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Abstract

Background: The dynamics of biochemical networks can be modelled by systems of ordinary differential equations.
However, these networks are typically large and contain many parameters. Therefore model reduction procedures,
such as lumping, sensitivity analysis and time-scale separation, are used to simplify models. Although there are many
different model reduction procedures, the evaluation of reduced models is difficult and depends on the parameter
values of the full model. There is a lack of a criteria for evaluating reduced models when the model parameters are
uncertain.

Results: We developed a method to compare reduced models and select the model that results in similar dynamics
and uncertainty as the original model. We simulated different parameter sets from the assumed parameter
distributions. Then, we compared all reduced models for all parameter sets using cluster analysis. The clusters revealed
which of the reduced models that were similar to the original model in dynamics and variability. This allowed us to
select the smallest reduced model that best approximated the full model. Through examples we showed that when
parameter uncertainty was large, the model should be reduced further and when parameter uncertainty was small,
models should not be reduced much.

Conclusions: A method to compare different models under parameter uncertainty is developed. It can be applied to
any model reduction method. We also showed that the amount of parameter uncertainty influences the choice of
reduced models.
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Background
Modelling of biochemical networks
Biochemical networks consist of chemical reactions
between compounds, such as enzymes and metabolites.
Through these reactions, the various compounds are con-
sumed and produced. Each of these reactions has a reac-
tion rate (flux) that typically depends on the compound
concentrations, giving a dynamical behaviour of the sys-
tem. The compound concentrations can thus be modelled
by systems of ordinary differential equations (ODEs) and
such dynamical models of biochemical networks may give
biological insight that could not be obtained by mod-
elling the compounds individually. However, the network
dynamics may be complex and difficult to model accu-
rately. The chemical reactions could possess advanced
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kinetics such as activation and inhibition. In addition, the
dimensions of the network may be large, for example the
central energy metabolism in E. coli consists of more than
50 metabolites and 100 reactions [1].

Model reduction
The potential high complexity of the ODEs in the model
represents a major challenge in analysing the dynam-
ics of the system. Model reduction is a method for
studying biochemical networks as it aims to identify the
main components governing the dynamics of the sys-
tem. The reduced model should be simpler to analyse,
but retain the dynamical behaviour of the original model.
There are different approaches to reduce the complexity
of biochemical reaction networks, with the most com-
mon ones being lumping, sensitivity analysis and time-
scale analysis [2–4]. Lumping combines compounds with

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-018-0602-x&domain=pdf
mailto: havard.froysa@uib.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Frøysa et al. BMC Systems Biology  (2018) 12:79 Page 2 of 10

similar behaviour into pseudo-compounds and consid-
ers differential equations involving these lumped pseudo-
compounds [5, 6]. By performing parameter sensitivity
analysis, the parameters with the least effect on the system
output are neglected [7, 8]. In time-scale separation, bio-
logical processes are split into fast and slow processes and
then the focus is put on the relevant time scale [9–15].
Another challenge in the analysis of complex net-

works is the lack of information on the kinetic prop-
erties of the reactions and parameter values. Reduction
approaches that are not influenced by parameter uncer-
tainty or incompleteness are called parameter indepen-
dent reduction methods. For example, some reduction
techniques based on exact lumpingmethods [5, 6] or qual-
itative reduction methods [16, 17] are parameter indepen-
dent. Such reduction methods have been used extensively
for signalling networks. For most reduction techniques,
including methods based on time-scale separation or sen-
sitivity analysis, the full parametrization of the model
is required. In parameter dependent reduction, model
parameters can play a significant role in selecting the
elements for reduction. For some biochemical networks,
the accuracy and validity of the reduced model can be
influenced by changing the range of parameters so that
the reduced model is only valid locally [3]. For reaction
networks with well separated parameter values, reduced
models capture the dynamical behaviour of the original
model with an acceptable level of accuracy for an exten-
sive range of parameter values [11, 18]. This, however, is
not the case for general networks.
While there is a large literature on model reduction

techniques, there is a lack ofmethods for evaluatingmodel
reductions. Some ad-hoc methods are the difference or
scaled difference between the full and reduced model [5,
9], an error integral [14] and a criterion based on the initial
values [10]. We are not aware of any criteria for evaluation
of model reductions that takes parameter uncertainty into
account. We present a new way to evaluate model reduc-
tions that takes parameter uncertainty into account and
show the benefit of this method on two example networks.

Methods
Mathematical framework
The state variables of the dynamical model are the con-
centrations of the compounds. These compounds occur
in different combinations on the left and right hand side
of the chemical reactions of the network, where such a
combination is called a complex [14]. For example, the
chemical reaction X1 + X2 → X3 consists of the com-
pounds X1, X2 and X3, and the complexes X1 +X2 and X3.
The complex on the left hand side of an equation being
consumed is called the substrate complex of the reaction
and the complex on the right hand side of the reaction
being produced is called the product complex. All this

information can be represented mathematically by a sto-
ichiometric matrix [1] which gives the structure of the
network.
In the notation of Rao et al. [14] the complexes are given

by a matrix Z where the columns are the non-negative
integer stoichiometric coefficients of the different com-
plexes. The internal reactions are given by the linkage
matrix B where each column corresponds to a reaction.
This column is zero except in the rows corresponding to
the substrate and product complex where it is -1 and 1,
respectively. Let xi(t) be the concentration of compound
i at time t and x(t) the corresponding vector quantity.
The dynamics of any biochemical network is given by the
system

ẋ = ZBv + Zvb (1)

of ODEs where Z and B give the network structure as
described above. The vector v provides the internal fluxes
of the network and vb the boundary fluxes, i.e. the fluxes
entering or leaving the network. As the fluxes typically are
functions of x, we restrict the internal fluxes v to the form

vj(x) = kjdj(x) exp
(
ZT
SjLn(x)

)
(2)

considered in [14] where kj is a kinetic proportionality
constant of reaction j, dj(x) is any function of x, ZSj is the
column of Z corresponding to the substrate complex of
reaction j and Ln(x) is the mapping defined by (Ln(x))i =
ln(xi). Further, let ZS be the matrix where column j is ZSj ,
i.e. the substrate complex of the reaction.
The dynamical model (1) now has the parameters kj in

addition to potential parameters in vb(x) and the func-
tions dj(x). A given set of values for such a parametriza-
tion will be called a parameter set. The unreduced model
described by (1) will be referred to as the full or original
model.

Reduction
Weuse the reduction procedure of Rao et al. [14] to reduce
the model for a given parameter set. The first step in this
procedure is to specify a set MI of compounds consid-
ered to be important in the view of experimental design,
e.g. the ones that are possible to measure. Note that the
choice of MI is subjective, but plays a major role in the
reduction as the dynamics of the compounds in MI are
the ones used to compare the different reduced models.
Then, the complexes of the network are divided into two
categories. The first category is the complexes containing
at least one of the compounds in MI. These complexes
will not be considered for reduction. The other category
is the complexes not containing any of the compounds in
MI, and these will be the complexes considered for reduc-
tion. The reduction is then based on the assumption that
the model approaches some steady state that can be found
by integrating the system for a long enough time and that
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the model is asymptotically stable around the steady state.
A complex is reduced by setting its concentration constant
equal to the corresponding steady state value of the full
model. This can be done simultaneously for any number
of complexes.
Having the possibility to reduce any given set of com-

plexes, an iterative method to choose the complexes to
be reduced is presented in Rao et al. [14]. It is a greedy
method that reduces one complex at the time, always
choosing the one yielding the smallest error as defined
below. Finally, it stops when an error threshold is reached.
However, since the reduced models are independent of

the order of reduction, we consider all possible simulta-
neous reductions of complexes. Assume now that there
are c complexes eligible for reduction. It is then possible
to reduce anywhere from 0 to c complexes, where reduc-
ing 0 gives the full model. In total there are 2c possible
reduced models for a given original model and parame-
ter set. For each of these models, the concentrations of
the compounds inMI are then used to compare the mod-
els. When having n different parameter sets for the same
original model, we perform the described reduction pro-
cedure for all the parameter sets. This yields 2c possible
reduced models for each parameter set and a total of n · 2c
different reduced models.

Comparing models
We need to be able to compare the dynamics of the dif-
ferent reduced models. In Rao et al. [14] the difference
between the original model and a given reduced model
is measured by an error integral. Let the concentration
at time t of compound number i be xir(t) and xif (t) for
the reduced and the full model, respectively. Further, let
xr and xf be the corresponding vector quantities for all
the compounds. Finally, let n (MI) be the number of com-
pounds inMI and [0,T] the time interval that we evaluate
the dynamics over. The error integral is then given by

IT
(
xr , xf

) =
∑
i∈MI

1
Tn (MI)

∫ T

0

∣∣∣∣1 − xir(t)
xif (t)

∣∣∣∣ dt (3)

which gives the average relative difference between the
full and reduced model for all the compounds inMI over
the given time interval. Note that the error integral is
non-symmetric in its arguments. However, we need to
compare any two (reduced) models without favouring one
of them. For this reason we introduce the symmetric error
measure

ET (x1, x2) = 1
2

(IT (x1, x2) + IT (x2, x1)) (4)

where x1 and x2 are the compound concentrations of any
two (reduced) models. Note that this errormeasure can be
calculated also for twomodels having different parameters
as long as they have the same setMI.

Clustering
We use single linkage clustering [19] with the symmet-
ric error as dissimilarity measure to cluster all the n · 2c
models with different parameter sets and reductions.
Single linkage clustering is an agglomerative clustering
method, which means that initially every model is in
its own cluster. The dissimilarity d(C1,C2) between two
clusters C1 and C2 is calculated as the minimal symmet-
ric error minx∈C1,y∈C2 ET (x, y). The two clusters with the
lowest dissimilarity are combined into one cluster at a
hight given by their dissimilarity. Clusters are iteratively
combined until only one cluster remains. This stepwise
process can be visualized in a dendrogram [20]. A den-
drogram provides a complete description of the single
linkage clustering. From such dendrograms it is appar-
ent which models are most similar and which models are
more different.
We then color the dendrogram according to the used

reduction. Each reduction is mapped to a color and
each leaf of the dendrogram receives the color asso-
ciated to its reduction. Model reductions that cluster
together with the original model do not change the model
behaviour, whilemodel reductions that are separated from
the original model changed the model behaviour. So if
the dendrogram separates colors, we consider the model
reduction that causes the separation to change the model
behaviour. The reduced models that are distributed in
a similar way as the original model in the dendrogram
are considered to be consistent for the given parameter
uncertainty.
In order to analytically compare the distributions of

different models in the dendrogram, we calculate the
positions in the dendrogram for each model. We then
use the test statistics of a Kolmogorov-Smirnov test [21]
between a given model and the full model as score for
the model. For a given threshold α, we say that mod-
els with a score lower than the threshold are consis-
tent with the full model at threshold α. Finally, the best
reduced model is then chosen to be the consistent model
that uses the most reductions. In the case of several
consistent models having the same number of reduc-
tions, the best model is the one with the lowest score.
For the remainder of this article we use a threshold
of α = 0.2.

Simple example
To illustrate the method, we created a small example net-
work consisting of four compounds as shown in Fig. 1.
Each compound occurs only one place in the network
and never in combination with other compounds, imply-
ing that the complexes are just the compounds. The set
MI of important compounds is chosen to be number 1
and 4 such that the intermediate compounds 2 and 3 are
considered for reduction.



Frøysa et al. BMC Systems Biology  (2018) 12:79 Page 4 of 10

Fig. 1 Example network. Each node is a compound and each arrow a
reaction. The kj ’s are the kinetic parameters of the reactions.
Important compoundsMI and candidate compounds for reduction
are specified by pink and black rectangles, respectively. External fluxes
are indicated by blue arrows

We apply mass action kinetics. Then kj is the only
kinetic parameter of reaction j. In the notation of [14]
introduced earlier in the article, we have the matrices

Z=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦B=

⎡
⎢⎢⎣

−1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 1

⎤
⎥⎥⎦ZS =

⎡
⎢⎢⎣
1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

(5)

for the network. Usingmass action we have dj(x) = 1 such
that (2) becomes

vj(x) = kj exp
(
ZT
SjLn(x)

)
, j ∈ {1, 2, 3, 4} (6)

for the internal fluxes of v. The boundary fluxes are
given by

vb = [
k5 0 0 −k6x4

]T (7)

where the last entry is negative since the flux is leaving the
network.
The dynamics are now given by (1) and we have six

kinetic parameters kj associated with one of the six

fluxes each. We sampled several parameter sets, which as
expected lead to different reduction results. The parame-
ter set that was chosen as reference because it gives par-
ticularly interesting reduction results is shown in Table 1.
Then, 100 new parameter sets were sampled using this
reference set by assuming the parameters to be indepen-
dently log-normally distributed with the logarithm of the
reference values as mean on the log scale and 0.1 as log
standard deviation. We applied the reference initial values
for all of the parameter sets, and the models were then
reduced and clustered as described above.

Yeast glycolysis example
We also tested our method on a kinetic model of yeast gly-
colysis [22] shown in Fig. 2. This model was used in Rao et
al. [14] to demonstrate themodel reductionmethodwhich
ignores parameter uncertainty. The model is asymptot-
ically stable around the steady state and the governing
equations of the system can be represented in the form
of Eqs. 1 and (2) such that the reduction procedure can
be applied. The important compounds to form MI are
Glci, TRIO, BPG, PYR, AcAld and NADH. Accordingly,
the six candidates for reduction are F6P, G6P, P2G, P3G,
PEP and F16BP, which leads to a total of 26 = 64 possi-
ble reductions for a given parameter set including the full
model.
The model has 89 parameters for the different reactions

of the network. Each of these parameters should be non-
negative, and have a reference value used in [14]. To study
the effect of parameter uncertainty on the reduction we
sampled parameter sets using these reference values. We
assumed the parameters to be independently log-normally
distributed with mean equal to the reference value and
standard deviation equal to the reference value divided
by a scaling parameter. The parameters with reference
value zero were set to zero in the sampling. We sampled
100 parameter sets for each of the values 3, 5, 10, 20, 50
and 100 of the scaling parameter. For each of the param-
eter sets we performed model reduction and clustered
all the 100 · 64 = 6, 400 resulting models for each scal-
ing parameter as described above. We ended up with six
dendrograms containing 6400 models each.

Table 1 Initial values and reference kinetic parameter values for
the example network of Fig. 1

Parameter Value Initial value Value

k1 0.44 x1(0) 0.4

k2 0.03 x2(0) 0.0

k3 0.55 x3(0) 0.5

k4 0.44 x4(0) 0.4

k5 0.42

k6 0.33
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Fig. 2 Yeast glycolysis network. Each node is a compound and each arrow a reaction. Important compoundsMI and candidate compounds for
reduction are specified by pink and black rectangles, respectively. NAD indicated by a cyan rectangle is not explicitly included in the model as the
total amount of NAD and NADH is conserved. External fluxes are indicated by blue arrows. ∗, � and † show an irreversible reaction from NADH to
NAD, a reversible reaction between NADH and NAD and an irreversible reaction from NAD to NADH, respectively. As indicated in the network,
different types of these reactions bind to some of the fluxes

In order to check the sensitivity of the method to
the number of parameter sets sampled, we also sampled
1000 parameter sets for the model with scaling parame-
ter 50. For each parameter set we considered all model
reductions with a Kolmogorov-Smirnov test score below
a threshold of 0.5 for the 100 previous parameter sets. We
performed model reduction and clustering as above.
All analyses were performed in MATLAB [23]. All code

used to generate the results is available in the online
supplementary material.

Results
Simple example
For the used parameter values, the model with both com-
pounds number 2 and 3 reduced clustered together with
the original model and had a Kolmogorov-Smirnov score
of 0.17. Both the model with only compound 2 removed
and the model with only compound 3 removed had a
Kolmogorov-Smirnov score of 1.00. The models with only
compound 3 reduced were the furthest from the cluster
including the original model. Figure 3 shows the single
linkage cluster dendrogram. The behaviour changes sub-
stantially for different parameter values and parameter
uncertainties.

Yeast glycolysis example
The trajectories of the full model and all reduced mod-
els using the parameter set from [14] show no effect for
Glci, two groups for TRIO, PYR and NADH, but no clear
picture for BPG and ACALD (Fig. 4). For the reference
parameter set, we found two big clusters. The first clus-
ter contained the full models as well as all the models with
compound F16BP not reduced, and the second cluster
contained all models with F16BP reduced.
The clusterings for a distribution of parameters

depended on the parameter distribution. When the stan-
dard deviation was high, there were no clear clusters
and the full models were evenly distributed between the
reduced models (Fig. 5, top left). This means that the
uncertainty in the parameters had more effect than the
model uncertainty due to reduction. The more certain the
parameters were, the more we saw a clear picture emerge,
with all models that had compound F16BP reduced clus-
tering together and all other models forming a separate
cluster (Fig. 5, top right, bottom left). When decreasing
parameter uncertainty even further, the original models
started forming a cluster of models where both com-
pounds PEP and F16BP were not reduced (Fig. 5, bottom
right).
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Fig. 3Model clustering. Dendrogram from single linkage clustering of all model reductions with 100 parameters sets. Parameters were sampled
from a log-normal distribution with log standard deviation 0.1

In addition to finding clusters that are inconsistent with
the model uncertainty, we studied the distribution of the
reduced models in the dendrogram. In the case of large
parameter uncertainty (scaling parameters 3, 5, 10) the
distribution of the fully reduced model in the dendrogram

was similar to the distribution of the original model
(Kolmogorov-Smirnov 0.11 or smaller). In the case of rel-
atively large uncertainty (scaling parameter 20), all the
models that did not reduce F16BP were distributed sim-
ilarly to the original model (Kolmogorov-Smirnov 0.01).

Fig. 4 Yeast trajectories. TheMI states are shown for the reference parameters. Each color corresponds to a different model reduction
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Fig. 5Model clustering of F16BP reduced models. Dendrogram from single linkage clustering of all the model reductions using 100 parameters
sets. Parameters were sampled from a log-normal distribution with standard deviation as reference value divided by 3 (top left), 5 (top right), 10
(center left), 20 (center right), 50 (bottom left) and 100 (bottom right). The original models are shown in red, models where F16BP was reduced are
purple and all other models are blue

When the uncertainty was relatively low (scaling parame-
ter 50), all models with F16BP and PEP not reduced clus-
tered together with the full model (Kolmogorov-Smirnov
0.01 or 0.02). However, in the case of very low uncertainty
(scaling parameter 100) the only model whose distribu-
tion in the dendrogram was similar to the distribution
of the original model was the one where only F6P was
reduced (Kolmogorov-Smirnov 0.01). The sensitivity anal-
ysis showed that whether or not a reduction was con-
sistent for a given uncertainty did not dependent on the
number of parameter sets (Fig. 6).

Discussion
Wedeveloped a newmethod to evaluatemodel reductions
under parameter uncertainty based on the symmetric
error measure in (4). In the yeast glycolysis example we
showed that the amount of parameter uncertainty influ-
ences the model reduction. In particular, model uncer-
tainty and parameter uncertainty are positively related.
When the model parameters are uncertain, the model can
be reduced further without increasing uncertainty in the
model dynamics. We have also demonstrated empirically
that if a model can be reduced to a certain degree for a
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Fig. 6 Kolmogorov-Smirnov test scores. Kolmogorov-Smirnov test scores for all the model reductions using 100 parameters sets as well as the
sensitivity analysis with 1000 parameter sets (50L). The compounds in gray are reduced in the model of the corresponding row. Parameters were
sampled from a log-normal distribution with standard deviation as reference value divided by the scaling factor. Models that are consistent with the
original model are shown in light green and the best reduced model for each case is shown in dark green

given amount of uncertainty, then it can be reduced to
at least the same degree if the uncertainty increases. If a
model is used to analyse different scenarios, the param-
eters for all the scenarios should be considered when

reducing a model. A full model should only be reduced to
a model that is consistent for all considered scenarios. In
addition to parameter values, uncertainty in initial values
should also be considered. Our analysis shows that the
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reduction of Rao et al. [14] for the yeast model agrees with
our best reduction for a relatively high amount of uncer-
tainty, but becomes inappropriate for low or very large
uncertainty.
In the simple example we demonstrated that it is some-

times better to reduce two complexes than just one. This
also shows that even without parameter uncertainty the
iterative approach used in [14] may not find the best
reduction. Whether or not the best reduction is found
depends on the symmetric error cut-off value. In the
example, the reduced model would be found with sym-
metric error cut-off value at least 0.04, even though the
symmetric error is only 0.02. The reference values in
Table 1 for the parameters were chosen to illustrate this
behaviour.
The novelty of our approach is a new way to eval-

uate model reduction. This model reduction evaluation
criterion can be applied together with any model reduc-
tion method. Our criterion does not assume that the full
model with a given parameter set is optimal. Instead it
compares the full model with a wide range of param-
eter values to reduced models with the same range of
parameter values to find a reduced model with the same
properties, includingmodel uncertainty. A reducedmodel
with lower uncertainty in the trajectories could lead to
overconfidence in the results.
A limitation of our method is that we need to choose a

setMI of important compounds. This choice is subjective
and affects the resulting reduced model. However, there
are some natural choices for the set MI, which depend
on the model purpose. Of course MI should contain all
the compounds the study is investigating. It should also
contain all the compounds whose concentrations are mea-
sured experimentally. Another limitation of our approach
is that we have to choose the length T of the time series.
It is important that at time T the trajectories are close to
the steady state, because otherwise the error integral does
not cover the entire model dynamics. On the other hand T
should not be too large because otherwise the error inte-
gral reduces to the difference in steady states. If the model
does not approach a steady state the dissimilarity measure
we use may not be appropriate. There may also be some
scaling issues with our proposed approach. Already in the
case where we have to evaluate 64 models, we have to cal-
culate a 6400×6400matrix of dissimilaritymeasures using
100 parameter sets. For most practical examples, however,
it is possible to reduce the sample space of reductions to
a manageable size. In our sensitivity analysis with 1000
parameter sets, we have solved the issue by using the first
100 parameter sets to exclude some model reductions,
which lead to a 32, 000× 32, 000 dissimilarity matrix. The
calculation of this matrix is the computational bottleneck
of the method, but parallel computing can be applied.
Moreover, it is possible to iteratively compare only a few

models at a time. We suggest that investigators adapt
their strategies for model reduction based on model size,
complexity and choice of the set MI. The Kolmogorov-
Smirnov score leads to an automatic way of choosing
the best reduced model. However, we believe that it is
important to look at the dendrograms and not choose the
model reduction only based on the Kolmogorov-Smirnov
scores.

Conclusions
We presented a new method for evaluating models under
parameter uncertainty and applied it for comparing full
models to reduced models. We showed that multiple
reductions can result in better models than individual
reductions and that the amount of parameter uncertainty
influences the choice of reduced models.
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