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Abstract

Background: Ordinary differential equations (ODEs) are often used to understand biological processes. Since
ODE-based models usually contain many unknown parameters, parameter estimation is an important step toward
deeper understanding of the process. Parameter estimation is often formulated as a least squares optimization
problem, where all experimental data points are considered as equally important. However, this equal-weight
formulation ignores the possibility of existence of relative importance among different data points, and may lead to
misleading parameter estimation results. Therefore, we propose to introduce weights to account for the relative
importance of different data points when formulating the least squares optimization problem. Each weight is defined
by the uncertainty of one data point given the other data points. If one data point can be accurately inferred given the
other data, the uncertainty of this data point is low and the importance of this data point is low. Whereas, if inferring
one data point from the other data is almost impossible, it contains a huge uncertainty and carries more information
for estimating parameters.

Results: G1/S transition model with 6 parameters and 12 parameters, and MAPK module with 14 parameters were
used to test the weighted formulation. In each case, evenly spaced experimental data points were used. Weights
calculated in these models showed similar patterns: high weights for data points in dynamic regions and low weights
for data points in flat regions. We developed a sampling algorithm to evaluate the weighted formulation, and
demonstrated that the weighted formulation reduced the redundancy in the data. For G1/S transition model with 12
parameters, we examined unevenly spaced experimental data points, strategically sampled to have more
measurement points where the weights were relatively high, and fewer measurement points where the weights were
relatively low. This analysis showed that the proposed weights can be used for designing measurement time points.

Conclusions: Giving a different weight to each data point according to its relative importance compared to other
data points is an effective method for improving robustness of parameter estimation by reducing the redundancy in
the experimental data.
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Background

To understand and study the properties of biological sys-
tems, mathematical modeling has been a powerful tool
[1, 2]. For example, ordinary differential equations
(ODEs), Bayesian networks, Boolean networks, Petri nets,
and many other mathematical forms [3—6] have been used
to describe biological processes. Since the ODE-based
modeling is useful in representing the changes of interact-
ing components of dynamical systems over time [7], it is
often used to model gene and protein networks in systems
biology.

ODE-based systems biology models are often con-
structed by encoding prior knowledge of interactions
among individual components in the systems. Such ODE
models typically contain many unknown model param-
eters, such as reaction rates, binding affinities and Hill
coefficients [8, 9], as well as many dynamic variables non-
linearly interacting with each other. The unknown model
parameters can be estimated based on the experimentally
observed data. Given an ODE model and experimental
data, parameter estimation can be formulated by mini-
mizing the least squares cost function Eq. (1), which we
consider as equal-weight cost function,

n
Cost = % Z(obsi — pred;(9))* 1)
i=1
where #n represents the total number of experimentally
observed data points, obs; represents the value of the
i observed data point, pred; represents the model pre-
diction of the i data point which is a function of the
parameters 6. This equal-weight cost function measures
the differences between experimental data and model
predictions obtained from the estimated parameters. By
minimizing the cost function, we can identify optimal
parameters that enable the model to produce predictions
of simulations that resemble the experimental data. Some
studies included weights in the least squares Eq. (2) to
account for measurement noise [10],

n
Cost = % Z w;(obs; — pred,; 0))? (2)

i=1
where w; is inversely related to the expected measurement
noise associated to the i observed data point. This for-
mulation assigns lower weights to data points with larger
expected measurement noise, so that the cost function
focuses on the more accurately measured data points.
Although Eq. 2 assigns different weights to each data
point, it still treats all data points intrinsically equally
important and the weights just reflects our ability of

measuring different data points.

In systems biology, ODE models are usually highly com-
plex, whereas the amounts of available experimental data
are almost always limited. This imbalance between the
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complexity of the models and the insufficient experimen-
tal data makes parameter estimation a very challenging
problem. It is possible that drastically different parameter
settings can fit the experimental data equally well, which is
a manifestation of an information gap between the model
complexity and the available experimental data [11].

One intuitive approach to address the parameter esti-
mation challenge in systems biology is to obtain more
data. Cubic spline interpolation was used to generate new
data by increasing the time resolution [12]. By interpo-
lating time points in—between already observed experi-
mental data points, the optimization cost function can
be defined on densely interpolated time points. New data
can also be generated via experimental design, which aims
to identify the most informative new experiments that
efficiently increase the information content in the data
[13-16]. Examples include minimizing the uncertainty of
parameters using sensitivity analysis [14, 17], maximiz-
ing mutual information between parameter and data from
new experiments [15, 18], and maximizing the variance
of new experiments with respect to the Bayesian poste-
rior distribution of the parameters [16, 19-21]. A common
concept in these studies is that the new data obtained by
various potential new experiments are expected to pro-
vide different amounts of information. Following the same
logic, different data points observed in the same experi-
ment probably also provide different amount of informa-
tion, which motivated us to treat each data point differ-
ently by considering their relative importance, instead of
treating them equally.

Although typical parameter estimation studies treat all
data points as equally important, it can give rise to mis-
leading results as illustrated in Fig. 1. In this illustrative
example, we ignore the measurement error and consider
the equal-weight cost function Eq. (1). In Fig. 1a and b, the
solid curves represent the same experimentally observed
data, and the dotted curves represent model predictions
based on different parameter settings. In Fig. 1a, the dot-
ted curve fits the steady state accurately, whereas the
dynamical region of the behavior is not well captured.
If we measure the quality of the fit by the equal-weight
cost function, the value of the cost is represented by the
shaded area in-between the two curves. Figure 1b shows
the model prediction based on a different parameter set-
ting. In comparison with Fig. 1a, the parameter setting
in Fig. 1b produces a better fit because it captures the
dynamical behavior accurately, although it is slightly off
at the steady state. In cases where the steady state region
lasts for a long period of time, the cost value of the second
parameter (Fig. 1b) can be the same as the cost value in
(Fig. 1a) or even larger. This example shows that if all data
points are considered equally important, the cost func-
tion defined by Eq. (1) is not able to distinguish a poor fit
from a good fit. Instead of the equal-weight formulation,
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Fig. 1 lllustrative example showing limitations of the equal-weight cost function. The solid curve represents the experimental data, and the dotted
curve represents model prediction based on a parameter estimate. a A poor fit that does not capture the dynamic behavior but fits well to the flat
region. b A better fit that captures the dynamic region well but is slightly off in the flat region. The shaded area represents the value of the cost
function if all data points are considered as equally important. Depending on the length of the flat region, the two shaded areas (costs) can be
equivalent. Therefore, the equal-weight cost function is not able to distinguish these two parameter estimates
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if the weights are strategically distributed to give higher
emphasis to data points in the dynamic region and lower
emphasis to data points in the steady state region, the
weighted cost function will be able to favor the parame-
ter setting in Fig. 1b over that in Fig. 1a, regardless of the
length of the steady state region.

In order to consider the relative importance of data
points when formulating the parameter estimation cost
function, we propose to define a weight for each data
point by the amount of unique information it provides.
More specifically, we define the weight of a data point
by the uncertainties of the data point given all other data
points. This uncertainty quantifies how well we can infer
one data point given the other data points. For instance, if
one data point can be accurately predicted given the other
data points, its uncertainty is low, and it carries a very
small amount of new information beyond what other data
points provide. On the other hand, if one data point can-
not be accurately inferred given the other data points, this
data point has high uncertainty and carries unique infor-
mation beyond other data points. Defining weights by the
uncertainty leads to a weighted cost function, where each
data point is weighted by the amount of unique informa-
tion it provides. To examine this weighted cost function,
the G1/S transition model and the MAPK module were
used. In addition, a sampling algorithm was developed to
evaluate and compare the equal-weight formulation and
the proposed uncertainty-weighted formulation.

Methods

Parameter uncertainty given experimental data

Before introducing weights defined by the uncertainty of a
data point given the other data points, we first discuss the
uncertainty of parameters given data points. Assume we
have an optimal parameter setting (9*) which minimizes
the weighted cost function Eq. (2). In a small neighbor-
hood of 6%, there exists a region of parameter settings that,

although not optimal, are nevertheless consistent with
the data within experimental noise. These near optimal
parameter settings form the confidence interval for the
estimated optimal parameter, and the corresponding vari-
ation in these near optimal parameters is the uncertainty
of parameters, which can be estimated by a second-order
Taylor expansion of the cost function Eq. (2) at the optimal
parameter setting.

c®)

&

1 I E d2c
co* — — (6, — 096, — 0
( >+2;;a%a€b<a ) (O — 6]

3)

* 1 *\T *
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In Eq. (3), m represents the number of parameters. The
first-order term does not appear in the Taylor expansion
because the gradient of the cost function at the optimal
parameter (6*) is 0. The second-order derivatives evalu-
ated at the optimal parameter (6*) is the Hessian (H) at
the optimal parameter. The eigenvalues and eigenvectors
of the Hessian matrix reflect the confidence interval of the
near optimal parameters. For example, if the Hessian has
a small eigenvalue, moving the optimal parameter along
the corresponding eigenvector direction does not signifi-
cantly increase the cost value, leading to a huge confidence
interval and a large uncertainty of the optimal parameter.
On the other hand, if the eigenvalues of the Hessian are
all large, moving the optimal parameter in any eigendirec-
tion will lead to large increase in the cost value, indicating
a very small confidence interval and small uncertainty of
optimal parameter.

The Hessian matrix can be approximated by the Fisher
Information Matrix (FIM), vis the simplifications as
follows Eq. (4),
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In Eq. (4), n represents the total number of data points.
In the final line of Eq. (4), the approximation is based
on the assumption that the fit error is very small at the
optimal parameter. This approximation of Hessian is the
Fisher Information matrix, and its inverse is the covari-
ance matrix that approximates the uncertainty of the opti-
mal parameter given the data. The parameter uncertainty
can be quantified using Eq. (5),

1
Uncertainty(0|data) = —trace (171) (5)
m

where m is the number of parameters and [ is the Fisher
Information matrix.

Since parameters in systems biology models are often
constrained to be non-negative, it is often advantageous
to compute the Fisher Information matrix in the log-
parameter space: I, = > 1, wi% aalf)’;g;) lo+. In addi-
tion, the Fisher Information matrix can be represented by
JTJ, where the J represents the Jacobian matrix. Therefore,
the eigenvalues of Fisher Information matrix are equal to
the squares of the singular values of the Jacobian, and the
Eq. (5) can be calculated by Y " | Sa%’ where s indicates

the singular values of the Jacobian.

Data uncertainty given other data

Similar to the formulation of parameter uncertainty given
data, we can express the uncertainty of estimating one set
of data points (S1) given another set of data points (S3)
using the Fisher Information:

1
Uncertainty(dataS) |dataS,) = —trace (151152_1) (6)
m

dpred; dpred;
where [ISI]a,b = Ziesl Wi B lgg(e;) F] lI;g((g;) |9*¢ and [ISZ]a,b =

_Opred; dpred, * . X
Y ics2 Widlon@ log@) Flog@,) |0+ 0™ here is the best fit param-

eter defined by data points in Sy. The matrix inverse
and multiplication inside the trace operation in Eqn. (6)
approximate the derivatives of data points in Sy with
respect to data points in Sj.

To quantify the importance of a data point, we propose
to calculate the uncertainty of one data point i given all the
other data points. We define the two subsets as follows:
S1 = {i} and S, = {1,2,..., n}\S1. The Fisher Informa-
tion matrices I;; and Iy are computed using the it row
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of the Jacobian and all the other (7 — 1) rows of Jacobian,
respectively. The data uncertainty reflects whether one
data point can be accurately predicted based on all other
data points. As shown in Eq. (6), calculating the weight of
a data point requires the Fisher Information matrix evalu-
ated at the optimal parameter, which is in turn defined by
optimizing the weighted least squares cost function Eq. (2)
that requires the weights.

Iterative algorithm for quantifying the weight of each data

point

To compute the weight of each data point and estimate the
optimal parameter setting, an iterative algorithm is devel-
oped. Figure 2 shows a flowchart of the proposed iterative
algorithm. In the first iteration, the algorithm is initial-
ized by assigning equal weights, 1, to all data points. To
optimize the parameters with respect to the initial equal-
weight cost function Eq. (1), the interior-point algorithm
[22] is used with randomly generated initial parameters.
We evaluate the Jacobian at the estimated parameter,
which is used for calculating the uncertainty associated to
each data point Eq. (6). The uncertainty of each data point
serves as its updated weight. We normalize the weights,
so that the sum of the weights equals the total number of

Initial Weights for defining
parameter set Cost function
Parameter Estimation

(Interior-point)

Optimal parameter set

Calculate Jacobian

Jacobian matrix

Calculate weights
for each data points Update weights
Fig. 2 Iterative algorithm to compute uncertainty-based weights. The
first iteration: parameter estimation is performed based on the
equal-weight cost function using 100 random initial parameter
settings obtained by Latin hypercube sampling. We pick the one with
the smallest cost to calculate weights. The second and subsequent
iterations: the algorithm starts with the optimized parameter from the
previous iteration, and performs parameter estimation with respect to
the weighted cost function using the weights from the previous
iteration. The process iterates until the weights converge
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data points. Such normalization makes the weighted cost
function and the equal-weight cost function comparable.

In the subsequent iterations, the estimated parameter
and the updated weights from the previous iteration serve
as the initial parameter and weights for the parameter
estimation step. Therefore, the parameter estimation is
performed with respect to the updated weights. After
that, the weights are re-computed based on the newly
estimated parameter. This process is repeated until the
weights converge.

The intuition of this algorithm is that: even if the opti-
mal parameter setting derived from the equal-weight cost
function in the first iteration is incorrect, as long as it
represents a decent fit to the data, the updated weights
at the end of the first iteration will roughly capture the
curvature and relative importance of the data points. The
subsequent iterations start with the updated weights, and
will gradually adjust and fine-tune the optimal param-
eter, as well as the weights until convergence. In prac-
tice, to ensure the first iteration obtains a decent fit,
we typically perform 100 runs of parameter estimation
using random initial parameters generated by the Latin
hypercube sampling method. We pick the best estimated
parameter among the 100 to compute the Jacobian and
updated weights. The second and subsequent iterations
pursue the best fit in the first iteration and fine-tune it
until weights converge, which typically takes only a few
iterations.

A parameter sampling algorithm

To evaluate the benefit of the weighted cost function
and compare with the equal-weight cost function, we
developed a parameter sampling algorithm, similar to the
Markov Chain Monte Carlo algorithm [23]. The sam-
pling algorithm generates a collection of near optimal
parameter settings. Given an acceptance threshold for
near optimal, the sampling algorithm identifies the accept-
able parameter region which is defined as the union of all
parameter settings whose cost value is smaller than the
given acceptance threshold. Although most of the accept-
able parameter settings are not optimal, they generate
descent model predictions which fit well to the data. Thus,
this acceptable parameter region can be used to visualize
the confidence interval of the estimated parameter and the
model predictions.

The algorithm is as follows:

1 Define the acceptance threshold as K times cost
value at current estimated parameter (64").
Threshold = K * cost(0°4'"), where K is the constant
number.

2 Define the perturbed parameter based on the Fisher
Information matrix (FIM) at the current estimated
parameter.
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Pt = 0 + o YL | 5LV, where a ~ N(0,02), A
= eigenvalue of FIM, and V = eigenvector of FIM.

3 If cost value of 87" is smaller than Threshold, we
remember the 67¢" as a acceptable parameter, and
update to the 8¥'". Then, we increase the o two
times, and re-explore parameter space with the
updated 0" and o.

If cost value of 87" is bigger than Threshold, we
reject the 97¢'* and decrease theo as a half. Then, we
re-explore parameter space with the 87¢* and
decreased o.

If the o is too small, we randomly select one of the
accepted parameter sets and use the selected
parameter as a 0“7,

4 Go back to the step 2 until the total iteration number
is 10°.

In step 1, it starts with the estimated parameter set-
ting obtained from optimizing the weighted cost function,
which serves as a seed inside the acceptable parameter
region. Denote the seed as the called current parameter
0" . In step 2, to explore the parameter space, we perturb
the current parameter, and we evaluate the cost function
at the perturbed parameter. In step 3, if the cost value
is smaller than the acceptance threshold, the perturbed
parameter is accepted and becomes the current param-
eter. On the other hand, if the cost value is larger than
the threshold, the perturbed parameter is rejected and the
current parameter is not changed. This sampling algo-
rithm is performed iteratively, resulting in a collection of
acceptable parameters.

In order to achieve efficient sampling and low rejec-
tion rate, we designed the direction and amplitude of
the perturbation using the Fisher Information Matrix and
parameter uncertainty. At each iteration of the sampling
algorithm, we compute the inverse of the Fisher Infor-
mation matrix at the current parameter. We apply larger
perturbation along the eigendirection associated to large
eigenvalues, and smaller perturbation along the eigendi-
rection associated to small eigenvalues. Since the inverse
of the Fisher Information Matrix approximates the covari-
ance of the estimated parameter, such a choice of pertur-
bation leads to larger perturbations along the insensitive
directions that have little influence on the cost function,
and smaller perturbations along the sensitive direction,
enabling efficient exploration even when the covariance is
highly anisotropic.

To determine the amplitude of the perturbation, we use
a normal distribution, N (0, 02). A large o value makes the
sampling algorithm explore the parameter space quickly,
but is at the risk of low acceptance rate and low sam-
pling efficiency. On the other hand, a small o value has
the opposite effect. In the sampling algorithm, the value
of o is adjusted during the process, doubled when the
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perturbed parameter is accepted and halved when the per-
turbed parameter is rejected. The purpose of adjusting
o is to balance between the exploration and the accep-
tance rate. Furthermore, if the o value is too close to zero,
meaning that the sampling process is stuck at a narrow
corner of the acceptable parameter region, we randomly
pick a previously found acceptable parameter and set is as
the current parameter. This heuristic effectively resets the
sampling process when it is stuck.

Results
G1/S transition model
To test the proposed algorithm for computing

uncertainty-based weights, the G1/S transition model
was used [12, 24]. This model consists of 2 variables,
pRB (Retinoblastoma protein) and E2F1 (Activator),

Page 6 of 128

and 10 model parameters. We also consider the initial
concentrations of both variables as parameters, and
therefore, the total number of model parameters is 12.
The ordinary differential equations of the model are
described in Eq. (7). Since pRB inhibits E2F1 activation,
the concentration of E2F1 decreases as the concentration
of pRB increases as shown in Fig. 3a. Afterwards, the
concentrations of both variables approach steady state
gradually.

d [E2F1] Ji1

%[pRB] = Kin+[E2F1] J11+[pRB]
a’+[E2F1)? J12
K2,+[ E2F1]2 J12+[ pRB]

- §0pRB[PRB]
(7)
—opar1[ E2F1]

d
—[E2F1]=K, +K>

To generate experimental data, we simulated Eq. 7 using
the parameter setting in [12] as the true parameter, with

Weight of E2F1

107 ' ' '
0 200 400 600

Time Point

800

Fig. 3 Experimental data and weights of the G1/S transition model with 6-parameters. a The solid curve represents the simulated noise-free data
obtained from the true parameter. The circles represent simulated experimental data, which is obtained by introducing a small amount of Gaussian
noise. This noisy data is used as the observed experimental data in parameter estimation. b Each dot represents the weight of a data point, and the
dashed line corresponds to the weights in the equal-weight cost function (“1"). All curves are shown in log scale. The dynamic region receives
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observed time points evenly spaced every 25 min from
0 to 800 min. The simulated data was perturbed with
a small amount of multiplicative and additive Gaussian
noise [14]. Figure 3a shows the simulated experimental
data. The total number of experimental data points is 66
(33 data points for each variable). Based on this exper-
imental data, we examined two versions of the model,
one with 6 unknown parameters, and the other with 12
unknown parameters. For both versions of the model, the
initial concentrations of the two variables were treated as
unknown parameters.

G1/S transition with 6 unknown parameters

To consider a simple version of the G1/S transition model,
four model parameters (K1, /11, Ky and J13) and the initial
concentrations of both variables were treated as unknown
parameters. Using the iterative algorithm described in the
“Methods” section, weights of the 66 data points were
calculated and visualized in Fig. 3a. The solid curve repre-
sents the weight of each data point and the horizontal dot-
ted line represents the equal-weight formulation where
every data point receives the same weight 1. As shown in
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Fig. 3b, the initial data point (¢ = 0) of both variables
received the highest weights among all data points. This
is because the initial data points directly reflect values of
two unknown parameters, which are the initial concen-
trations. Among other data points, those in dynamically
changing regions (from ~ 25 to ~ 250 mins) received
relatively larger weights compared to those in flat regions
(from ~ 250 to ~ 800 mins).

To compare the equal-weight cost function and the
weighted cost function, the sampling algorithm intro-
duced in the “Methods” section was applied to visual-
ize the collection of acceptable parameter settings. For
each cost function, the interior-point algorithm [22] was
used to estimate the underlying parameter. The estimated
parameter setting was then used as the seed for the
sampling algorithm to generate collections of acceptable
parameters. We defined the threshold for acceptable to
be three times the cost value of the estimated param-
eter setting. Finally, we simulated the model using the
acceptable parameters. Figure 4 visualizes the model pre-
dictions generated from the acceptable parameters for
both cost functions. The gray belt represents the range of

a b
10Equal weight cost function 10 Weighted cost function
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Fig. 4 Sampling algorithm for evaluating G1/S transition with 6-parameters. The black curve indicates the observed experimental data. The gray
curves represent the model predictions based on the acceptable parameter settings, collectively forming a gray belt. a Sampling results with
respect to the equal-weight cost function. The E2F1 belt from the equal-weight cost function shows imbalance between the thick width in the
dynamic region and the thin width in the flat region. b Sampling results obtained from the weighted cost function. The belt width of E2F1 is much
thinner in the dynamic region because the weighted cost function gives higher weights to the data points in the dynamic region. At the early time
points where pRB exhibits bigger change, the pRB belt for the weighted cost function is thinner than that for the equal-weight cost function
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Fig. 5 G1/S transition with 6-parameters: robustness of the uncertainty-based weights. a The black curve represents the noise-free data and the
gray dots represent 100 simulated noisy datasets for sensitivity analysis. b The dotted line represents the weight of equal-weight cost function (0"
on log scale), and each box represents the weights for one data point, computed from the 100 noisy experimental datasets. The small range of each

acceptable model predictions and the black curve is the
experimental data (Fig. 3a).

Figure 4a represents the model predictions of the col-
lection of acceptable parameters derived by the sampling
algorithm with the equal-weight cost function. Figure 4b
corresponds to the weighted cost function. From this
figure, we can see that the belts corresponding to the
second variable (E2F1) are quite different between the
equal-weight and weighted cost functions. The equal-
weight cost function resulted in a belt that is relatively
thick in the dynamic region, and relatively thin in the flat
region. This is because the large number of data points in
the flat region essentially carries the same information, the
steady state, forcing the parameter estimation algorithm
to focus on finding the steady state accurately, even at the
expense of errors in the dynamic region. This unbalanced
belt width illustrates the limitation of the equal-weight
cost function described in Fig. 1. The belt width of the first
variable (pRB) is more balanced, because the flat region
of the first variable is shorter than the second variable,
and the data points for pRB are noisier than those for
E2F1. For the weighted cost function, the belt is much
thinner in the dynamic region. This is because data points
in the dynamic region received larger weights while data
points in the flat region received smaller weights. By
redistributing the weights according to the relative impor-
tance of each data point, we can derived the weighted

cost function, giving larger weights to the data points in
dynamically changing regions and lower weights to flat
regions.

To test the sensitivity of the algorithm for computing
the weights, we generated 100 experimental datasets by
randomly perturbing the noise-free simulation in Fig. 3a.
The variation among the 100 datasets is shown in Fig. 5a.
Using the iterative algorithm, weights are computed based
on each experimental dataset. The variation among the
100 sets of weights is shown in Fig. 5b. The first measure-
ment time point for both variables consistently receive
large weights across the 100 datasets, very robust to the
noise. For other measurement time points, we can observe
the same pattern as in Fig. 3b, where the dynamically
change regions consistently receive higher weights than
flat regions.

G1/S transition with 12 unknown parameters

To consider a more challenging situation, we assumed that
all 12 parameters are unknown. Now we have to estimate
12 unknown model parameters with the same experimen-
tal data (Fig. 3a), and perform the iterative algorithm to
calculate the weights. The resulting weights are shown in
Additional file 1: Figure S1, which is qualitatively simi-
lar as before (larger in dynamic regions and lower in flat
regions), but not exactly the same. This shows that the
uncertainty-based weights do not just simply encode the
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curvature of the given data. They are also influenced by
the mathematical structure of the ODE-model and which
parameters need to be estimated.

Additional file 1: Figure S2 illustrates the model pre-
dictions of acceptable parameters for both cost functions,
using the sampling algorithm. The comparison is qualita-
tively the same as the previous 6-parameter example. The
equal-weight cost function (Additional file 1: Figure S2A)
led to highly unbalanced belt width because of the large
number of data points in the steady state region, whereas
the weighted cost function (Additional file 1: Figure S2B)
led to relatively balanced belt width by assigning larger
weights to data points in dynamic regions and lower
weights to the data points in flat regions.

To examine the sensitivity of the weights in the 12-
parameter model, we used the same 100 experimental

datasets introduced in the previous example (Fig. 5a), and
calculated weights based on the 100 datasets. The varia-
tion of the weights is shown in Additional file 1: Figure S3.
Comparing Fig. 5b and Additional file 1: Figure S3, we can
see that weights of the data points in this 12-parameter
model are not as robust as the weights in the previous 6-
parameter model. This is caused by the higher complexity
of the 12-parameter model, making the parameter estima-
tion component of the iterative algorithm to overfit to the
noise and subsequently lead to different weights.

Unevenly spaced time points

In the 6-parameter and 12-parameter models above, the
experimental data points are evenly spaced along the
time axis. As shown in Fig. 3b and Additional file 1:
Figure S1, data point in different time periods receive
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different weights, and the magnitudes of weights decrease
as time increases, indicating that the data points located at
later time points may be redundant. Therefore, to reduce
the effect of these redundant data points, we manually
selected an unevenly spaced time points as the experi-
mental observations. Data points in dynamic regions are
densely sampled, while data points in steady state region
are sparsely sampled. The selected time points are 0, 5,
10, 15, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 300, 400,
600, and 800. With the measurement time points changed,
we generated an experimental dataset by randomly per-
turbing noise-free simulation of the model, as shown in
Fig. 6a where the circles represent the unevenly spaced

measurement time points and the simulated experimen-
tal observations. Using this data, the iterative algorithm
was performed to obtain the weights shown in Fig. 6b. In
contrast to the weights in the previous examples, all data
points except the first data point (¢ = 0) receive very sim-
ilar weights regardless of the region, dynamic or steady
state. This is because the measurement time points are
selected strategically make the data points roughly equally
important, so that redundancy among the data points is
reduced.

Using the sampling algorithm, we visualized the model
predictions of acceptable parameters for these two cost
functions, under unevenly spaced time points. As shown
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in Additional file 1: Figure S4, the belts associated to
the two cost functions are quite similar to each other.
This is due to the low variation among the weights
shown in Fig. 6b, which makes the weighted cost function
(Additional file 1: Figure S4B) and the equal-weight cost
function (Additional file 1: Figure S4A) almost equiva-
lent to each other. This example shows that the proposed
weighted cost function can also be achieved by strategi-
cally selecting measurement points to avoid redundancy
in the resulting experimental data.

To test the sensitivity of the iterative algorithm, we
randomly simulated 100 experimental datasets, shown in
Additional file 1: Figure S5A. We applied the iterative
algorithm to compute weights based on each experimental
dataset. Additional file 1: Figure S5B describes the vari-
ations among 100 sets of weight, where weights for the
majority of the simulated datasets are close to “1” (0 in log
scale), corresponding to the equal-weight cost function.

MAPK module

To test the proposed weighted cost function in a more
complex model, the MAPK module was considered [25].
This module consists of 5 variables and 9 model param-
eters. The ordinary differential equations of this module
are depicted in Eq. (8), where X represents MAPK, XE
represents the complex of X with the enzyme E, XP is
singly phosphorylated form of MAPK, XPE is complex of

XP with the enzyme, and XPP is doubly phosphorylated
form [25]. In this example, we assume that the concentra-
tion of the enzyme E is initially 0.01, changes to 10 at t=1,
and changes back to 0.01 at t=5. When the enzyme con-
centration is increased at t=1, the dynamic variables either
increase or decrease, in respond to the enzyme change.
To generate the experimental data, we used the model
parameters in [25] as the true underlying parameters. All
9 parameters and 5 initial conditions were considered as
unknown model parameters, thus the total number of
parameters is 14-.

d

dt
d
dt

[X] = —Ki[X] E + Kx[ XE] +K7[ XP]

[XE] = Ky [X] E — (K + k3)[ XE]

%[XP] = K3[ XE] —K7[ XP] —K4[ XP] E + K5[ XPE] +Kg[ XPP]

d
%[XPE] = K4[ XP) E — (K5 + Kg)[ XPE]

% [ XPP] = Kg[ XPE] —Kg[ XPP]
(8)

Figure 7a shows the simulated noise-free data gener-
ated from the true parameter and noisy experimental
data obtained by randomly perturbing the noise-free data.
The measurement time points are evenly spaced, every
0.5 h from 0 to 10 h. Therefore, the total number of
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experimental data is 105 (21 data points for each vari-
able). When the catalyzing enzyme E concentration was
changed at t=1 and t=>5, the dynamic variables responded
to the changesu. For example, the concentration of X
decreased rapidly after t=1, while the concentrations of
remaining four variables increased. As the catalyzing
enzyme E decreased back at t=5, all variables returned to
the initial condition gradually.

Using the iterative algorithm, we calculated weights for
the data points, shown in Fig. 7b. Similar to the pre-
vious models, the initial data point at t=0 receives the
largest weight because it is directly related to some of
the unknown model parameters. The data points in the
dynamic region (from t=1 to t=2) of all five variables
receive the large weights. Since all five variables exhibit
little dynamics from t=2 to t=5, weights of data points in

these flat regions are relatively small. After t=5, weights
of X, XP, XPE, and XPP slightly increased because their
model predictions are changed dynamically, whereas the
concentration of the XE barely changed and hence its data
points after t=5 received small weights.

Figure 8 shows the results of the sampling algorithm
for both cost functions. In this example, the accep-
tance threshold was defined as five times the cost value
of the optimal parameter setting. In Fig. 8a, equal-
weight cost function, the belt of variable XE (the second
row) is quite thick in the dynamic region and thin in
the flat region. This imbalanceness of acceptable model
predictions between dynamic and flat regions is consis-
tent with results in the previous examples. In Fig. 8b,
the corresponding belt of variable XE generated with the
weighted cost function is much thinner in the dynamic



Jeong and Qiu BMC Systems Biology 2018, 12(Suppl 6):103

region, compared to the equal-weight cost function. This
is because the dynamic regions receive larger weights than
the flat regions. For all five dynamic variables, the belt
width (variation in acceptable model predictions) from the
weighted cost function is smaller than or equal to that
from the equal-weight cost function.

To test the noise sensitivity of the weights in the MAPK
module, we randomly generated 100 noisy time series
data, as shown in Fig. 9a. We applied the iterative algo-
rithm to compute weights starting from each of the 100
times series data. The resulting weights are shown in
Fig. 9b. The first measurement time points of all variables
consistently receive high weight, because they directly
reveal the initial condition parameters. The variation of
each weight across the 100 noisy datasets is small com-
pared to the variation of weights across different data
points, indicating robustness of the algorithm with respect
to noise.

Discussion

The motivation of our weighted cost function stems from
the imbalance between high complexity of the model and
limited availability of experimental data, which brings
about the ill-conditioned parameter estimation. Although
parameter estimation based on the proposed weighted
cost function is still not perfect, the proposed weighted
cost function shows its ability to reduce the redundancy
in the data, leading to parameter estimation that are
not skewed toward the redundant measurements in the
experimental data.

In the “Results” section, two different experimental data
were examined for the G1/S transition with 12 parame-
ters: evenly spaced and unevenly spaced along the time
axis. For unevenly spaced measurement data, the data at
the dynamically changing region was densely sampled,
and the data in the flat region was sparsely sampled. We
can see that such a measurement strategy is helpful for
avoiding a large amount of redundant information, which
leads to ill-conditioned parameter estimation. This strat-
egy is often adopted by biologists when designing time
series experiments. Our analysis provides a mathemati-
cal perspective of why the biologists’ intuition of unevenly
spaced time points is effective in time series experiments.
Furthermore, by comparing the results of unevenly spaced
data and evenly spaced data, we can see that strategi-
cally designing the data points to be measured can achieve
equivalently effective parameter estimation, compared to
the weighted cost function formulation.

Conclusion

This paper proposed the use of weighted cost function
to estimate parameters. By assigning a different weight to
each data point, the relative importance of each data can
be reflected when estimating the model parameters. The
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weight of each data point is defined by the uncertainty
of each data point given the other data points. There-
fore, the weight for each data point quantifies the amount
of unique information it carries compared to other data
points. More specifically, high weights are assigned to
data points that are difficult to predict based on the
other data points, whereas low weights are assigned to
data points that can be accurately inferred from other
data points.

To test the uncertainty-based weighted cost func-
tion, three models were examined, 6-parameter and 12-
parameter G1/S transition, and MAPK module. The
results show that the weighted cost function is effective
in reducing the redundancy in the data, and improves
parameter estimation. In order to demonstrate the ben-
efit of the weighted cost function, we developed a
sampling algorithm to efficiently identify an acceptable
parameter region around the optimal parameter. This
algorithm is helpful tool for sampling and sensitivity
analysis.

Additional file

Additional file 1: Supplementary Figures. This file includes all supporting
figures. (PDF 434 kb)
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