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Abstract

Background: Osteoarthritis (OA) is the most common disease of arthritis. Analgesics are widely used in the treat of
arthritis, which may increase the risk of cardiovascular diseases by 20% to 50% overall.There are few studies on the
side effects of OA medication, especially the risk prediction models on side effects of analgesics. In addition, most
prediction models do not provide clinically useful interpretable rules to explain the reasoning process behind their
predictions. In order to assist OA patients, we use the eXtreme Gradient Boosting (XGBoost) method to balance the
accuracy and interpretability of the prediction model.

Results: In this study we used the XGBoost model as a classifier, which is a supervised machine learning method and
can predict side effects of analgesics for OA patients and identify high-risk features (RFs) of cardiovascular diseases
caused by analgesics. The Electronic Medical Records (EMRs), which were derived from public knee OA studies, were
used to train the model. The performance of the XGBoost model is superior to four well-known machine learning
algorithms and identifies the risk features from the biomedical literature. In addition the model can provide decision
support for using analgesics in OA patients.

Conclusion: Compared with other machine learning methods, we used XGBoost method to predict side effects of
analgesics for OA patients from EMRs, and selected the individual informative RFs. The model has good predictability
and interpretability, this is valuable for both medical researchers and patients.
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Background
In order to control or prevent the diseases, people try
to use disease similarity and drug repositioning to gain
deeper insights into pathogenic mechanisms of complex
diseases [1–3]. However, in clinical practice, there are par-
ticularity and complexity between similar diseases, and
there are limitations in drug repositioning. In recent years,
the rapid increase of the EMRs provide a new direction for
assessing the determinants of the drug used and predict
the progress of the disease. The prediction of drug side

*Correspondence: jxwang@mail.csu.edu.cn
1School of Information Science and Engineering, Central South University,
Changsha, China
Full list of author information is available at the end of the article

effects based on EMRs is a crucial task for epidemiology
and public health. Most of the time, the side effects of the
drug are not immediately apparent. Some drugs may be
silent but can cause significant mortality and morbidity
after onset. In the process of treatment, appropriate or
preventive medication reduces not only the impact of dis-
eases on the quality of life, but also the burden of medical
expenses. In this study, we focus on predicting side effects
of analgesics for OA patients based on EMRs.

OA is the most common joint disease for middle-aged
and elderly people worldwide [4]. In the past few decades,
OA has been recognized as a well-defined disease that
affects over 75 million people in the United States, Europe
and Japan Organization. By 2020, OA is predicted to
become the fourth leading cause of disability globally [5].
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It causes chronic joint pain and reduces physical functioning,
knee OA is the most common subtype. Almost all patients
struggle with the long-term pain. Standard treatments
usually begin with non-pharmacologic approaches for
symptom relief and functional recovery, including weight
loss, diet, exercise, physical therapy and orthotic devices
[6, 7]. Analgesics are widely used in the treatment of
OA. Analgesics and nonsteroidal anti-inflammatory drugs
(NSAIDs: one type of analgesics) play a major role in
chronic OA pain relief [8]. Those drugs are the most
widely used in the treatment of arthritis. While reliev-
ing pain, those medicines also increase both systolic
and diastolic blood pressure, and can precipitate con-
gestive cardiac failure and myocardial infarction [9–11].
Some patients have an elevated cardiovascular risk with-
out the presence of any symptoms or history. Bally et al.
searched Medline, Embase, and PubMed by applying filters
for retrieval of observational studies, and they pointed out
that the inappropriate use of analgesics led to an increase
of 20 to 50% of cardiovascular diseases, even if some
patients have no symptoms or previous medical history [11].

Currently, there are neither known cures for OA, nor
effective interventions to slow disease progression [12].
Recently, many machine learning and deep learning meth-
ods have been applied to OA EMRs data mining, those
methods are shown to be superior to the conventional
methods in the specific tasks, classification and predic-
tion, such as logistic regression method was used to
predict the risk of knee OA [13]; deep convolutional neu-
ral networks (CNN) was used to quantify the severity of
knee osteoarthritis, and showed a sizable improvement on
the current state-of-the-art methods [14]; support vector
machine(SVM) was used to predict symptomatic progres-
sion of OA using the texture metric [15], etc. However,
there are few studies on the side effects of OA medi-
cation, especially for the risk prediction model of side
effects of analgesics. Therefore, it is of great significance
to identify these asymptomatic patients before opening
the painkillers to assist in clinical medication. In addition,
most prediction models do not provide clinically useful
interpretable rules that could explain the reasoning pro-
cess behind their predictions. They only produce the accu-
racy score, precision score, recall score that describe the
chance of patients fall ill, sometimes those metrics only
reflect the one side performance of the prediction models.
Especially on imbalanced or skewed data sets, those eval-
uation metrics do not respond to the true performance of
the model.

In this study, based on Gradient Boosting Decision Tree
(GBDT) [16] technique we propose a scalable end-to-end
tree boosting algorithm called eXtreme Gradient Boosting
(XGBoost) [17]. XGBoost is widely used by data scien-
tists to overcome many machine learning challenges. In
XGBoost, individual trees are created using multiple cores

and data is organized in order to minimize the lookup
times. We use this approach to study the side effects of
analgesics for Osteoarthritis disease in two aspects: the
prediction of side effects of analgesics on cardiovascular
disease and risk feature selection. In XGBoost algorithm,
the sparsity-aware algorithm is used to handle sparse data,
the weighted quantile sketch is used to predict the side
effects of analgesics on cardiovascular diseases, and the
splitting nodes algorithm is used to get the importance of
each splitting node (feature) in a tree. Our method builds
on the Osteoarthritis Initiative (OAI) dataset (https://oai.
epi-ucsf.org/datarelease/default.asp). We test the samples
in the OAI dataset to predict whether a patient is suitable
to use analgesics. In the end, we combine the characteris-
tics of the prediction model to identify high-risk features
of cardiovascular diseases caused by analgesics, and ana-
lyze informative RFs, which can provide decision support
for the use of analgesics in OA patients.

Methods
Data
The data we used come from OAI which is sponsored by
the National Institutes of Health (NIH, part of the Depart-
ment of Health & Human Services). NIH is a nationwide
academic unit, which helps researcher better understand
how to prevent and treat knee osteoarthritis. OAI is a
public domain research resource to facilitate the scien-
tific evaluation of biomarkers, and for osteoarthritis as
potential surrogate endpoints for disease onset and pro-
gression. The OAI establishes and maintains a natural his-
tory database for osteoarthritis that includes clinical data,
X-ray images, MRIs, and a biospecimen repository from
4796 men and women at ages of 45-79 enrolled between
February 2004 and May 2006. Datasets are available for
public access through the OAI website at the http://www.
oai.ucsf.edu. Details of the participants, enrollments, eval-
uations and follow-ups are also available for public access
at the OAI website.

The OAI dataset collect various pieces of information
about patients, including demographic features (e.g. age,
sex etc.); medical history; physical measurements (e.g.
blood pressure etc.); nutrition (e.g. food frequency, vita-
min etc.); physical exam, measurements (e.g. physical
exam, joint exam etc.); medication inventory (e.g. aspirin,
NSAID etc.); X-ray and MRI images, etc.. In our study, we
used all the diagnostic data except for the image data.

Data controls and pre-processing
In this study, we predicted whether OA patients are
suitable for using analgesics. At first we confirmed OA
patients and combined clinical record data with Kellgren-
Lawrence (KL) grades. The KL grading system is con-
sidered the gold standard for initial assessment of knee
osteoarthritis severity in radiographs [18, 19]. KL grades
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come from X-ray images examination. The KL grading
system has 5 grades to indicate radiographic knee OA
severity. “Grade 0-4“ represents normal, doubtful, mini-
mal, moderate, severe and respectively. We checked the
“Medication Inventory Form“ (MIF) of each participant
who used analgesics and KL grades in 1-4, and filtered
out those who have had cardiovascular diseases at the first
visits.

Data pre-processing is an important step for the
machine learning model as data with good quality can
improve the model performance. In our study, several data
pre-processing steps were adopted as follows:

1. For all records of the patient, each records interval
must be more than 18 months, since the 18 months is
more than the 12 months of the analgesic remaining in
vivo.

2. Patients with inconsistent and/or error components,
such as death, or quit, were excluded.

3. We removed those feature variables with >50% miss-
ing rates, and some missing values were imputed by the
hot-deck method [20], other missing values were imputed
by the same variable in prior or later observations of the
specific patient in the data set. Such as age missing, or
weight missing.

4. The KL grades of each participant is in 1-4, and we
used the KL grades as the label for OA diagnosis.

In the end, we obtained 4350 out of 4796 participants
who took analgesics, and 371 out of 4350 participants had
cardiovascular disease after they used analgesics in the
process of treatment of OA. In our model, each partici-
pant with more than 300 features as input to scatter into 2
categories.

XGBoost model
In this section, we first briefly described the overview
of some prediction models. Then we used predica-
tion performance and interpretability as core conditions
to select machine learning methods. Finally, we used
XGBoost model focusing on the prediction and infor-
mative RFs selection for side effects of analgesics on
OA diseases.

All of machine learning and deep learning algorithms
can correctly analyze more or less. However, most of
methods pay much attention on task prediction or classi-
fication, ignoring the interpretability and informative risk
factor selection and analysis [21]. Deep learning mod-
els need a large number of samples to be trained, and
most deep learning algorithms are difficult to explain
the process and result to the medical workers. In our
study, interpretability is considered as a core requirement
for selecting machine learning models in medicine [22].
We define our problems by showing a pipeline for the
whole framework. In brief, our proposed system contains
two-task functions, as shown in Fig. 1.

The upper component of Fig. 1 shows the roadmap for
the first task: side effects of analgesics on the OA disease.
The bottom component of Fig. 1 shows the roadmap for
the second task: informative RFs selection. Given patients’
information, our method can not only predict the risk of
side effects of analgesics on osteoporosis, but also rank the
informative RFs and explain the semantics of each RF.

Support Vector Machine (SVM), Logistic Regression
(LR), Decision Tree (DT) etc. are classic supervised
machine learning models. With SVM, the features are
mapped through a kernel function from the original space
into a higher-dimensional space. However, this makes the
features in the new space not interpretable. In this study,
each sample has more than 300 features, and there is no
direct relationship between prediction of side effects and
the reasons that led to it, which are challenging to LR
method. Compared with ensemble learning methods, the
decision tree is a weak prediction method, it has the equiv-
alent accuracy to other classic machine learning methods
while maintaining interpretability. Boosting method is a
popular and effective ensemble learning algorithm in data
mining field. By weighting each weak classifier into strong
classifier, it can effectively reduce errors and achieve accu-
rate classification results. Gradient Boosting method is
based on Boosting, the idea of this method is to continu-
ously reduce residuals and further reduce the residual of
previous models in the gradient direction, and get a new
model [16]. XGBoost is one type of regularization form
of Gradient Tree Boosting besides Regularized Greedy
Forest (RGF) [17], which has been shown to give state-
of-the-art results on lots of machine learning problems
[23, 24]. Regularization is used to control the complex-
ity of the tree to get simpler model and avoid over-fitting
in this algorithm. XGBoost also calculates training loss
to measure how predictive the model is with using new
function additively to the previous prediction, and the
results of the algorithm are given by the sum of many
tree classifiers. This algorithm could be used for classifi-
cation, regression, and feature ranking. In this study, we
use XGBoost as a model to make a trade-off between
predictive power and interpretability.

The main idea of XGBoost method is that the results of
the algorithm are given by the sum of many tree classifiers.
For a training data set with n samples, the prediction is
given by a function of the sum of K classifiers

ŷi = F(xi) =
K

∑

k=1
fk(xi), fk ∈ ϕ, (1) (1)

where xi represents the i − th sample in the training set,
ϕ = {f (x) = ws(x)} (

s : �m → T , w ∈ �T)

is a collection
of decision trees, each tree f (x) corresponds to a structure
parameter s and leaf weights w, wi is used to represent
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Fig. 1 Overview of our framework

score on the i − th leaf. m is the number of features , T is
the number of leaves in the tree. K is the number of trees
which are used to classify the data set (eg., in our study
K = 2). ̂Yi is the prediction.

XGBoost is a scalable machine learning system for
tree boosting. To obtain the minimum loss function,
Chen et al. used algorithm to greedily find the penalty
which can reduce the most loss. The loss function can be
rewritten as

L(t) =argmin
n

∑

i=1

[

l(yi, ŷ(t−1)+gift(xi))+ 1
2

hif 2
t (xi)

]

+�(ft),

(2)

and
gi = ∂̂y(t−1) l(yi, ŷ(t−1)), hi

= ∂2
ŷ(t−1) l(yi, ŷ(t−1)), �(ft) = γ T + 1

2
λ||w||2

where l() represents the loss function. gi and hi are the
first and second order gradient statistics on the loss func-
tion, respectively. The last term �(ft) is the penalty. γ and
λ are two parameters to control the complexity of the tree.
The additional regularization term helps smooth the final
learnt weights to avoid over-fitting. Intuitively, the regu-
larized objective tends to select a model employing simple
and predictive functions.

Chen et al. used Eq. (3) to evaluate the split candidates.
The loss reduction after the split is given by

Lsplit = 1
2

[ (∑

i∈IL gi
)2

∑

i∈IL hi + λ
+

(∑

i∈IR gi
)2

∑

i∈IR hi + λ
−

(∑

i∈I gi
)2

∑

i∈I hi + λ

]

−γ ,

(3)

where IL and IR are the instance sets of left and right nodes
after the split, gi and hi are the first and second order
gradient statistics on the loss function.

In order to get the importance of each splitting node
(feature) in a tree T, we look for an explanation of
how node relative variable importance is computed in
XGBoost method. The measures are based on the number
of times that a node is selected for splitting, weighted by
the squared improvement to the model as a result of each
split, and averaged over all trees, the importance of each
splitting node defined as

̂I2
j (T) =

∑J−1

t=1
̂i2

t 1(vt = j), (4)

where the summation is over the non-terminal nodes t of
the J-terminal node of tree T, 1() represents the indicator
function which is associated with squared-influence. vt is
the splitting variable associated with node t, and̂i2

t is the
corresponding empirical improvement in squared error as
a result of the split,̂i2

t is defined as

̂i2
t = i2(Rl, Rr) = wlwr

wl + wr
(yl + yr)

2, (5)

where the mean weight of the left and right children nodes
of t are expressed yl, yr , and wl, wr are the correspond-
ing sums of the weights. For a collection of decision trees
{Tm}M

1 , obtained through boosting, Eq. (5) can be gener-
alized by its average over all of the trees in the sequence.
Equation (5) is redefined as

̂I2
j = 1

M

M
∑

m−1

̂I2
j (Tm). (6)

Evaluation metric
In binary classification, accuracy, precision, recall and
error rate are commonly used as metrics to measure how
well a binary classification correctly identifies or excludes
a condition. Accuracy is the proximity of measurement
results to the true value; precision (also called positive pre-
dictive value) is the fraction of relevant instances among
the retrieved instances; recall (also known as sensitivity) is
the fraction of relevant instances that have been retrieved
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over the total amount of relevant instances; error rate is
commonly used as the evaluation metric of the classifica-
tion method performance. Nevertheless, for most skewed
medical data sets, above four metrics are not to correctly
reflect the prediction results in all the times as the method
usually would be misclassifying entire minority samples
to the class of majority. In our study, we only use preci-
sion, recall and error rate as base metrics, which can be
calculated as follows

Precision = TP
TP + FP

, (7)

Recall = TP
TP + FN

, (8)

ErrorRate = FP + FN
TP + TN + FP + FN

, (9)

where TP, FP, TN and FN denote true positives, false
positives, true negatives and false negatives, respectively.

In addition, there are several techniques to assess the
performance of binary classification across a range of
thresholds on imbalance medical data sets. Two com-
mon metrics to evaluate the performance of algorithms
are Receiver Operator Characteristic (ROC) curves [25]
and Precision-Recall (PR) curves [26]. ROC curve and PR
curve are classical evaluation tool for binary classification
that allows the visualization of performance at various
thresholds. ROC curves are plotted to generally capture
how the number of correctly classified abnormal cases
varies with the number of incorrectly classified normal
cases as abnormal cases. In addition to the ROC curve,
we use the PR curve as another important metric. PR
curves are also plotted to respond the fraction of exam-
ples classified as abnormal cases that are truly abnormal,
PR curves are visual representations of the performance
of a model in terms of the precision and recall. On the
imbalanced or skewed data sets, PR curves are a useful
alternative to ROC curves that can highlight performance
differences that are lost in ROC curves [27]. In case of
binary classification, ROC curve and PR curve can be
compared quantitatively by the area under curve (AUC).
It is noteworthy that AUC is not sensitive to whether the
sample categories is balanced. The AUC indicates the per-
formance of a classifier: The larger the value of AUC is,
the better a classifier performs.(an AUC of 1.0 indicates a
perfect performance).

Results and discussion
Comparison to other classification methods
In this section, we show the RFs prediction using records
in OAI dataset. To investigate the efficacy of XGBoost
method, we choose classic supervised machine learning
models C4.5 decision tree (DT), SVM, LR and GBDT as

comparison models. The detailed results of 10-fold cross-
validation are reported in Table 1. We can see that DT
model gets the highest precision score, compared with
the other four methods, there is no advantage in recall
score and error rate score for DT model. In the 5 mod-
els, although XGBoost and GBDT models are not the best
on the precision scores, the two models are the most bal-
anced performance in the three metrics compared with
three other models. The error rates of XGBoost and
GBDT are equal, the precision score of GBDT is higher
than that of XGBoost, and the recall score of XGBoost is
higher than that of GBDT. In our study, precision score
and recall score are main measures for the performance
of the models. Typically, precision and recall are inversely
related, i.e. as precision increases, recall decreases and
vice-versa. A balance between these two metrics needs
to be achieved by the IR system, and to achieve this and
to compare performance, the addition metrics come in
hand. In order to compare the predication performance
of XGBoost and GBDT, physicians more concern whether
they can correctly identify the real patients, we use AUC-
ROC and AUC-PR as the additional metrics.

We integrate all features of OA patients in the EMRs
since they contain the characteristics of data itself and can
be nicely tuned with under the help of two kinds of labels.
We compare the ROC curves and PR curves of 5 mod-
els. All ROC curves are shown in Fig. 2. As illustrated by
a legend in Fig. 2, the lines of each color in the illustra-
tion correspond to different models. Compared with the
other four curves, AUC value of the black curve is lit-
tle larger than the other four curves, it means that the
XGBoost model obtains the best performance in 5 mod-
els. Although the performance of XGBoost is the best one
among 5 models, it can be seen that the 5 curves are very
close.

In order to further compare the performance of the 5
models, we use PR curve as another metric. The PR curve
for each predication model is shown in Fig. 3. The PR
curves are increasingly used in the machine learning com-
munity, particularly for imbalanced data sets where one
class is observed more frequently than the other class.
The curve plots the precision (positive predictive value)
against the recall (true positive rate) and is equivalent

Table 1 Performance comparison among the 5 different
classifiers: Linear Regression (LR), Supported Vector Machine
(SVM), Decision Tree (DT), Gradient Boosting Decision Tree
(GBDT), eXtreme Gradient Boosting (XGBoost)

LR SVM DT GBDT XGBoost

Precision 0.75 0.64 0.97 0.89 0.81

Recall 0.69 0.75 0.5 0.75 0.84

Error rate 0.04 0.04 0.08 0.03 0.03
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Fig. 2 ROC curves of 5 models

to the false discovery rate curve. The PR curve value is
the better method performs as shown is Fig. 3, AUC of
the black curve is much obviously larger than the other
curves. With reference to a legend, the black curve repre-
sents the XGBoost model, it means XGBoost model gets
the best result among the 5 models.

In summary, compared with the other four classic
machine learning models, the precision, recall, error rate
of XGBoost model are well balanced, and XGBoost model

achieved the best results on both the ROC curves and PR
curves evaluation metrics. It means that on the skewed
OAI dataset, the XGBoost method is better than the other
four models in terms of AUC-ROC and AUC-PR.

Informative RFs and interpretability
Aside from the above metrics, interpretability is another
vital component in computer aided diagnosis (CAD).
First, a good prediction model should clearly show the

Fig. 3 PR curves of 5 models
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decision processes to medical workers, and suggest that
feasible improvements [28]. Second, the model with
sound interpretability can overcome the reluctance of
replacing traditional statistical methods, such as visual-
ization graphs and result tables. However, interpretability
tends to be ignored in many studies for two reasons.
First, popular base models (e.g., SVM, LR) are inherent
black-box systems. Second, ensemble methods, such as
bagging, boosting and stacking, also address problems in
establishing prediction models.

As tree-boosting models, the XGBoost-based side effect
prediction models are composed of classification trees as
base models. The inherent interpretability of weak deci-
sion trees reduces the complexity of the models, thus
enhancing the interpretability of the entire model. The
interpretability of the XGBoost-based model mainly lies
on selecting feature importance.

In the previous section, we have used XGBoost model
to predict side effects of analgesics for OA patients. In
this section, we aim to capture the informative RFs of OA
patients in OAI. As show in Fig. 4 our method selected 20
RFs by splitting nodes algorithm which sums up the num-
ber of each important splitting node (feature) in trees. The
higher F score implies that the corresponding feature is
more important. We seek to identify experimental results
in literature from the biomedical database. Each descrip-
tion of feature can be found from the data provider web-
site(https://oai.epi-ucsf.org/datarelease/default.asp). The

side effect of analgesics appears to be associated with
several known RFs that are well described in the literature.

As shown in Table 2, feature descriptions come from the
OAI dataset provider, according to the OAI documents,
the 20 RFS are divided into 5 categories: Demograph-
ics, Anthropometry, Comorbidity, Blood Measures and
Physical activity Measures. In Demographics and Anthro-
pometry categories, f1, f11, f98, f124, f125, f268 indicate
age, bmi, height, mental health grade, physical health
grade, weight, respectively; In Comorbidity category, f30,
f53, f232 indicate comorbidity; In Blood Measures cate-
gory, f21, f25, f230 indicate the different value of blood
pressure; In Physical activity Measures category, f0, f20,
f37, f38, f207, f256, f257 and f263 indicate the different
values of physical activity or performance measures. The
RFs in Demographics and Anthropometry categories are
commonly used parameters to measure the condition of a
patient, these 6 RFs are prevalence of factors contributing
to the broader clinical problem of pain and disability [29]
and have already been used to evaluate the risk of patients
in most diseases. In this study we much more concerned
other 3 categories:

1) Analgesics and comorbidity
As shown in Table 2, the feature f30 indicates operation
to unclog or bypass arteries in legs, a large number of
analgesics are needed after the operation. The features
f53, f232 indicate diabetes, asthma, respectively. As report

Fig. 4 Feature importance plot of risk features

https://oai.epi-ucsf.org/datarelease/default.asp
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Table 2 The description of 20 RFs from OAI dataset documents

Features Name Category

f1 Age Demographics

f230 Radial pulse Blood Measures

f232 Asthma Comorbidity

f268 Weight Anthropometry

f11 Body mass index(bmi) Anthropometry

f98 Height Anthropometry

f207 Physical activity scale Physical activity
Measures

f38 Repeated chair
stands time1

Physical activity
Measures

f30 Operation to unclog
or bypass arteries in legs

Comorbidity

f21 Diastolic Blood Measures

f124 Mental summary scale Anthropometry

f25 Systolic Blood Measures

f0 Walk pace Physical activity
Measures

f256 20-meter walk steps1 Physical activity
Measures

f37 Repeated chair
stands time2

Physical activity
Measures

f53 Diabetes Comorbidity

f125 Physical summary scale Anthropometry

f257 20-meter walk steps2 Physical activity
Measures

f263 20-meter walk time Physical activity
Measures

f20 Heavy housework Physical activity
Measures

in EMR, most of 371 cardiovascular disease participants
have one or more comorbidities. Those comorbidities
appear to be a metric for analgesics used, some study
have been well described in medical literature. In the
study of Kerkhof et al., OA care institutions and medi-
cal researchers believe that analgesics and other diseases
(such as asthma, diabetes, cancer, renal) are also closely
related [30]. In 2013, Bhala et al. published their research
results in The Lancet: Coxibs (one of analgesics) and
NSAIDs are associated with an increased risk of cardio-
vascular disease and upper gastrointestinal complications
[31]. The Scientific Advisory Committee of the National
Kidney Foundation recommended analgesics not as the
drug choice for patients with impaired renal function
[32]. In our experiment, as shown in Table 2, asthma,
diabetes are closely linked with cardiovascular disease,
In 2000, Landewe et al. reported these diseases had a
detrimental effect on cardiovascular disease [33]. Physi-
cians should be more careful in using analgesics for
patients with these comorbidities.

2) Analgesics and blood measures
In Table 2, in addition to those comorbidity informative
risk features, our model also identifies some RFs related
to blood pressure, (e.g., f21, f25, f230), including diastolic,
systolic and radial pulse, which are important risk fac-
tors for cardiovascular disease. It is well known that blood
pressure is closely related to cardiovascular disease, blood
pressure is a secondary risk factor in that blood pressure
pills may increase the risk [9, 10], the analgesics can have
a direct side effect on blood pressure. For patients with
abnormal blood pressure, they should be careful in using
analgesics.

3) Analgesics and physical activity measures
In the study of Bijlsma et al., specific exercises can reduce
pain and improve function in patients with OA of the
lower limbs [8]. However, the f0, f20, f37, f38, f207,f256,
f257, f263 indicate walking pace, standing time, walk-
ing distance, heavy housework etc., all those are closely
related to life habits, and not specific exercises designated
by physician. Lifestyle-related behavioral and environ-
mental risk factors are also important causes of analgesics
drugs used [8]. The knee functions and physical activities
(e.g. standing, walking, housework) are easy to obtain, and
can be easily incorporated into routine clinical practices.

Based on the features shown in Table 2, these factors
need to be taken into consideration when a patient is given
an analgesic for OA. In this study, we only select the top 20
informative RFs to analyze. Some discarded RFs might still
make contribution to enhancing the predictive behaviors.

Conclusions
We studied the prediction of side effects of analgesics on
cardiovascular diseases in the OA treatment. The complex
and highly relevant relationship between the risk factors
are inevitable, it is a challenge to our method. In this study,
based on the OA EMRs, we used XGBoost method to
predict patients’ use of analgesics, and selected the indi-
vidual informative RFs. This is valuable for both medical
researchers and patients. We selected top 20 informa-
tive RFs and analyzed the relationship among the RFs,
analgesics and cardiovascular disease from the medical lit-
erature. In future, we would combine the EMRs with the
MRI images to analyze the OA disease. We would also
try to predict drug indications by integrating related data
sources and validated information of drugs and diseases
using matrix completion method [34, 35].
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