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Abstract

Background: Metabolic reactions are chemical transformations commonly catalyzed by enzymes. In recent years,
the explosion of genomic data and individual experimental characterizations have contributed to the construction
of databases and methodologies for the analysis of metabolic networks. Some methodologies based on graph
theory organize compound networks into metabolic functional categories without preserving biochemical
pathways. Other methods based on chemical group exchange and atom flow trace the conversion of substrates
into products in detail, which is useful for inferring metabolic pathways.

Methods: Here, we present a novel rule-based approach incorporating both methods that decomposes each
reaction into architectures of compound pairs and loner compounds that can be organized into tree structures. We
compared the tree structure-compound pairs to those reported in the KEGG-RPAIR dataset and obtained a match
precision of 81%. The generated tree structures naturally clustered all reactions into general reaction patterns of
compounds with similar chemical transformations. The match precision of each cluster was calculated and used to
suggest reactant-pairs for which manual curation can be avoided because this is the main goal of the method. We
evaluated catalytic processes in the clusters based on Enzyme Commission categories that revealed preferential use
of enzyme classes.

Conclusions: We demonstrate that the application of simple rules can enable the identification of reaction patterns
reflecting metabolic reactions that transform substrates into products and the types of catalysis involved in these
transformations. Our rule-based approach can be incorporated as the input in pathfinders or as a tool for the
construction of reaction classifiers, indicating its usefulness for predicting enzyme catalysis.
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Background
One of the main forces defining genome content is me-
tabolism, a chemical system that generates all the neces-
sary chemical substances in living cells through chemical
reactions mainly catalyzed by genome-encoded enzymes
[1]. The increased availability of metabolic information
has attracted the interest of bioinformaticians, who have
developed computational methods to uncover important
information regarding global properties of metabolic

systems and detailed group reaction exchanges. How-
ever, the results arising from system-oriented studies
are difficult to incorporate directly into the enzyme
catalysis context.
Approaches based on graph theory build compound–

compound networks that reveal hubs (compounds that
are highly connected) and modules (compound sets that
suggest communities of similar chemical and functional
properties) [2]. Various properties arise from the re-
moval of hubs, providing a partial view of the metabolic
network due to loss of biochemical information required
to include compound modifications present in more
traditional metabolic maps. Such a level of detail can be
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achieved by adopting a reaction as a unit with the aim of
analyzing specific compound transformations. Arita M.
created a method to detail atom correspondence
between substrates and products within reactions, dem-
onstrating that metabolic networks do not follow a
small-world network distribution (many elements in
modules connected by a few hubs) [3].
Other methods used to describe relationships between

chemical compounds that participate in metabolic reac-
tions are so-called atom mappers, which automatically
compare compounds to locate group transfer. An inter-
esting property of atom mappers is that they identify
structural transformations between single-compound
pairs, allowing creation of reactant pairs (RPairs) such as
those in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) RPAIR database, which are defined as “pairs of
compounds that have atoms or atom groups in common
on two sides of a reaction” [4]. RPairs have also been
proven to be useful when combined with hierarchical
clustering algorithms to elucidate relationships between
reactions and enzymes [5], ultimately defining groups of
compounds with related metabolic pathways [6]. These
methods have been developed as promising alternatives
for pathway discovery [7] but are slow to automate [8]
and tend to require both a priori information and sec-
ondary methods to handle special cases, such as com-
pounds with rings, prior to the final step of manual
curation. Nonetheless, atom transfer is still a useful tool
for predicting enzymatic catalysis in reaction sets [9].
Considering the aforementioned properties of atom
mappers and graph theory as tools for pathway discov-
ery, the first goal of our work was to implement a simple
and fast method to complement atom mappers with the
aim of avoiding a manual curation step as much as pos-
sible. For this purpose, we performed a statistical com-
parison of the TS-pairs proposed by our method with
those in the RPAIR/RCLASS datasets, generating a pre-
cision value that can be interpreted as the confidence of
the predicted set of reactant-pairs. We propose that the
results obtained by our method will provide researchers
with sets of confident pairs, a property proven to show
better performance in pathfinders. Most importantly,
our results can be used as a guide to determine which
reactions should be candidates for manual curation.
Therefore, we systematically analyzed single-chemical

metabolic reactions and outlined the mutual associations
of their compounds, representing each reaction as a tree
structure (TS). We then constructed a rule-based
approach centered on two principles: (i) wide sets of
metabolic reactions involve compounds, such as pool
metabolites and cofactors, that undergo small modifica-
tions; and (ii) some compounds, usually coenzymes or
pool metabolites, are frequently associated with various
reactions in unrelated metabolic pathways. The first

principle was used to create the balance rule, and the
second was used to propose the count rule. Both rules
were employed to analyze a set of 6230 well-curated re-
actions documented in the KEGG database. Each TS
contained at least one pair of compounds similar in
structure to RPairs. To assess the performance of our
rules, we compared each resultant pair in a reaction to
curated RPairs from the KEGG database (8) and ob-
tained a precision value of 81% for the full set.
Because our approach outlines the specific architec-

ture of each reaction, it can then be grouped according
to its TS topology, grouping reactions of the same pat-
tern into a single cluster of TSs (CTS). As a result, all
the 6230 reactions analyzed clustered into 71 CTSs.
Moreover, the reactions grouped in each CTS transfer
similar chemical groups. Based on this property, we
propose that our rule-based approach can be used as a
classifier of metabolic reactions. Given this observation,
we analyzed whether our CTSs were associated with en-
zyme categories represented by the Enzyme Commission
number (ECN) available for each reaction [10]. There-
fore, we measured the enrichment of each ECN in each
CTS and revealed that the ECNs naturally fit the chem-
ical patterns disclosed by our protocol.

Results
Generation of tree structures
Cofactors used in metabolic reactions are compounds
that suffer small transformations compared to other re-
actants that are modified dramatically in one or more
steps. One way to compare these changes within reac-
tions is to measure the difference in molecular weights
between compounds. Using this observation, we devised
a computational protocol, called the “balance rule”, that
estimates the similarity of compounds within a reaction.
The purpose of this rule is to distinguish groups of com-
pounds participating in a reaction based on differences
in their molecular weights (Fig. 1a).
As a first step, for each analyzed reaction, we assigned

the elements of the Cartesian product (ECPs) derived
from the compounds on the left and right sides of the
equation, estimating the relative mass for each (de-
scribed in more detail in the Methods section). The ECP
with the smallest difference in relative mass was then
separated from the rest of the reaction, and then all
ECPs of the reaction for which the compounds were
previously selected were eliminated (Fig. 1a). The
remaining ECPs were then subjected to the same process
until no ECPs remained or until the establishing of a dif-
ference between the relative ECP masses was not pos-
sible. Thus, at the end of the process, no compounds in
the analyzed reaction participated in more than one
ECP. The implications of this restriction are discussed in
the next section. We represented rounds of separation
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and selection into a tree structure (TS) in which the tips
showed the selected ECPs that described the pairs and
loner compounds defining each reaction (Fig. 2). When
applying the previous rules, we observed that for some re-
actions, the establishing of mass differences for particular
sets of ECPs was not possible. For these reactions, our
protocol uses a second rule, called the “count rule”, that
selects an ECP based on its frequency in the entire net-
work (Fig. 1b). The notion behind this rule is that some
compounds, such as coenzymes and pool metabolites, are
frequently associated with numerous reactions in many
unrelated pathways. This property has been used previ-
ously to identify metabolic network hubs [2]. In our work-
flow, the balance rule is always applied first because it

reflects an internal reaction property, and the count rule is
used when the balance rule fails to select a single ECP.
To validate our approach, we used only the 6392 reac-

tions that were fully described in the KEGG LIGAND data-
set that were available in 2015 (see Methods section) [11].
From the original set, we discarded 1099 reactions with just
one substrate and one product, including 335 reactions cat-
aloged as isomerizations, which occur when a substrate
atom is arranged into another position on the product. For
example, in reaction R01518, 2-phospho-D-glycerate
(C00631) is transformed into 3-phospho-D-glycerate
(C00197) by isomerization. For this reaction, the only pos-
sible tree structure would be formed by both compounds
(C00631_C00197) alone, and we therefore decided not to

a b

Fig. 1 Representation of the constructed rules and tree structure (TS) construction. We illustrate graphical representations of our rules and their
applications. a Example of using the balance rule to generate a tree structure for reaction R00658, in which the substrate 2-phospho-D-glycerate
(C00631) is transformed into phosphoenolpyruvate (C00074) and water (C00001), by selecting the element of the Cartesian product (ECP) C00631_
C00074 as the element with the smallest difference in molecular weight within the reaction. b Example of using the count rule to construct a tree
structure for reaction R02090, in which the substrates ATP (C00002) and dGMP (C00362) are transformed into ADP (C00008) and dGDP (C00361), by
selecting the element of Cartesian product C00002_C00008 as the more frequently represented ECP in the entire network. For the TS representation,
nodes: the gray octagon defines the tree root (reaction), the squares define the CP node, the rhomboid defines lone compound nodes, and the white
circle defines compounds. Edges: blue, split through balance; orange, split through count; thin line, node/compound link. For the reaction string
format (RSF), we represent the split in a line described in detail in the Methods section
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include these transformations in successive analyses. The
same splitting method was applied to the rest of the group,
including 642 reactions lacking an enzyme entry.
The balance rule was able to describe 6291 of 6392 re-

actions from the KEGG database, and the count rule was
used for the 101 remaining reactions. Importantly, 15 of
these 101 reactions, including reaction R00509, have a
small number of reactants (one or two) that are trans-
formed into one or two products (Fig. 3a). In this case,
the compound arrangements were selected using only
the count rule. The 86 remaining reactions that were in-
volved in more complex transformations required both
rules to generate the TS for each reaction. An example
is presented in Fig. 3b for reaction R10376, which is in-
volved in the biosynthesis of indole diterpene alkaloids.
The selection begins by separating the terpendole E
(C20536) and 13-desoxyterpendole I (C20542) molecules
from the rest of the reaction to form the pair
(C20536_C20542). The count rule was then used again
to separate NADP+ (C00006) and NADPH (C00005)
from the other compounds in the reaction to form the
pair (C00005_ C00006). Finally, the minimal differences in
molecular weight for the remaining compounds were suf-
ficient to complete the process using the balance rule.
Another notable observation from our approach

was that the TSs found for the 6392 reactions re-
vealed common architectures that could be clustered
considering the order of splitting within the reaction,
and the two rules were used by the protocol. This
clustering procedure resulted in a set of 71 different
TS arrangements that included all the reactions
tested (Table 1 and Additional file 1: Table S2). Not-
ably, the tips of each TS were composed of two
architecture types: pairs (two compounds associated
directly through ECP selection by leaving exactly one
compound on each side of the equation) and loner
compounds (compounds from pair selection that

remain alone on either side) (Fig. 2). A graphical
representation of these architectures is shown in
Additional file 1: Table S2. The next step was to val-
idate the proposed architectures and interpret their
chemical properties.

TS-compound pairs correlated to KEGG RPairs
We considered the presence of compound pairs identi-
fied for each reaction to evaluate the architecture of each
TS. Compound pairs are also described in reactions as
reactant pairs in the KEGG RPAIR database, in which a
pair in a reaction represents group transfer interactions
among compounds [4, 12]. The current version of the
KEGG is different from previous versions in that RPAIR
has been replaced by the RCLASS set, which contains
only well-curated pairs according to the authors.
Well-curated pairs are the “classification of reactions
based on the chemical structure transformation patterns
of substrate-product pairs (reactant pairs), which are
represented by so-called RDM patterns” [11]. The 2015
version of the KEGG contains the original RPAIR, in
which RCLASS pairs and other pairs have weaker evi-
dence of being correct. We compared the RCLASS list
to our predicted pairs reaction by reaction to measure
the level of correspondence. From a total of 11,093
RPairs in the 6392 reactions, 8966 of our tree structure--
compound pairs (TS-compound pairs) matched an RPair.
We used a Bayesian approach to infer the probability of a
TS-compound pair associating with its corresponding
RPair to measure our prediction confidence levels. As ex-
tensively described in the Methods section, the confidence
interval was determined by the 2.5 and 97.5% quantiles.
Therefore, we found that the correspondence of the
TS-compound pairs over the entire RCLASS set was 0.81,
a value that should be interpreted as the precision of our
method (Fig. 4a and Table 2) and that we consider very
good given the simplicity of the method. Notably, some

Fig. 2 Analysis of the metabolic network using the rule-based approach. We illustrate the general procedures of how we applied the balance and
count rules to the KEGG database. The procedure starts with the compounds and reactions from the KEGG, and the rules are applied to each reaction
to generate a tree structure. Tree structures with identical architecture organizations are clustered together. Finally, we calculate the RPAIR correlation and
Enzymatic Commission number (ECN) abundance levels to evaluate the performance of the method
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RPairs were constructed by mating one compound with
more than one of the same reaction because an atom type
can be shared by more than one compound, which is the
case in the KEGG because a total of 1157 KEGG reactions

are conformed by pairs sharing a common compound. This
is an important difference between our approach and the
manner in which atom mappers construct reactant pairs.
An example showing the result of this difference is reaction

a

b

c

Fig. 3 Representation of three tree structure examples. Panel a shows the split of reaction R00509 (subsection a1) as represented in the KEGG database.
Subsection a.2 shows a graphical representation of a TS. The TS split representations are viewed from the top down, and compact strings are read left to
right. Nodes: the gray octagon defines the tree root (reaction), the squares define the CP node, the rhomboid defines lone compound nodes, and the
white circle defines compounds. Edges: blue, split through balance; orange, split through count; thin line, node/compound link. In subsection
a.3, we represent the reaction split in a string format constructed as explained in the Methods section. In panels b and c, we show the TS graphical
representation of reactions R10376 and R00025, respectively. For both reactions, the same caption descriptions for panels a2 and a3 are applied to
each respective subsection

Vazquez-Hernandez et al. BMC Systems Biology  (2018) 12:63 Page 5 of 17



Table 1 Patterns identified and their condensed representations

TS-cluster identifier CTS patterns Number of reactions per CTS Rule used to generate the pattern

CTS-1 >(!(C_C)(C_C)) 1627 Balance

CTS-2 >(!(C)(C_C)) 1059 Balance

CTS-3 >(!(C)(!(C)(C_C))) 1028 Balance

CTS-4 >(!(C)(!(C_C)(C_C))) 897 Balance

CTS-5 >(!(C)(!(!(C)(!(C)(C_C)))(C_C))) 439 Balance

CTS-6 >(!(C)(!(!(C)(C_C))(C_C))) 349 Balance

CTS-7 >(!(C_C)(!(C_C)(C_C))) 150 Balance

CTS-8 >(!(C_C)(!(C)(C_C))) 143 Balance

CTS-9 >(!(!(C)(C_C))(!(C)(C_C))) 103 Balance

CTS-10 >(!(C)(!(!(C_C)(C_C))(C_C))) 97 Balance

CTS-11 >(!(C)(!(!(C_C)(!(C)(C_C)))(C_C))) 82 Balance

CTS-12 >(!(C)(!(C)(!(C)(C_C)))) 66 Balance

CTS-13 >(!(!(C)(C_C))(C_C)) 54 Balance

CTS-14 >(!(C_C)(!(C)(!(C)(C_C)))) 42 Balance

CTS-15 >(!(!(C)(!(C)(C_C)))(C_C)) 29 Balance

CTS-16 >(!(!(C_C)(!(C)(C_C)))(C_C)) 26 Balance

CTS-20 >(!(C)(!(C)(!(C)(!(C)(C_C))))) 12 Balance

CTS-21 >(!(C)(!(C_C)(!(C)(C_C)))) 12 Balance

CTS-23 >(!(C_C)(!(C_C)(!(C)(C_C)))) 8 Balance

CTS-24 >(!(C_C)(!(!(C)(C)_C))(C_C))) 8 Balance

CTS-25 >(!(C)(!(!(!(C)(C_C))(C_C))(C_C))) 5 Balance

CTS-26 >(!(!(C)(C_C))(!(C_C)(C_C))) 5 Balance

CTS-29 >(!(C)(!(!(C)(!(C)(!(C)(C_C))))(C_C))) 4 Balance

CTS-30 >(!(C)(!(!(C)(C_C))(!(C)(C_C)))) 4 Balance

CTS-31 >(!(!(C_C)(C_C))(C_C)) 4 Balance

CTS-33 >(!(C)(!(!(C)(!(C_C)(!(C)(!(C)(C_C)))))(C_C))) 3 Balance

CTS-34 >(!(C)(!(!(C)(!(!(C)(C_C))(C_C)))(C_C))) 3 Balance

CTS-38 >(!(C)(!(!(C)(C_C))(!(!(C)(C_C))(C_C)))) 2 Balance

CTS-39 >(!(C)(!(C_C)(!(!(C)(C_C))(C_C)))) 2 Balance

CTS-40 >(!(C)(!(!(C)(!(C)(C_C)))(!(C)(C_C)))) 2 Balance

CTS-41 >(!(!(C)(C_C))(!(!(C)(C_C))(C_C))) 2 Balance

CTS-42 >(!(!(C)(!(C)(C_C)))(!(C)(!(C)(C_C)))) 2 Balance

CTS-44 >(!(C)(!(C)(!(C)(!(C)(!(C)(C_C)))))) 2 Balance

CTS-45 >(!(C_C)(!(C)(!(C_C)(C_C)))) 2 Balance

CTS-46 >(!(!(C)(!(C)(C_C)))(!(C)(C_C))) 2 Balance

CTS-47 >(!(!(C_C)(C_C))(!(C)(C_C))) 2 Balance

CTS-50 >(!(!(C)(!(C)(C_C)))(!(C_C)(!(!(C)(C_C))(C_C)))) 1 Balance

CTS-51 >(!(C)(!(!(C)(!(!(C)(C_C))(!(C)(C_C))))(C_C))) 1 Balance

CTS-52 >(!(!(C)(!(C)(C_C)))(!(C)(!(C)(!(C)(!(C)(C_C)))))) 1 Balance

CTS-53 >(!(C)(!(!(C)(!(C)(!(C_C)(C_C))))(C_C))) 1 Balance

CTS-54 >(!(C)(!(!(C_C)(C_C))(!(C)(!(C)(C_C))))) 1 Balance

CTS-55 >(!(C_C)(!(!(C)(!(C)(C_C)))(!(C)(C_C)))) 1 Balance

CTS-57 >(!(C)(!(C_C)(!(C)(!(C_C)(C_C))))) 1 Balance

CTS-58 >(!(C)(!(!(C)(!(C_C)(C_C)))(C_C))) 1 Balance
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R00025, where ethylnitronate (C18091) is catalyzed to nitrite
(C00088) and acetaldehyde (C00084) by the enzyme nitro-
nate monooxygenase (Fig. 3c). In this reaction, ethylnitro-
nate is decomposed into three reactants pairs,
RC00126-(C00061_C01847), RC02541-(C00084_C18091)
and RC02759-(C00088_C18091), which correspond to
(FMN_reduced_FMN), (acetaldehyde_ethylnitronate) and
(nitrite_ethylnitronate), respectively. In this reaction, our
protocol positively detected FMN_ reduced_FMN as a pair
(C00061_C01847) and an additional group ((_C00001)
(C00088_ C18091)) composed of water as a loner com-
pound (_C00001) and the pair ethylnitronate_nitrite
(C00088_ C18091) matching an RPair in RCLASS
RC02759. Notably, water (C00001) is not associated with
any RPair for reaction R00025. As an advantage, our

method keeps this compound in the architecture and thus
shows its contribution to the reaction. Because our method
generates unique compound combinations as the final re-
sult, the undetected pair composed of acetaldehyde and
ethylnitronate (RC02541-(C00084_C18091)) was eliminated
as a pair at some other point in the process due to its pres-
ence in another ECP with a bigger mass difference com-
pared with the remaining products in the tips of the tree.
We also observed that our protocol generated 11,093
TS-compound pairs and from these 2127 are absent in the
RPAIR data set, making these pairs candidates for manual
curation to establish their confidence.
Because our protocol naturally clustered each reaction

according to its architectural arrangement into 71
groups, we estimated the precision of CTSs for which

Table 1 Patterns identified and their condensed representations (Continued)

TS-cluster identifier CTS patterns Number of reactions per CTS Rule used to generate the pattern

CTS-59 >(!(C_C)(!(C)(!(C_C)(!(C)(C_C))))) 1 Balance

CTS-60 >(!(C_C)(!(C_C)(!(C)(!(C)(C_C))))) 1 Balance

CTS-61 >(!(C_C)(!(C_C)(!(C_C)(C_C)))) 1 Balance

CTS-62 >(!(!(C)(C_C))(!(C)(!(C_C)(C_C)))) 1 Balance

CTS-65 >(!(!(C)(C_C))(!(C)(!(C)(C_C)))) 1 Balance

CTS-66 >(!(!(C)(!(C)(!(C)(C_C))))(C_C)) 1 Balance

CTS-19 >(!!(C_C)(C_C)) 14 Count

CTS-71 >(!!(C)(C_C)) 1 Count

CTS-17 >(!!(!(C)(C_C))(!(C_C)(C_C))) 24 Count-Balance

CTS-18 >(!!(!(C_C)(C_C))(!(C)(!(C)(C_C)))) 16 Count-Balance

CTS-22 >(!!(C_C)(!(C)(C_C))) 10 Count-Balance

CTS-27 >(!!(!(C)(C_C))(!(C)(!(C)(C_C)))) 5 Count-Balance

CTS-28 >(!(C)(!!(C)(C_C))) 5 Count-Balance

CTS-32 >(!!(!(C)(C_C))(!(C)(C_C))) 4 Count-Balance

CTS-35 >(!!(!(C)(!(C)(C_C)))(!(C)(!(C)(C_C)))) 3 Count-Balance

CTS-36 >(!!(!(C_C)(C_C))(C_C)) 3 Count-Balance

CTS-37 >(!!(!(C)(C_C))(C_C)) 3 Count-Balance

CTS-43 >(!!(!(C)(C_C))(!(!(C)(C_C))(C_C))) 2 Count-Balance

CTS-48 >(!!(C_C)(!(C)(!(C)(C_C)))) 2 Count-Balance

CTS-49 >(!!(!(C)(!(C)(C_C)))(C_C)) 2 Count-Balance

CTS-56 >(!!(!(C)(!(C_C)(C_C)))(!(C)(!(C)(C_C)))) 1 Count-Balance

CTS-63 >(!!(C_C)(!!(!(C)(!(C)(C_C)))(C_C))) 1 Count-Balance

CTS-64 >(!!(!(C_C)(!(C)(C_C)))(!(C)(C_C))) 1 Count-Balance

CTS-67 >(!!(C_C)(!(!(C)(C_C))(C_C))) 1 Count-Balance

CTS-68 >(!!(!(C_C)(!(C)(C_C)))(C_C)) 1 Count-Balance

CTS-69 >(!!(C_C)(!(C_C)(C_C))) 1 Count-Balance

CTS-70 >(!(C)(!!(C_C)(C_C))) 1 Count-Balance

We describe the general topologies of the reactions found by our approach. Column 1 indicates the CTS identifier, and Column 2 shows the general pattern found
for groups of reactions. “>” indicates the root of the tree structure; “!” indicates use of the balance rule; “!!” indicates use of the count rule; and “C” indicates a compound.
A pair is described as (C_C), and a loner compound is (C). The number of parentheses around the pair or loner compound indicates its depth in the tree and the
number of partitions employed for separation. Column 4 describes the rule or rules used to generate the arrangements
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a b c

Fig. 4 Correlation between TS pairs and RPAIRs. We present three examples of posterior distributions of the inferred parameter θ. a Total TS pairs
vs. the entire RPAIR dataset. b Example showing the sharp-peaked distribution observed in CTS-1. c Example of a broad distribution showing the
effect of a high correlation level in a group with a small number of reactions

Table 2 Comparison of TS-compound pairs versus RPairs

Cluster ID Number
of total
reactions

Number of
reactions with
only matching
pairs

Number of
reactions with
no matched
pairs

Number of
reactions with
mixed pair
matches

Number
of RPAIRs
in a CTS

Number of
matching
TS-compound
pairs

Number of
mismatched
TS-compound
pairs

Inferior
interval
0.025

Superior
interval
0.975

Average
value of
the interval

General 6392 4869 618 905 11,193 8966 2127 0.8006 0.8153 0.8070

CTS-1 1627 960 391 276 3254 2196 1058 0.6587 0.6909 0.6748

CTS-2 1059 1016 43 0 1059 1016 43 0.9467 0.9704 0.9586

CTS-3 1028 926 102 0 1028 926 102 0.8818 0.9183 0.9

CTS-4 897 867 8 22 1794 1756 38 0.9717 0.985 0.9783

CTS-5 439 435 1 3 878 873 5 0.9884 0.9981 0.9933

CTS-6 349 341 0 8 698 690 8 0.9794 0.995 0.9872

CTS-7 150 1 17 132 450 206 244 0.412 0.5039 0.458

CTS-8 143 57 7 79 286 193 93 0.6195 0.7278 0.6737

CTS-9 103 51 3 49 206 151 55 0.6707 0.791 0.7309

CTS-10 97 2 0 95 291 196 95 0.6187 0.7261 0.6724

CTS-11 82 0 0 82 246 163 83 0.6024 0.7203 0.6613

CTS-12 66 58 8 0 66 58 8 0.7906 0.9453 0.868

CTS-13 54 39 7 8 108 86 22 0.7158 0.8664 0.7911

CTS-14 42 21 5 16 84 58 26 0.5882 0.7841 0.6862

CTS-15 29 28 0 1 58 57 1 0.9373 0.9996 0.9684

CTS-16 26 0 0 26 78 29 49 0.2687 0.4812 0.3749

CTS-17 24 0 0 24 72 48 24 0.5545 0.77 0.6623

CTS-18 16 8 0 8 48 37 11 0.6434 0.877 0.7602

CTS-19 14 5 6 3 28 13 15 0.2867 0.6467 0.4667

CTS-20 12 11 1 0 12 11 1 0.7151 0.9977 0.8564

CTS-21 12 4 3 5 24 13 11 0.3449 0.7318 0.5384

CTS-22 10 6 1 3 20 15 5 0.5443 0.9085 0.7264

We compared the numbers of hits and fails of our predicted pairs with RPairs in the KEGG RPAIR dataset. The table presents precision estimations based on the
calculated posterior probabilities of each group. The confidence interval and average value are shown in the last 3 columns
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the number of reactions was sufficiently large to perform
a reasonable statistical inference. Therefore, estimations
were performed only for CTSs with at least 10 reactions
with predicted pairs. The results of our precision ana-
lysis of 6291 reactions clustered in 22 different CTSs are
shown in Table 2, with the CTSs numbered from 1 to 22
(1 represents the group with the highest number of reac-
tions, and 22 represents the group with the smallest
number of reactions). As expected from the group size
differences, the results presented in Table 2 show that
the CTSs had different levels of precision. We observed
eight CTSs encompassing 3879 reactions with an aver-
age confidence value higher than 0.80. For example, for
CTS-5, we predicted only five pairs that were different
from those assigned by the KEGG out of 878 total reac-
tions (Table 2), indicating that every pair found in this
CTS had a very high probability of being an RPair. We
also noticed that all the reactions in CTS-5 were oxidor-
eductions reactions in which the incorporated oxygen is
not necessarily derived from molecular oxygen.
Another 2198 reactions were grouped in CTSs with

average precision values ranging from 0.79 to 0.60 (Table
2). For example, CTS-1 had the highest number of mem-
bers with the same architecture arrangement (1627 reac-
tions). From the 3254 possible pairs in this CTS, we
predicted that 2196 matched an RPair, representing
two-thirds of the group. This gave CTS-1 an average
probability of 0.67, which also showed a sharp-peaked dis-
tribution (Fig. 4b). Therefore, this CTS provided a large
amount of information supporting our conclusion that
two of its three pairs are dependable RPairs, and the
remaining one-third of the group (1058) represents candi-
dates for validation through manual curation. We found
that other CTSs in the same confidence range showed
broad distributions, such as CTS-18 (Fig. 4c), which ex-
hibited a value of 0.64 for the 2.5% interval and 0.87 for
the 97.5% interval. In this case, in which 37 of 48 possible
RPairs were matched, we had less information supporting
our estimate, and the greater uncertainty could be ex-
plained by the small sample size (16 reactions). Despite
the small sample size, the proportion of hits revealed that
CTS-18 had an intermediate probability of yielding a posi-
tive RPair. Nevertheless, inspection of this CTS showed
that all the reactions in the cluster are catalyzed by ligases
classified by enzyme commissions in classes 6.3.4 and
6.3.5. Furthermore, two reactions involved in the
biosynthesis of neomycin, kanamycin and gentamicin,
R10767 and R10768, are catalyzed by a tobramycin
carbamoyltransferase of the group 6.1.2.2, indicating that
despite the medium significance, compounds of reactions
in CTS-18 undergo similar transformations catalyzed by
similar enzymes. The next step was to determine whether
the reaction groups in the remaining CTSs also exhibit
similar chemical transformations.

Tree structure distribution reveals that the predicted patterns
yield reaction groups with similar chemical events
The 2015 version of the KEGG retained the classification
of RPairs proposed by Kotera M. et al. regarding “main-
pairs (describing main changes in substrates), cofac pairs
(describing changes in cofactors for oxidoreductases),
trans pairs (focused on transferred groups for transfer-
ases), ligase pairs (describing the consumption of
nucleoside triphosphates for ligases), and leave pairs (de-
scribing the separation or addition of inorganic com-
pounds for enzymes, such as lyases and hydrolases)” [4].
These classes link compound pairs within a reaction
with the enzyme activity exerted upon them, indicating
that the same pair could be assigned to a different class
depending on the reaction in which it participates.
Therefore, our next step was to analyze our predicted
pairs in this pair-reaction context. We labeled each pair
with its RPAIR class (main, cofac, trans, leave or ligase),
and we also labeled each pair according to the propor-
tion of predicted RPairs in its corresponding reaction,
resulting in four categories. The first category included
reactions in which the predicted pairs (EPP) entirely fit
the published RPairs. The second and third categories
involved reactions with at least one hit pair and one or
more failed pairs. We labeled these reactions as mixed
pairs (MP) as they produced mixed-positive pairs (MPP)
and mixed-failed pairs (MFP). The last group consisted
of pairs in reactions in which no RPair was found, called
failed pairs (FP). We labeled the pairs using three confi-
dence ranges taken from the Bayesian probability estima-
tion previously defined for their respective CTSs. The CTSs
were ranked by their mean probability x, where trees with
¨high confidence¨ were in the range x ≥ 0.8, trees with
“medium confidence” were between 0.8 > x ≥ 0.6, and CTSs
in which 0.6 > x were labeled “low confidence”.
Figure 5 shows the frequency of the reactant pairs

grouped according to their RPAIR class (main, cofac,
trans, leave and ligase), our hit-fail categories (EPP, MPP,
MFP and FP) and our confidence ranges (high, medium
and low). The EPP category included a total of 7672 pre-
dicted pairs, and notably, 48% of these matched a main
RPair with high confidence. Interestingly, another 21%
of the EPP pairs fell in the cofactor class (cofac) with
high confidence. A very small group, less than 1% of the
EPP category, belonged to the ligase and leave classes,
exhibiting a very small proportion of pairs with one and
four members, respectively. In the same category, the
other 26% of the pairs with medium confidence were
main pairs, and another 2.7% were cofac pairs. Similar
behavior was observed for the MPP category because the
main and cofac categories predominated in 1120 pairs;
however, in contrast to the EPP category, the concordant
pairs exhibited mainly a medium confidence level. An-
other 240 pairs in the low-confidence group were mostly
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distributed in the ligase category. Pairs in the MFP
group (446 pairs) tended to belong to the cofac and leave
categories, both with medium confidence. Finally, as
shown in Fig. 5, the approach failed to provide a con-
cordant RPair for 576 reactions in the FP category. Inter-
estingly, these FP pairs were classified by Kotera as trans
and leave pairs, and 383 were clustered into CTS-1 (data
not shown). Furthermore, they were shown to be prefer-
entially catalyzed by hexosyltransferases, pentosyltrans-
ferases and phosphotransferases, with an alcohol group
as the acceptor, and by some enzymes other than methyl
groups that transfer alkyl or aryl groups.
The results presented thus far provide evidence that

our rules are exceptional in defining pairs in reactions
catalyzed by oxidoreductases. In contrast, these rules
have limitations in establishing the transitions of specific
types of transferases, lyases and hydrolases. The results
obtained for these reactions prompted us to perform
manual curation with the aim of establishing the degree
to which the mechanisms proposed in the literature fol-
low our proposed splitting when a statistical description

could not be provided or when we obtained results that
were inconsistent with the proposed RPairs. The first ex-
ample is reaction R10088 from CTS-32 in which we ob-
tained mixed pairs. As shown in Fig. 6a, this reaction
entry describes the conversion of D-Ribose 5-phosphate
and D-Glyceraldehyde 3-phosphate (G3P) into Pyridoxal
phosphate (vitamin B6) in the presence of an ammonia mol-
ecule, yielding four molecules of water and inorganic phos-
phate (Pi). Our resulting TS shows that vitamin B6 is paired
to the D-ribose 5-phosphate molecule (C00117_C00018) as
proposed in the RCLASS ID RC03049 (C00018_C00117).
The overall TS partially reflects the proposed mechanism,
as shown in Fig. 6a. The vitamin is proposed to be assem-
bled from ribose, ammonia and glyceraldehyde 3-phosphate
(G3P), with the phosphate group from the ribose molecule
leaving the complex [13]. In the TS, vitamin B6 is paired
with the ribose molecule, with ammonia as the closest loner
compound, which is consistent with the overall mechanism
up to the intermediary before the excision of Pi. G3P
(C00118), however, is paired with Pi (C00009) because they
are more similar in terms of molecular weight, implying that
the Pi group that enters and leaves is the group in G3P, not
the group in the ribose molecule. The mapping proposed by
the KEGG also pairs G3P with pyridoxal phosphate -
RC01783 (C00018_C00118) -, which is consistent with the
proposed mechanism [13]. Nonetheless, we should remem-
ber that our method does not consider molecular mecha-
nisms in performing the splitting in contrast to atom
mappers, which attempt to reflect the atom transitions be-
tween chemical species in detail. Finally, an important trait
of the TS layout is the first splitting performed by the count
rule, which reflects the fact that most of the mass in the
pyridoxal molecule is already present in the intermediary
prior to Pi excision. One important aspect of the reaction
described in Fig. 6a is that the enzyme Pdx1 (pyridoxal
5′-phosphate synthase, ECN 4.3.3.6) prefers the substrate
G3P and joins the molecule through imine formation, which
is an important trait for understanding the mechanism and
reaching the proposed conclusion. We think that consider-
ing enzymatic mechanisms will be valuable for improving
our method.
Another interesting example, shown in Fig. 6b, is

R07795 in CTS-4. The reaction describes the conversion
of 3-sulfocatechol (C06336) into 2-hydroxymuconate
(C02501). This reaction is catalyzed by the enzyme cat-
echol 2,3-dioxygenase (ECN 1.13.11.2), which also cata-
lyzes R04089 - the conversion of 2,3-dihydroxytoluene
into 2-hydroxy-6-keto-2,4-heptadienoate - and reactions
R05295, R05404 and R05406, all of which are implicated
in conversions of different chemical species of catechol
involving aromatic biodegradation. All these reactions,
except for R07795, were clustered in CTS-2, which had
a mean precision of 95%. Notably, the TS-pairs in these
reactions match the reactions’ RCLASS pairs, which is

Fig. 5 Analysis of TS pairs using RPAIR classes. The figure represents
the abundance of each TS pair as a function of the class proposed
by Kotera [4]. We categorized the pairs as being in reactions in which
the whole predicted pair entirely fit the published RPair (we called this
EPP). The second group includes reactions representing at least one hit
with one or more fails, which we called mixed pairs, and this group
was subdivided into positive (MPP) and failed pairs (MFP). The
last group contains reactions in which we failed to detect an RPair, called
failed pairs (FP). We also arranged the TS pairs according to their mean
precision levels (x) estimated from the CTSs by Bayesian analysis. TS pairs
in the precision range x≥ 0.8 were classified as “high confidence”, those
in the range 0.80 > x≥ 0.60 were classified as “medium confidence”, and
those in the range x < 0.60 were labeled “low confidence”
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important because these reactions yield an additional
product despite the similarity in their ring cleavage
mechanism by incorporating oxygen during biological
oxidations of these organic substrates [14]. In contrast,
in R07795, oxygen is incorporated into 3-sulfocatechol
through an attack that releases sulfite, which we paired
with oxygen (C00007_C00094). The 2015 version of
RPAIR included this pair as a leave pair, but RCLASS ig-
nores it due to mechanistic inconsistency. The mechan-
ism proposed by Junker F et al. [14] is consistent with

the KEGG data, and we also propose that this pair
should be considered incorrect.
A count of the pairs recovered in the CTSs that were

not statistically evaluated also reveals some patterns.
Overall, 194 of the 324 pairs in these reactions are con-
firmed RCLASS entries. However, the proportion of pair
matches is not homogeneous, which is similar to the 22
evaluated CTSs. For example, in CTS-32, which includes
four reactions, seven of eight pairs are confirmed
RCLASS entries.

a

b

Fig. 6 Manual curation of reactant-pairs. Panel a illustrates the proposed mechanism for reaction R00018 and its tree structure (TS). In this reaction,
D-Ribose 5-phosphate (red) and D-Glyceraldehyde 3-phosphate (blue) are converted into Pyridoxal phosphate in the presence of an ammonia molecule
(green). Figure adapted from reference [13]. Panel b illustrates the proposed mechanism for reaction R07795 and its TS. This reaction is the conversion of
3-Sulfocatechol into 2-Hydroxymuconate. Figure adapted from reference [14]. The pairs in TSs that follow that reaction’s proposed mechanism are marked
by a checkmark. The TSs are also shown in string format (RSF), (see Methods)
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The results presented in this section, determined using
the Kotera classification, suggest that reactions in the
CTSs might be correlated to specific catalytic conver-
sions. We tested this hypothesis with the aim of proving
whether our rules naturally cluster reactions that share
the same ECN within a CTS because this number is
used to classify reactions in terms of the enzymes by
which they are catalyzed.

Tree structures cluster into general enzyme patterns
Analysis of our TS-compound pairs and CTSs suggested
that our approach can cluster reactions catalyzed by
enzymes belonging to similar classes as observed for the
ligases of CTS-18. To evaluate the generality of this ob-
servation, we associated the ECNs corresponding to each
reaction. ECNs are composed of four digits separated by
periods, and the numbers represent a progressively spe-
cific classification of each enzyme. The first digit groups
enzymes into general types of catalysis. For example,
ECN type 1 (ECN-1) describes oxidoreductases that
catalyze oxidoreduction reactions in which hydrogen
and oxygen atoms or electrons are transferred from one
substance to another. The subsequent digits add levels
of specificity; ECN-1.1, for example, contains oxidore-
ductases that act on donor alcohol groups. Figure 7
shows the frequency of each ECN associated with each
reaction grouped in each CTS considering only its first
digit. The bar plot in this figure shows that all CTSs
were concentrated mainly in the ECNs of a single class,
and CTSs with higher numbers of members tended to
include other ECNs of other classes in lesser proportions.

This result can be explained by the fact that some reac-
tions are catalyzed by more than one enzyme or by multi-
functional enzymes. For example, CTS-2 has reactions
catalyzed by the enzyme chloromuconate cycloisomerase
(EC 5.5.1.7), which is cataloged as both an isomerase and
an intramolecular lyase due to its capacity to release free
hydrogen chloride when 2-chloro-cis, cis-muconic acid is
transformed into cis-4-carboxymethylenebut-2-en-4-olide
[15]. Therefore, finding a representation of more than one
enzyme with similar catalysis types despite classification in
different ECNs should not difficult.
As previously mentioned, isomerization reactions with

only one substrate and one product were not considered
because they form trivial tree structures. Nonetheless,
isomerizations embedded in reactions with more than
one compound on each side of the equation were con-
sidered and mapped to specific CTSs (CTS-2, CTS-3
and CTS-4). Similar distributions were observed for
other ECNs, such as ligases represented in CTS-7,
CTS-9, CTS-14 and CTS-18 and hydrolases represented
in CTS-1, CTS-2 and CTS-3.
As shown in Fig. 7, our CTSs tended to concentrate par-

ticular ECNs. To test whether this over-representation
was statistically significant, we calculated the enrichment
of each ECN in each CTS considering only the first ECN
digit and CTSs grouping more than 10 reactions using
Fisher’s exact test. We considered enriched CTSs to have
P values < 0.05. Figure 8 shows the significantly enriched
groups represented in terms of logarithmic odd ratios,
which are useful for evaluating the strength of enrichment.
The CTSs considered enriched in an ECN category were

Fig. 7 Correlation of tree structure clusters with general enzymatic
categories. The clusters of tree structures (CTSs) tended to naturally
group enzymatic categories provided by the Enzyme Commission
numbers (ECNs). This figure presents this tendency using the first digit
of the ECN class, in which enzymes are classified as oxidoreductases
(ECN-1), transferases (ECN-2), hydrolases (ECN-3), lyases (ECN-4),
isomerases (ECN-5) and ligases (ECN-6)

Fig. 8 Enrichment of enzyme categories into tree clusters. We illustrate
the results of the significance of each enzyme category within the
clusters of tree structures (CTSs). The graph shows the logarithm
of the odds ratio, which represents the strength of the enrichment
(spectrum color bar), and the number of hits in the group (point density).
We only show CTSs with False discovery rate < 0.05
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those displaying a false discovery rate, reported as the
logodd ratios ≥ 0.5.
As shown in Figs. 7 and 8, the probability of having re-

actions catalyzed by specific enzyme types increased as
the number of reactions in the CTS decreased, as shown
by the significant enrichment in transferases, ligases and
oxidoreductases in CTS-20, CTS-21 and CTS-22, re-
spectively. Moreover, 17 of the 22 CTSs were signifi-
cantly enriched in only one ECN, and another three
were significantly enriched in only two ECNs; CTS-2
has lyases (ECN-4) and isomerases (ECN-5), CTS-4 has
oxidoreductases (ECN-1) and isomerases (ECN-5), and
CTS-7 has oxidoreductases (ECN-1) and ligases (ECN-6).
An analysis of CTS-2, which is significantly enriched in
ECN-5 and ECN-4, showed that its isomerases belong to
the subclasses 5.5.1.7 (a chloromuconate cycloisomerase)
and 5.5.1.11 (a dichloromuconate cycloisomerase). These
enzymes catalyze eight reactions for the degradation of
chlorocyclohexane or chlorobenzene, respectively, and
they release a hydrogen chloride molecule in all cases.
Surprisingly, when analyzing the KEGG database in more
detail, we found two other reactions (R08119 and R09215)
catalyzed by a chloromuconate cycloisomerase that were
not grouped in CTS-2. Interestingly, the isomerization
processes in R08119, which transforms 2-fluoro-cis,
cis-muconate into 5-fluoromuconolactone, and R09215,
in which 3,5-dichloro-2-methylmuconate is transformed
into 3,5-dichloro-2-methylmuconolactone, do not yield
halogens as reaction products because fluorine and chlor-
ine remain bound to the products, respectively. This is a
very good example showing that our rule-based approach
can separate very similar reactions in CTSs with very high
precision levels (mean 0.95, see Table 2) even if they are
catalyzed by the same enzyme.
Figure 8 shows that of the 17 significantly enriched

CTSs, the clusters CTS-16, CTS-17, CTS-18 and
CTS-22 were most significantly enriched for specific
ECN categories. Other groups, such as CTS-5 and
CTS-9, were almost homogenous because they had only
one or two reactions with ECNs of another class.
Figure 8 shows that despite significant enrichment in
only one ECN class at the first digit, CTS-20 did not
have one of the highest odd ratios due to the small size
of the group, which had only 10 elements. In contrast,
CTS-5 clustered 482 reactions, 480 of which were classi-
fied in ECN-5.
Careful examination of the 17 CTSs with statistically sig-

nificant enrichment in one ECN revealed a tendency to
concentrate reactions with similar catalysis types, even at
the second digit as shown for CTS-2. Other examples in-
clude reactions in CTS-17 catalyzed by enzymes of subclass
1.4.1 and involved in amino acid oxi-reductions. Reaction
R00025 served as the exception because it is catalyzed by
nitronate monooxygenase (1.13.12.16). Driven by this

observation, we applied Fisher’s exact test while considering
the second and third ECN digits, and our results showed
that at these class levels, the remaining CTSs, including
CTS-2 and CTS-17, tended to be significantly enriched in
more specific ECNs. The results of these tests are
shown in Additional file 1: Figures S1 and S2.
Considering the presented results, we conclude that

our proposed rules showed that a significant number
of the reactions evaluated reflected a clear biochem-
ical link between tree structures and specific chemical
events.

Discussion
We described a clustering analysis of enzymatic reac-
tions described in the KEGG database using our
rule-based approach. Our results allowed us to classify
different metabolic reactions into patterns, revealing as-
sociations among compounds at a glance. The rules of
our approach were implemented as a protocol that first
locates and separates groups with the smallest differ-
ences among compounds within a reaction. Thus, using
our approach, the most different compounds are identi-
fied by successive elimination. The logic behind this ap-
proach is that some compounds, such as coenzymes and
pool compounds (such as S-adenosyl-L-methionine
[16]), tend to undergo less dramatic changes during a
reaction (the basis of the balance rule) and tend to be
associated with more enzymes in many unrelated path-
ways (the basis of the count rule). Other methods, such
as compound mappers, highlight atom exchanges
between substrates and products through heuristic
graph-matching algorithms, which requires knowledge
of the reaction modifications. Water, for example, is re-
moved from the analysis to increase the detection of
oxygen and hydrogen traces at the cost of losing cataly-
sis conducted by hydrolysis [3, 12, 17]. In contrast, our
approach does not remove any compound unless it is
present in an unbalanced reaction or in a reaction in
which the subscripts are not well defined, such as reac-
tion R00001 (polyphosphate + n H2O < => (n + 1) oligo-
phosphate). Therefore, we were able to analyze a wider
range of compounds within reactions.
Our analysis also showed that despite the complexity

of enzyme catalysis, reactions with similar catalytic pat-
terns were grouped through our TSs, which outlined the
chemical transformations of substrates and products
within reactions. We demonstrated that the TSs pre-
served pair architectures comparable to those of reactant
pairs of the RPAIR dataset [12], which were based on
identification of the atom type [8]. In contrast, our ap-
proach based on two simple rules performed well, par-
ticularly for pairs classified in the RPAIR set as main,
cofac (redox cofactors) and ligases (mainly phosphoryla-
tions). Our protocol was less precise when describing
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small groups of pairs cataloged as trans and leave,
specifically transferring compounds such as hexose,
pentose, alkyl or aryl groups and a small group of phos-
photransferases. These reactions were found mainly in
CTS-1 and CTS-2; therefore, different rules need to be
established or a manual curation step should be imple-
mented to verify these reactions.
We also found that for a particular set of reactions, TS

pairs were predicted that did not correspond to the pre-
dicted RPairs, most of which were catalogued by Kotera
as trans or leave [4]. R06726 (retronecine + 2 L-isoleu-
cine <= > senecionine, grouped in CTS-2) serves as a
good example of a reaction with inconsistent pairs. In
this case, we predicted the pair (C0047_C06176,
L-isoleucine_senecionine) by using a balance reaction
transforming two L-isoleucine molecules. In comparison,
the KEGG pairs a retronecine molecule with the senecio-
nine in an RPair given that the molecules have more sig-
nificant common atom types in contrast to L-isoleucine.
Another five of six reactions in CTS-2 with a predicted
pair according to our approach could not be compared
due to the lack of an RPair. Three of these reactions
(R07652, R07916 and R10177) were involved in geranyl
and farnesyl transformations, which are catalyzed by en-
zymes that transfer acyl or aryl groups from the substrate
to the product. Among these reactions, the ECPs defined
as more similar included compounds with acyl or aryl
groups because they have similar molecular weights and
are separated by diphosphate, a compound with a smaller
mass compared with that of the others within the reaction.
These reactions in the KEGG were not assigned an
RPair because they involve multiple steps. For this
type of reaction, careful curation is required to evalu-
ate the consistency of our partitioning.
We can conclude that our rules, which are based on

intrinsic biochemical reaction properties and interac-
tions of compounds across the whole network, organize
reactions in individual tree structures, which is useful
for clustering considering only the proposed compound
arrangements. This approach is also helpful for easily
identifying reactions with similar transformations. How-
ever, for a small group of transformations, this simple
approach was insufficient, as shown in Fig. 5 for the
MFP and FP categories. Therefore, this approach should
be improved for these cases in future work.
Another advantage of our rule-based approach is

that it does not eliminate any compounds during tree
assembly, allowing observation of the relative ordering
of compounds predicted by our rules within a reac-
tion and among reactions, a feature that is not avail-
able in atom mappers.
Work published by Faust C. and coworkers [16] evalu-

ated the effect of using well-curated reactant pairs and
other parameters on reconstruction of metabolic

pathways and showed that the metabolic network with
the best performance combines biochemical knowledge
encoded in the KEGG RPAIR with a weighting scheme
that penalizes highly connected compounds. This is con-
sistent with the pair-reaction classification that we
tested, which shows that most of the our EPPs were
main RPairs. We believe that incorporation of our
rule-based approach into pathfinders will substantially
improve the performance of these methods as our
method could provide the relative relevance of com-
pound pairs within reactions.
Kotera and coworkers [18] and Rahman et al. [9] de-

veloped methods to predict reactant pairs using similar-
ity between reaction centers, proving the feasibility of
grouping reactions by their ECNs through the chemical
transformations of compounds. Our approach can clus-
ter metabolic reactions by their general patterns, result-
ing in groups with significant enrichment in specific
ECNs, even at the third digit. We found secondary ECN
classes in smaller proportions of CTSs, which does not
disprove the above observation because individual reac-
tions can be linked to several ECNs. Furthermore, slight
variations in these classes are expected due to factors
such as multiple domain enzymes and enzyme promis-
cuity, which has been documented as a common
phenomenon [19].
Statistical evaluation performed using the false discov-

ery rate, represented as the odds ratio logarithm, showed
that 10 of the 22 CTSs used in this analysis are enriched
in oxidoreductases, which we also proved when testing
the Kotera classification [4]. However, we discarded all
reactions without an assigned ECN, and we predicted 49
CTSs that clustered 113 reactions that were not used in
Fisher’s exact test. These 49 CTSs had less than ten re-
actions, and their small sample sizes made statistical
tests less convenient. Therefore, the pair architectures
found in these reactions are candidates for manual cur-
ation to test their reliability. Overall, we propose that
with confirmation of our curated set, our CTSs can
serve as good guides for predicting reaction catalysis.

Conclusions
Some methodologies based on graph theory organize
compound networks into metabolic functional categories
without preserving biochemical pathways. Other methods
based on chemical group exchange and atom flow trace
the conversion of substrates into products in detail, which
is useful for inferring metabolic pathways. To analyze
metabolic networks, we presented a rule-based approach
incorporating both methods that decomposes each reac-
tion into architectures of compound pairs and loner com-
pounds that can be organized into tree structures. We
found that the tree structure-compound pairs fit those
reported in the KEGG-RPAIR with excellent match
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precision. The generated tree structures naturally clus-
tered all reactions into 71 general reaction patterns of
compounds with similar chemical transformations. Fi-
nally, we evaluated the catalysis types in the clusters
based on Enzyme Commission categories and revealed
preferential use of enzyme classes. We demonstrated that
applying simple rules can allow identification of reaction
patterns reflecting metabolic reactions that transform sub-
strates into products and the type of catalysis involved in
the transformation. The pairs generated using our
rule-based approach can be incorporated as inputs to im-
prove the performance of pathfinders because
well-curated pairs provided better results, as demon-
strated by Faust and collaborators [7]. Our method is a re-
action classifier that can correlate EC numbers to our
CTSs. Therefore, we propose that our method could con-
stitute a useful first step for the prediction of reaction ca-
talysis, which can be conducted by simply incorporating
the discarded reactions that were not considered in this
analysis. Finally, using this last property, testing whether
the enzymes clustered in the CTSs are evolutionarily re-
lated, will be useful, a task our group have started.
In future work, we intend to model chemical transi-

tions of generic reactions, such as those with discordant
pairs. For these, we will introduce fewer generic rules
that will consider other measures different from molecu-
lar weight, such as giving carbon atoms a greater weight
because carbon flow is the main feature of metabolic
transformations. Additionally, as suggested by the results
for the reactions described in terms of their catalytic
mechanism, we will include the roles of enzymes in the
reaction layout.

Methods
Datasets
We analyzed datasets stored in the 2015 version of the
KEGG database [11]. We collected information from the
REACTION and COMPOUND datasets from the LIG-
AND collection. From REACTION, we collected IDs
and equations (including coefficients) from 9910 reac-
tions along with ENZYMES and RPAIR data. For RPAIR,
we also used RCLASS identifiers and enzyme category
information regarding 15,349 entries; we retained only
RPairs with RCLASS identifiers. From COMPOUND, we
collected the IDs, chemical formulas and molecular
weights of 7661 compounds. To limit our analysis to a
well-curated and verifiable set, all reactions that included
compounds from the GLYCAN dataset and reactions
with incompletely described coefficients and subscripts
were removed. We also removed 1099 reactions with
one compound on each side of the equation from the
analysis. Ultimately, 6392 curated reactions were in-
cluded in the final set.

Weight metrics
For the balance method, we used molecular weights
as reported in the COMPOUND dataset. For the
count method, we calculated the frequencies of all
Cartesian products and used these numbers as the
weight measures.

Tree structure construction
For every reaction in the dataset, we constructed a TS.
We used Perl scripts to construct an algorithm based on
the calculated mass differences and frequencies of Cartesian
products in the metabolic network to divide each reaction
in the dataset. For this purpose, we created two rules, the
balance and count rules.

Balance rule
In a given reaction R, A and B are defined as the set of
chemical species on the left and right sides of R, respect-
ively. Next, we define the operation P′(A) as the set of A
subsets, excluding the empty set.1 Elements of the Cartesian
product CP = P′(A) × P′(B) are the basic input of our proced-
ure. For each element (a, b) ∈ CP, excluding the whole
reaction, we calculate

dab ¼ 1
K

Wa−Wbð Þj j; ð1Þ

where K = max (Wa,Wb) and Wa, b is the sum of the
molecular weights for all the compounds in a given CP
(ECP) element for sides A and B, respectively.
To clarify the operations described above, illustrating

our procedure applied to the generic reaction C +D→
E + F nearly step by step is convenient. Therefore, P′(A)
= {{C}, {D}, {C,D}} and P′(B) = {{E}, {F}, {E, F}}. To be con-
crete, when considering the ECP ({C}, {E, F}),

dC;EF ¼ 1
K jðWC−ðWE þW FÞÞj , where WC, WE and

WF are the molecular weights of compounds C, E and F,
respectively.
Next, we seek the minimum dab among all the ele-

ments in the ECP. Because the reaction is balanced, in
this case dwhole = 0, we exclude the entire reaction. This
ECP with the minimum d will be considered the first
branch of the TS and will be placed on the right side. In
a subsequent step, we eliminate the remaining ECPs
containing at least one ECP compound with the mini-
mum d. This is an iterative process that continues for
each branch until a minimal difference among each ECP
cannot be established or no remaining ECPs are found.

Count rule
The count rule is a means of selecting ECPs based on
their occurrence in the metabolic network. This rule was
inspired by other works reporting that some compounds
are frequently used in metabolic transformations as
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exchange currency [20–22]. For implementation of this
rule, we simply count the frequency of each ECP in the
whole network and use this value as a measure to com-
pare compounds within a reaction. When applied, we
took the selected branch as the ECP with the highest fre-
quency. The ECP selected with the balance rule was
placed on the right side, and the remaining ECPs were
placed on the left, discarding all ECPs with compounds
present in the other group. The balance rule is always
applied on an ECP first, and the count rule is used to
disambiguate cases in which the balance rule fails to se-
lect a single ECP.

Reaction in a string format (RSF)
After successive application of the rules, we con-
structed a representation visualized as a tree (Fig. 3
and Additional file 1: Table S2). We also represented
each TS in a JSON format (JavaScript Object Notation)
and in two simplified formats. These formats are exempli-
fied below; Eq. 2a gives a generic syntax outline, and
Eq. 2b specify reaction R00760.

rootðbalance compound compoundð Þ compound compoundð Þ ð2aÞ
root balance C00095 C00085ð Þ C00002 C00008ð Þð Þ ð2bÞ
> ! C Cð Þ C Cð Þð Þ ð2cÞ

In Eq. 2c, “>” indicates the tree root for the TS, and “!”
indicates the split according to the rule used (one mark
(“!”) indicates the balance rule, and two marks (“!!”) indi-
cate the count rule). The number of parentheses around
each pair or loner compound show the depth at which it
is nested, indicating the number of partitions employed
to construct the tree. “C” in Eq. 2c represents compound
positions independent of the specific compound.

CTS grouping
For each reaction, a TS was proposed, and the architec-
tures found were represented as in Eq. 2c. The TSs avail-
able for each reaction were clustered into clusters of TSs
(CTSs) according to their topology. Table 1 shows the re-
sultant clusters that were grouped considering the arrange-
ments but not the specific compounds within the reaction.

Pair validation
We compared the pairs generated by our method with
the RPair structures stored in the KEGG REACTION
file. For this purpose, we counted the frequency with
which a TS-compound pair was equal to an RPair with
an RCLASS in the same reaction. We then estimated the
posterior probability of successful data distribution ver-
sus having a failed pair as follows: Let θ be the corres-
pondence of the TS-compund pairs with the RCLASS
set. Using Bayesian analysis, we were able to determine

the distribution of θ. The probability Ρ(θ| y) given y co-
incidences between two datasets out of n trials follows a
beta distribution. For practical purposes, we gave the ex-
pectation value as a summary of the whole distribution.
This value is easily calculated using the standard formula

ΕðθÞ ¼ yþ1
nþ2 . Therefore, as in the present cases, when

y, n≫ 1, this result is very close to the ratio y/n
[23]. Here, the parameters α and β are the number
of hits + 1 and fails + 1, respectively. This test was
performed for the entire set and for the 22 CTS
with at least ten reactions using the betainv function
in GNU Octave 4.2.1. We represented the distribu-
tion with the gnuplot 5.0 program.

Enrichment of ECN classes in TS patterns
We tested for enrichment of the EC numbers classified
into CTSs by our method using a two-sided Fisher’s
exact test. Additionally, we controlled the false discovery
rate using the Benjamini-Hochberg procedure [24]. We
evaluated the strength of the enrichment using the odds
ratio. For each possible combination of a given EC cat-
egory “C” and a particular tree “X”, the odds ratio is de-
fined as (A/B)/(C/D), where A is the number of ECs of
category “C” classified in tree “X”; B is the number of
ECs that are not of category “C” classified in tree “X”; C
is the number of ECs of category “C” that are not in tree
“X”; and D is the number of ECs that are not of category
“C” and are not in tree “X”. We considered only odds ra-
tios with P values < 0.05. For this purpose, we extracted
EC number(s) related to each reaction from the KEGG
database, which corresponded to 4552 ECs distributed at
least one time in a reaction. Notably, 1134 of 8957 reac-
tions did not have ECs earmarked in the KEGG data-
base. All the graphical representations were created
using R scripts developed in RStudio Version 1.0.136
and edited in Inkscape 0.91.

Endnotes
1The power of a given set S is defined as the set of all S

subsets, including the empty set {} and S itself. Therefore,
the operation we performed on A and B can be described
in standard mathematical notation as P′(S) = P(S) \ {{}},
where P(S) is the power of S, and the set difference is
indicated by “\”.

Additional file

Additional file 1: Table S1. List of the reactions split by only the count
rule or by the count rule in some step of division. Table S2.
Representation of the CTS in a string and tree structure format. The first
column, shows the CTS ID; second column represents the reaction split
in a string; third column shows the graphical (node-edges),
representation. Figure S1. CTS vs EC_two_digits comparison by the False
Discovery Rate. Figure S2. CTS vs EC_three_digits comparison by the
False Discovery Rate. (PDF 3439 kb)
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