher’s
z-transformation, we have

z1 := 1
2
log

1 + r1
1 − r1

→ N
(
1
2
log

1 + ρ1
1 − ρ1

,
1√

n1 − 3

)
,

z2 := 1
2
log

1 + r2
1 − r2

→ N
(
1
2
log

1 + ρ2
1 − ρ2

,
1√

n2 − 3

)
,

where n1 and n2 stand for the sample sizes of two phe-
notypes. A routine two-sample z-test can then be directly
applied to evaluate the significance:

p-value = 2P

⎛
⎜⎝Z >

|z1 − z2|√
1

n1−3 + 1
n2−3

⎞
⎟⎠ ,

where Z represents a standard normal random variable.
The method described above is simple as the calcula-

tion only involves product-moment correlations, and it
generally works well for linearly dependent genes. How-
ever, the assumption of joint normality is not realistic as
the gene expression data could strongly deviate from nor-
mality. To this end, we relax the normal assumption and
reformulate the DCE search as a general statistical com-
parison between two joint distributions, so that the DCE
genes, based on their definition, can be tested through the
following hypothesis setup:

H0 : F∗
1 = F∗

2 vs Hα : F∗
1 �= F∗

2,

where F∗
1 and F∗

2 represent the joint distributions of genes
A and B in two phenotypes after the quantile normaliza-
tion. By quantile normalization, themarginal distributions
match across groups, so that one can test for the difference
between two dependency structures (in spirit, it is same
as comparing two copula densities, f1(x,y)∫

f1(x,y)dx
∫
f1(x,y)dy

and
f2(x,y)∫

f2(x,y)dx
∫
f2(x,y)dy

). A significant discrepancy between F∗
1

and F∗
2 indicates differential co-expression in two pheno-

types.
It should be noted that the test proposed here does not

rely on any parametric assumption but generally targets
all types of DCE. One can explicitly testH0 with a recently
developed edge-count test [9]. However, unlike the Pear-
son’s correlation method, the new test requires several
intermediate steps including the calculation of minimum
spanning trees, therefore it could be less efficient when
applied to large-scale data. To overcome this difficulty, we
use the distance correlation measure to screen out non-
coexpressed (independent) gene pairs before the edge-
count test, so that the search space can be greatly reduced.
The distance correlation measure has appealing theoreti-
cal properties and can generally capture nonlinear associ-
ations. On the whole, we put forward a complete frame-
work for DCE analysis which is effective and applicable to
large-scale expression data.
The rest of the paper is structured as follows:

Section “Methods” reviews the technical details of dis-
tance correlation screening and edge-count test. Simula-
tion studies are performed to compare the edge-count test
with two existing approaches based on Pearson’s corre-
lation and mutual information. In Section “Results”, we
apply this new approach to the Cancer Genome Atlas
(TCGA) data as well as the METABRIC data for the DCE
analysis between four subtypes of breast cancer. We dis-
cuss the strengths and some possible extensions of the
new approach in Section“Discussion” and conclude this
paper in Section“Conclusions”.

Methods
Distance correlation screening
Our screening step is based on distance correlation (DC),
which is a measure of dependence between two random
vectors, not necessarily of same dimension [10]. For given
random vectors X and Y, if we let φxxx(ttt) and φyyy(sss) be
the respective characteristic functions, then the distance
covariance betweenXXX and YYY can be defined as follows:

dCov2(XXX,YYY ) =
∫
Rdx+dy

||φxxx,yyy(ttt, sss)−φxxx(ttt)φyyy(sss)||2ω(ttt, sss)

cdxcdy ||ttt||1+dx
dy ||sss||1+dy

dy

dtttdsss,

(1)
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where dx and dy are the dimensions of XXX and YYY , cdx =
π(1+dx)/2

�{(1+dx)/2} and cdy = π(1+dy)/2

�{(1+dy)/2} . Unless otherwise spec-
ified, ||zzz||dz denotes the Euclidean norm of zzz ∈ R

dz , and
||φ||2 = φφ̄ for a complex-valued function φ and its
conjugate φ̄.
Similar as Pearson’s correlation coefficient, the DC

betweenXXX andYYY is defined as a rescaled distance covariance:

dCor(X,Y) = dCov(XXX,YYY )√
dCov(XXX,XXX)dCov(YYY ,YYY )

. (2)

Generally, we have 0 ≤ dCor(X,Y) ≤ 1, which is differ-
ent from Pearson’s correlation. One remarkable property
of DC is that dCor(X,Y) = 0 if and only if XXX and
YYY are independent [11–13], indicating that DC can also
measure nonlinear associations. With random samples
{(XXXi,YYY i), i = 1, . . . , n}, a natural estimator of dCov(XXX,YYY )

can be obtained as follows:

d̂Cov
2
(XXX,YYY ) = 1

n2
n∑

i=1

n∑
j=1

AijBij, (3)

where

Aij = aij − āi − āj + ā,

Bij = bij − b̄i − b̄j + b̄,

if we let aij = ||XXXi −XXXj||dX , āi = 1
n

n∑
k=1

||XXXk −XXXi||dX , āj =
1
n

n∑
l=1

||XXXl−XXXj||dX , ā = 1
n2

n∑
k=1

n∑
l=1

||XXXl−XXXk||dX , bij = ||YYY i−

YYY j||dY , b̄i = 1
n

n∑
k=1

||YYYk − YYY i||dY , b̄j = 1
n

n∑
l=1

||YYY l − YYY j||dY ,

b̄ = 1
n2

n∑
k=1

n∑
l=1

||YYY l − YYYk||dY . The sample estimate of DC

can be obtained immediately:

d̂Cor(XXX,YYY ) = d̂Cov(XXX,YYY )√
d̂Cov(XXX,XXX)d̂Cov(YYY ,YYY )

. (4)

One can test for significance of DC using an approx-
imate t-test proposed by Szekely and Rizzo (2013) [13],
which was implemented in R package energy [14]. Szekely
and Rizzo (2013) established the following result under
high dimensions

Tn = √
v − 1

R∗
n(XXX,YYY )√

1 − (R∗
n(XXX,YYY ))2

→ tdf=v−1,

where R∗
n(XXX,YYY ) represents a modified distance correla-

tion between XXX and YYY (see Szekely and Rizzo (2013), Eq
2.10, p.197) and v = n(n−3)

2 . Here, it is worth noting
that although the t-approximation above is derived under
high dimensions, it also works well for low-dimension
cases (in our problem, dimensions of XXX and YYY both equal
one for each test). To evaluate the performance of the
t-approximation under dimension one, we consider two
independence settings

• Setting 1: Xi ∼ N(0, 1), Yi ∼ N(0, 2), i = 1, 2, . . . , 50,
• Setting 2: Xi ∼ Uniform(0, 1), Yi ∼ Uniform(0, 2),

i = 1, 2, . . . , 50.

For each setting, we generated 10,000 data sets and cal-
culated the test statistic Tn for each data set. Figure 1
compared the sample distribution of Tn with the asymp-
totic t distribution (close to a standard normal distribution
as the degree of freedom v − 1 is generally large). Futher-
more, we compared the approximate p-value with the
permutation p-value (based on 10,000 random shuffles)
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Fig. 1 Finite sample performance of the t approximation under low dimensions (dx = dy = 1): (a) normal setting and (b) uniform setting. The
histograms represent the sample distributions of the test statistic Tn under independence null, and the curves are corresponding t curves
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in 100 replications. As shown in Fig. 2, the approximate
p-values are very close to the permutation p-values, indi-
cating a satisfactory performance of the t-approximation
under low dimensions.
The distance correlation measure has been applied in

previous genomic studies to quantify gene co-expressions
[15]. Besides DC, there are several measures that can pick
up nonlinear dependence between variables, although
each of them has its own practical limitations. Clark
(2013) [16] empirically compared six popular measures
including Pearson’s correlation, Spearman’s correlation,
distance correlation, mutual information (MI), maximum
information coefficient (MIC) and Hoeffding’s D under
a variety of different settings, and it was found that
the six methods perform almost equally well in detect-
ing the linear correlation. However, under the nonlinear
dependence, the distance correlation and MIC performed
notably better than the other measures. There are two
considerations that lead to the choice of DC instead of
MIC in our analysis. First, DC is straightforward to cal-
culate and not an approximation while MIC relies on a
user-defined number of grids for approximation. Second,
as pointed out in some recent studies [17, 18], the DC
exhibits more statistical power than MIC under moderate
or small sample sizes.

Edge-count test
Our testing step is to compare two multivariate distri-
butions (dimension is 2 in DCE analysis). In statistics
literature, there are mainly two types of multivariate tests,
namely the multi-dimensional Kolmogorov-Smirnov (KS)

test [19] and edge-count test [20, 21]. These two methods,
however, both have practical limitations when applied
to real data. For instance, KS test is very conservative,
i.e., the null hypothesis is too often not rejected. Also,
by the brute force algorithm, the application of multi-
dimensional KS test can be prohibitively computationally
intensive. The edge-count test is easy to implement but it
is known to be problematic under the location and scale
alternatives. Recently, Chen and Friedman [9] developed a
modified version of edge-count test, which works properly
under different alternatives and exhibits substantial power
gains over existing edge-count tests. Similar as other edge-
count tests, the new test is based upon a similarity graph
such as minimum spanning tree (MST, [22]) that is con-
structed over the pooled samples from different groups.
Generally, if two groups have different distributions, sam-
ples would be preferentially closer to others from the same
group than those from the other group, therefore the
edges in the MST would be more likely to connect sam-
ples from the same group. The test rejects the null if the
number of between-group edges is significantly less than
expected.
To be precise, we let x1, x2, . . . , xn and y1, y2, . . . , ym be

i.i.d. samples from two multivariate distributions FFFX and
FFFY, respectively. We first pooled samples from two groups
and indexed them by 1, 2, . . . ,N = n + m. A MST is then
constructed on the pooled samples using Kruskal’s algo-
rithm [22]. Unless otherwise specified, G represents the
MST (or other similarity graphs) as well as the set of all
edges, and |G| denotes the total number of edges. To illus-
trate the technical details, we adopted the notations from
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Fig. 2 Accuracy of the p-value approximation by asymptotic t distribution under: (a) normal setting and (b) uniform setting. The x-axis is the
approximate p-value and y-axis is the permutation p-value based on 10,000 random shuffles
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Chen and Friedman’s paper. Let gi = 0 if sample i is from
group X and gi = 1 otherwise. For the edge e connecting
samples i and j, i.e., e = (i, j), we define:

Je =
⎧⎨
⎩
0 if gi �= gj
1 if gi = gj = 0
2 if gi = gj = 1

, (5)

and

Rk =
∑
e∈G

IJe=k , k = 0, 1, 2. (6)

Here R1 and R2 represent the numbers of edges connect-
ing samples from same group, and R0 stands for number
of edges connecting samples from different groups. The
new test statistic simply quantifies the deviation of (R1,R2)
from their expected values under true H0. It has the
following quadratic form:

S = (R1 − μ1,R2 − μ2)�
−1

(
R1 − μ1
R2 − μ2

)
, (7)

where μ1 = E(R1), μ2 = E(R2) and � = V ((R1,R2)T )

have the following expressions (see the Appendix of Chen
and Friedman’s paper for detailed proof):

μ1 = |G| n(n − 1)
N(N − 1)

,

μ2 = |G|m(m − 1)
N(N − 1)

,

�11 = μ1(1−μ1) + 2C
n(n − 1)(n − 2)
N(N − 1)(N − 2)

+ (|G|(|G| − 1)

− 2C)
n(n − 1)(n − 2)(n − 3)

N(N − 1)(N − 2)(N − 3)
,

�22 = μ2(1−μ2) +2C
m(m − 1)(m − 2)
N(N − 1)(N − 2)

+ (|G|(|G| − 1)

− 2C)
m(m − 1)(m − 2)(m − 3)
N(N − 1)(N − 2)(N − 3)

,

�12 = (|G|(|G|−1)−2C)
nm(n−1)(m−1)

N(N−1)(N−2)(N−3)
−μ1μ2,

where C = 1
2

∑N
i=1 |Gi|2 − |G|, and Gk stands for the

subgraph inG that includes all edges that connect to node
k. It was proved that under the permutation null hypoth-
esis, S asymptotically follows a Chi-square distribution
with 2 degrees of freedom [9]. The p-value approxima-
tion generally works well under relatively small sample
size, for instance, when min(n,m) = 20. In their work,
Chen and Friedman also suggested that the use of k-
MST graphs (e.g., 3-MST or 5-MST) may lead to a better
approximation of p-value in practice.
It is noteworthy to mention that Chen and Friedman’s

method was developed for two-group comparison. In the
case of multiple groups, a sequence of pairwise compar-
isons need to be conducted. Recently, we extended Chen
and Friedman’s test to multiple-group case and proposed

an overall test to compare more than two groups simulta-
neously. In our technical report [23], it was proved that the
test statistics for p groups asymptotically follows a Chi-
square distribution with p degrees of freedom under mild
regularity conditions. To be precise, for an edge e in graph
G, we let

Ae = {e} ∪ {e′ ∈ G : e′ and e share a node},
Be = Ae∪{e′′ ∈ G : ∃ e′ ∈ Ae, such that e′′ and e′ share a node},

then the following theorem can be derived:

Theorem 1 If |G| = O(N),
∑N

k=1 |Gk|2 − 4|G|2
N = O(N),

|Ae||Be| = o(N3/2), limN→∞ Ni
N = λi ∈ (0, 1), then

S :=(R1 −μ1,R2 −μ2, . . . ,Rp −μp)�
−1

⎛
⎜⎜⎝
R1−μ1
R2−μ2

· · ·
Rp−μp

⎞
⎟⎟⎠−→ χ2

p ,

where i = 1, . . . , p is the group index.

The expected values and covariance matrix can be
derived as in (7):

μk,1≤k≤p = |G|nk(nk − 1)
N(N − 1)

,

�kk,1≤k≤p = μk(1 − μk) + 2C
nk(nk − 1)(nk − 2)
N(N − 1)(N − 2)

+ (|G|(|G| − 1)

− 2C)
nk(nk − 1)(nk − 2)(nk − 3)
N(N − 1)(N − 2)(N − 3)

,

�jk,1≤j �=k≤p = (|G|(|G| − 1) − 2C)
njnk(nj − 1)(nk − 1)

N(N − 1)(N − 2)(N − 3)
− μjμk ,

where N = ∑p
k=1 nk and C = 1

2
∑N

i=1 |Gi|2 − |G|.
The detailed proof for Theorem 1 can be found in the
Appendix of Zhang et al. (2017) [23].

Simulation study: edge-count test versus two existing
approaches
We performed a simulation study to empirically com-
pare the edge-count test with two existing methods based
on Pearson’s correlation and mutual information. Par-
ticularly, we considered the following linear setting and
nonlinear setting, where X and Y represent the expression
levels of two genes and subscripts “1” and “2” stand for two
conditions:

• Linear setting: (X1,Y1)T ∼ N
[(

0
0

)
,
(
1 ρ

ρ 1

)]
,

(X2,Y2)T ∼ N
[(

0
0

)
,
(

1 ρ + �

ρ + � 1

)]
, where

ρ = 0.3, � ∈ {0.1, 0.2, . . . , 0.6}.
• Nonlinear setting: Xi ∼ Uniform(−2, 2),

Yi = X2
i + εi, εi ∼ N

(
0, σ 2

i
)
, i = 1, 2, σ1 = 0.5,

σ2 = σ1 + �, � ∈ {0.1, 0.2, . . . , 0.6}.
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For each setting, we generated 1,000 data sets with
sample sizes n1 = n2 = 100 and three approaches were
applied to test for the difference between two joint dis-
tributions. For edge-count test, we took 3-MST based on
Euclidean distance and computed the p-value using Chi-
square approximation. The R package infotheo [24] was
used to estimate the entropies of Xi and Yi, as well as the
mutual information between Xi and Yi, i = 1, 2. To eval-
uate the significance of the mutual information change,
we performed a Fisher’s z transformation introduced in
Zhang et al. (2012) [25]. To be precise, let H(Xi) be the
entropy of variable Xi, and I(Xi,Yi) be the mutual infor-
mation between Xi and Yi, then the transformed zi given
below approaches to a standard normal distribution with
variance 1

ni−3 :

zi = 1
2
log

1 + I∗(Xi,Yi)
1 − I∗(Xi,Yi)

,

where I∗(Xi,Yi) = I(Xi,Yi)
H(Xi)+H(Yi) . The p-value can then be

obtained by a two-sample z test, i.e.,

p-valueMI = 2P

⎛
⎜⎝Z >

|z1 − z2|√
1

n1−3 + 1
n2−3

⎞
⎟⎠ .

For each data set, we conducted a quantile normaliza-
tion to match the marginals and tested the hypothesis at
α = 0.05 (H0 : FFF∗

1(X1,Y1) = FFF∗
2(X2,Y2)) with three differ-

ent methods, where FFF∗
i represented the joint distribution

of (Xi,Yi) after the marginal matching. The accuracy (true
positive rate) of each method under each setting was sum-
marized in Fig. 3. As we can see, all the three methods

achieved good accuracy in the linear setting (except in the
subtle case of � = 0.1). The Pearson’s correlation and
edge-count test performed slightly better than the mutual
information. For the nonlinear (quadratic) setting, the
edge-count test substantially outperformed the other two
methods, while the Pearson’s method completely failed to
identify the difference.
Our simulation study demonstrated the capability of our

edge-count test in capturing both linear and nonlinear
changes. Generally, the edge-count test performs simi-
larly well as Pearson’s correlation and mutual information
under linear setting but achieves significantly better sen-
sitivity for nonlinear setting.

Results
In this section, we applied the two-step pipeline to search
DCE genes in four subtypes of breast cancer using the
Cancer Genome Atlas (TCGA) data. Four gene sets,
including two KEGG gene pathways and two MSigDB
hallmark gene sets, were used as illustrative examples.
We validated our findings by the large-scale METABRIC
breast cancer data.

Data preparation
In TCGA, each subject is represented bymultiple molecu-
lar data types including gene expression, genotype (SNP),
exon expression, MicroRNA expression, copy number
variation, DNA methylation, somatic mutation, and pro-
tein expression [3, 26]. We only used the gene expression
(RNA-seq) data in this study. The TCGA transcriptome
profiling data was downloaded through Genomic Data
Commons (GDC) portal in January 2017. The expression
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Fig. 3 Performance comparison of three different methods under: (a) linear setting and (b) nonlinear setting. The x-axis is the value of �, and y-axis
is the true positive rate based on 10,000 replications
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level of each gene was quantified by the count of reads
mapped to the gene. The quantifications were done by
software HTSeq of version 0.9.1 [27] and the count data
were log-transformed for further processing.We excluded
43 subjects from the analysis including 12 male sub-
jects and 31 subjects with more than 1% missing val-
ues. In addition, we removed the effects due to different
age groups and batches using a median-matching and
variance-matching strategy [28]. For example, the batch
effect can be removed in the following way:

g∗
ijk = Mi + (gijk − Mij)

σ̂gi
σ̂gij

,

where gijk refers to the expression value for gene i from
sample k in batch j (j = 1, 2, . . . , J ; k = 1, 2, . . . , nj), Mij
represents the median of gij = (gij1, . . . , gijnj), Mi refers to
the median of gi = (gi1, . . . , giJ ), σ̂gi and σ̂gij stand for the
standard deviations of gi and gij, respectively.
The remaining 959 samples were further classified into

five subtypes according to two molecular signatures,
namely PAM50 [29] and SCMOD2 [30]. The two classi-
fications were implemented separately using R package
genefu [31] and we obtained 530 subjects with concordant

classification by two classifiers. The resulting set con-
tains 221 subjects in luminal A group, 119 in luminal B
group, 74 in her2-enriched group, 105 in basal-like group
and 11 in normal-like group. The normal-like group was
excluded from the analysis due to the low sample size and
only four subtype groups were considered.
Finally, we perform a quantile normalization [32] for

each group separately, so that themarginal distributions of
all the genes match across groups. The purpose of quan-
tile normalization is to avoid the rejection of H0 due to
marginal difference (differential expression) instead of dif-
ferent dependency patterns (differential co-expression).

Some illustrative examples
We illustrated the new method using four molecular
pathways, including the cell cycle and ERBB pathways
from KEGG database, as well as the JAK-STAT and
TGF-beta signaling pathways from MSigDB database. All
the selected pathways play critical roles in the initiation
and progression of many human cancers. For instance,
KEGG cell cycle pathway contains 128 genes that co-
regulate cell proliferation, including ATM, RB1, CCNE1
and MYC. Abnormal regulation among these genes may
cause the over proliferation of cells and an accumula-
tion of tumor cell numbers. The ERBB pathway in KEGG
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Fig. 4 The collection of differentially co-expressed gene pairs in KEGG cell cycle pathway. A connection between two genes represents significant
DCE by the edge-count test
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database consisted of 87 genes including important proto-
oncogenes and tumor suppressors such as PIK3C, KRAS
and STAT5. It is known that ERBB pathway is closely
related to the development of a wide variety of types of
tumor. Especially, the excessive signaling of growth fac-
tor receptors ERBB1 and ERBB2 are critical factors in
the malignancy of solid tumor [3]. The JAK-STAT sig-
naling pathway and TGF-beta signaling pathway were
also known to play critical roles in tumor suppression
and cancer metastasis. For instance, TGF-beta can mod-
ulate processes such as cell invasion, immune regulation,
and microenvironment modification that cancer cells may
exploit to their advantage [33].
For each subtype group, we first computed the distance

correlation matrix and corresponding p-value matrix
for all gene pairs (see Methods section for details). A
Benjamini-Hochberg (BH, [34]) procedure with FDR ≤
0.05 was then applied to screen out uncorrelated genes. A
gene pair was deemed as uncorrelated if the adjusted p-
values in four subtypes are all above 0.05. This screening
resulted in a total of 487 correlated gene pairs in cell cycle
pathway, 359 in ERBB pathway, 592 in JAK-STAT signaling

pathway and 440 in TGF-beta signaling pathway. These
four reduced sets of gene pairs were used as the search
space for the testing step.
For each gene pair in the search space, we carried out

hypothesis tests to compare the co-expression patterns
in each pair of subtypes (totally

(4
2
) = 6 comparisons).

An edge-count test with 3-MST was implemented, fol-
lowed by a BH procedure with FDR ≤ 0.05 for multiplicity
adjustment. Finally, we identified 120 DCE gene pairs in
cell cycle pathway, 94 in ERBB pathway, 122 in JAK-STAT
signaling pathway and 102 in TGF-beta signaling path-
way. Figures 4, 5, 6, 7 showed the four DCE networks,
where each edge indicated a DCE gene pair in four sub-
types. It should be noted that the networks we presented
here are different from the regular gene co-expression
networks, instead, each network represents a collection
of gene pairs that are differentially co-expressed under
different conditions. When interpreting the clusters in
the networks, one reasonable hypothesis could be that
they represent groups of genes that are significantly co-
expressed in some condition/conditions but not in others.
For instance, we found that genes MYD88, STAT1, TYK2,
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Fig. 5 The collection of differentially co-expressed gene pairs in KEGG ERBB pathway. A connection between two genes represents significant DCE
by the edge-count test
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PTPN11, CNTFR, IL17RA, LTE and CD44 (highly con-
nected in Fig. 6) exhibited a much stronger co-expression
in the basal-like subtype than the other three subtypes,
according to the distance correlation matrices in four
subtypes. In practice, one may use our pipeline to infer
the differentially co-expressed network, and then focus
on a subnetwork (subset of genes) of interest by inves-
tigating the co-expressions in different conditions, either
numerically or graphically.
Two examples of the identified DCE gene pairs were

shown in Figs. 8 and 9. Figure 8 suggested that the co-
expression of genes PAK3 and AKT3 in basal-like group
was substantially different from those in the other groups.
In Fig. 9, genes SMAD4 and CDC27 exhibited a nega-
tive co-expression in the luminal B group, which was not
observed in luminal A, her2-enriched or basal-like group.

Comparison with Pearson’s correlation method
To benchmark our new method, we compared it with
the DCE search based on Pearson’s correlation, as intro-
duced in the Background section. A two-sample z-test

with Fisher’s z-transformation was conducted, followed
by a BH procedure with FDR ≤ 0.05 for fair com-
parison. By Pearson’s correlation method, a total of
98 DCE gene pairs were identified in cell cycle path-
way, 73 in ERBB pathway, 93 in JAK-STAT signal-
ing pathway and 83 in TGF-beta signaling pathway.
The agreement between the two approaches was summa-
rized using Venn diagrams in Fig. 10. It can be seen that
almost all the DCE genes by Pearson’s method were also
captured by the new approach, but a significant number of
gene pairs captured by the new approach were missed by
the Pearson’s correlation method. Two gene pairs of such
were provided as examples in Figs. 11 and 12. The dif-
ferent association patterns between genes RPS6KB2 and
ELK1 in four groups were shown in Fig. 11, where it
could be seen that in luminal B subtype, the two genes
were positively associated when RPS6KB2 was underex-
pressed, but the expression of ELK1 became stabilized
when RPS6KB2 was overexpressed. By Pearson’s correla-
tion method, however, none of the p-values was signifi-
cant. There were two p-values (after adjustment) that were
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Fig. 6 The collection of differentially co-expressed gene pairs in MSigDB JAK-STAT pathway. A connection between two genes represents significant
DCE by the edge-count test
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highly significant by the edge-count test: p = 9.4 × 10−4

for H0 : FFF∗
luminal A = FFF∗

luminal B and p = 1.1 × 10−3

for H0 : FFF∗
basal−like = FFF∗

luminal B. Likewise, as shown in
Fig. 12, genes CDK2 and CDC14A exhibited a V-shape co-
expression in her2-enriched group, but not in the other
groups. These examples indicated that our new method
dominates the prevailing Pearson’s correlation method
in searching DCE genes, therefore may reveal additional
clues for understanding the changes in gene regulation
mechanisms of different phenotypes.

Validation by METABRIC data
To validate the identified sets of DCE gene pairs,
we repeated the two-step procedure to large-scale
data cohort, namely the METABRIC data [35]. The
METABRIC data set contained molecular profiles for
2506 breast cancer samples and each sample has
been assigned a subtype based on PAM50 signature.
In our analysis, we included 700 samples in luminal A
group, 475 in luminal B group, 224 in her2-enriched group

and 209 in basal-like group. After the distance correla-
tion screening and quantile normalization for each gene,
we applied two methods, namely the Pearson’s correla-
tion and edge-count test, to search DCE gene pairs in
the four aforementioned gene sets. Same thresholds of
FDR cutoff for distance correlation screening and edge-
count test were used as in the TCGA analysis. With
the METABRIC data, we identified four sets of DCE
gene pairs for four pathways and Fig. 13 summarized
the comparison between TCGA data and METABRIC
data. The agreement between the two data sets ranged
from 64.2 to 80.2% for four pathways, indicating a sat-
isfactory reproducibility of our method. In addition, we
compared two DCE sets of the nonlinear type that
were identified by edge-count test but missed by Pear-
son’s method. As can be seen from Fig. 14, these two
data sets also achieved a good agreement on the non-
linear DCE pairs. For instance, out of 23 nonlinear
DCE pairs using TCGA data, 18 were confirmed by the
METABRIC data.
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Fig. 7 The collection of differentially co-expressed gene pairs in MSigDB TGF-beta pathway. A connection between two genes represents significant
DCE by the edge-count test
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Fig. 8 An example of identified DCE genes: the co-expression graphs between PAK3 and AKT3 (KEGG cell cycle pathway) in four breast cancer
subtypes
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a b

c d

Fig. 10 The Venn diagram showing the agreement between Pearson’s correlation method and the proposed method for each pathway: (a) KEGG
cell cycle pathway; (b) KEGG ERBB pathway; (c) MSigDB JAK-STAT signaling pathway and (d) MSigDB TGF-beta signaling pathway
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Fig. 11 An example of DCE gene pair identified by new approach but missed by Pearson’s correlation method: the co-expression graphs between
RPS6KB2 and ELK1 (cell cycle pathway) in four subtypes
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Fig. 13 The Venn diagram showing the agreement between TCGA data and METABRIC for each pathway: (a) KEGG cell cycle pathway; (b) KEGG
ERBB pathway; (c) MSigDB JAK-STAT signaling pathway and (d) MSigDB TGF-beta signaling pathway
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a b

c d

Fig. 14 The Venn diagram showing the agreement between two sets of nonlinear DCE gene pairs (identified by edge-count test but missed by
Pearson’s method) by TCGA data and METABRIC data: (a) KEGG cell cycle pathway; (b) KEGG ERBB pathway; (c) MSigDB JAK-STAT signaling pathway
and (d) MSigDB TGF-beta signaling pathway

Discussion
In this article, we developed a nonparametric method
to effectively identify variability in gene co-expression
pattern among multiple phenotypes. Our work presents
novelty in two aspects. Firstly, we dropped the assump-
tion of joint normality between genes and directly test
if a gene pair follow the same joint distribution over
different phenotypes. By a graph-based approach, the
comparison between multivariate distributions was trans-
formed to an edge-count test which is easy to imple-
ment. The statistical test used in this study is fully
nonparametric and it rejects null hypothesis under dif-
ferent types of differential co-expressions including lin-
ear and nonlinear types. By a real life application, we
demonstrated how the proposed test is better able to
capture the DCE genes as compared to the Pearson’s
correlation method.
Second, to make the test applicable to large-scale data,

we employed a distance correlation measure to filter out
all the noncoexpressed gene pairs prior to the testing step.
One shortcoming of the edge-count test is that it requires
the calculation of a similarity graph that connects all the
samples. For example, in our analysis of the breast can-
cer data, a 3-MST (union of three non-overlapping MSTs)
was used as the similarity graph. Under large number of
genes, this step can be computationally expensive. As a
well accepted fact in biology, most gene co-expression net-
works are overall sparse, although they might be locally

dense, hence the co-expression screening step should con-
siderately reduce the search space. In the example of
KEGG cell cycle pathway, the search space was reduced
from more than 8000 gene pairs to less than 500.
Throughout this paper, we have focused on the study

of co-expression between two genes. Nevertheless, it is
noteworthy that the proposed test can be readily applied
to multiple-gene cases. In fact, Chen and Friedman’s test,
as well as the multi-group extension, is merely built upon
a similarity graph connecting all the samples, and the
construction of graph depends only on the interpoint dis-
tances regardless of the dimension [9]. In practice, one
can simply use Euclidean norm as the interpoint distance
and construct the similarity graph such asMST or k-MST.
Additionally, because of the flexibility of our approach,
one can also explicitly test for the difference in a higher-
order interaction such as three-way gene co-expression,
by properly controlling all the marginals and lower-order
interactions.

Conclusions
Differential co-expression analysis is critical for the iden-
tification of disease-related factors. Motivated by the fact
that nonlinear co-expressions generally exist in cellular
regulations, we develop a new nonparametric method for
DCE analysis, which measures and compares gene co-
expressions in linear and nonlinear aspects. Our method
does not rely on any assumption regarding the probability



Zhang BMC Systems Biology  (2018) 12:58 Page 15 of 16

distributions of the genes being studied, but it gener-
ally tests the equality of two or multiple co-expression
patterns through a powerful graph-based test. For prac-
tical consideration, we suggest a screening step based on
distance correlation to tackle the computational burden
for large-scale data. The proposed computational proce-
dure can also be applied to other similar bioinformatics
problems such as the differential co-methylation analysis
[36, 37] and differential gene set analysis [38, 39].
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