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Background: Autism Spectrum Disorder (ASD) is the umbrella term for a group of neurodevelopmental disorders
convergent on behavioral phenotypes. While many genes have been implicated in the disorder, the predominant
focus of previous research has been on protein coding genes. This leaves a vast number of long non-coding RNAs
(IncRNAs) not characterized for their role in the disorder although IncRNAs have been shown to play important
roles in development and are highly represented in the brain. Studies have also shown IncRNAs to be differentially
expressed in ASD affected brains. However, there has yet to be an enrichment analysis of the shared ontologies
and pathways of known ASD genes and IncRNAs in normal brain development.

Results: In this study, we performed co-expression network analysis on the developing brain transcriptome to
identify potential INcRNAs associated with ASD and possible annotations for functional role of IncRNAs in brain
development. We found co-enrichment of INcRNA genes and ASD risk genes in two distinct groups of modules
showing elevated prenatal and postnatal expression patterns, respectively. Further enrichment analysis of the
module groups indicated that the early expression modules were comprised mainly of transcriptional regulators
while the later expression modules were associated with synapse formation. Finally, IncRNAs were prioritized for
their connectivity with the known ASD risk genes through analysis of an adjacency matrix. Collectively, the results
imply early developmental repression of synaptic genes through IncRNAs and ASD transcriptional regulators.

Conclusion: Here we demonstrate the utility of mining the publically available brain gene expression data to further
functionally annotate the role of IncRNAs in ASD. Our analysis indicates that INcRNAs potentially have a key role in ASD
due to their convergence on shared pathways, and we identify INcRNAs of interest that may lead to further avenues of
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Background

Long non-coding RNAs (IncRNAs) are defined as tran-
scripts greater than 200 nucleotides in length, which do not
code for proteins. They serve a wide range of functions in-
cluding, but not limited to, scaffolding for protein com-
plexes, transcriptional regulation, and translational
regulation [1-3]. Currently, the GENCODE consortium
lists 15,941 IncRNA genes [4]. LncRNAs are potentially key
regulators of brain development. Expression of IncRNAs
has been shown to have increased temporospatial specificity
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in comparison to protein-coding genes, and IncRNAs are
expressed in the brain at relatively high levels [5, 6].
Nescula et al. [7] found that IncRNA genes of earlier evolu-
tionary origin have been shown to contain homeobox tran-
scription factor binding sites in their promoter regions at a
frequency greater than two times that of protein coding
genes. This indicates the potential role of IncRNAs in de-
velopment. This group also found that younger IncRNAs,
in terms of phylogenic split from a common ancestor, show
lower interspecies conservation and a number of IncRNA
families unique to primates offer potential insight into
higher cognitive functions.

Autism spectrum disorders (ASD) are a heterogeneous
group of neurodevelopmental disorders with a complex
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genetic etiology. The diagnosis is determined by signifi-
cant deficit in reciprocal social interactions, impaired
communication, and restricted, repetitive behaviors, and
most documented cases are clinically diagnosed by the
age of three [8]. There is strong evidence to support a
genetic causation model, including 88% pairwise con-
cordance amongst monozygotic twins and 18.7% risk of
ASD for siblings of affected individuals [9-11]. As with
most complex genetic disorders, ASD could result from
the accumulation of low risk common variants, high risk
rare variants, or both. Approaches for ASD genetic stud-
ies have included copy number variation (CNV) studies,
genome-wide association studies (GWAS) and rare de
novo variant (RDNV) exome studies [11]. Ziats and
Rennert [12] found 222 differentially expressed
IncRNAs in ASD. ASD risk genes are convergent on
synaptic gene translation, transcription and chromatin
remodeling [11, 13], and these three processes can be
controlled by IncRNAs [14].

This study used co-expression network analysis to identify
IncRNAs potentially associated with ASD and provide pos-
sible functional annotations of IncRNAs for brain develop-
ment. Since anatomical differences between ASD and
control brain samples have been shown in several different
structures, it is therefore beneficial in this study to examine
all of the structures during the developmental period to
place IncRNAs in a functional context within the developing
brain [15]. The BrainSpan dataset offers a unique opportun-
ity for identification of high-priority potential ASD associ-
ated IncRNAs owing to the comprehensive array of brain
structures and developmental time points [16]. We have
compiled a comprehensive list of ASD risk genes from sev-
eral sources to measure co-expression with IncRNA genes
annotated in the GENCODE dataset [4]. Co-expression net-
work analysis was performed on a curated set of genes from
the BrainSpan dataset to cluster the genes into modules. Ex-
pression patterns and co-enrichment with IncRNA genes
and ASD risk genes were used to identify modules of inter-
est. Enrichment analysis and network topology analysis were
carried out to associate biologically significant functions
with the modules. Finally, to identify IncRNA genes of inter-
est, IncRNAs were prioritized based upon their association
with the known ASD risk genes within the network.

Methods

Datasets

The BrainSpan dataset is a developmental transcriptome
for the human brain [16]. It is an RNAseq dataset in
units of reads per kilobase per million (RPKM), mapped
to genes as annotated by the GENCODE consortium
version 10. It consists of 524 samples covering a devel-
opmental time span of 8 weeks post conception to
40 years of age and 26 brain structures. Genes which did
not show a minimum expression of 1 RPKM for at least
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one of the 524 samples and genes not present in the lat-
est build of the GENCODE consortium (version 24)
were removed from the dataset [4]. Expression values
were then log,(RPKM + 1) transformed. Next, the sum of
pairwise covariance was calculated for each gene. Using the
KMeans class from the Scikit-learn Python library [17],
clustering with the total clusters set to 2 was performed on
the sum of covariance values to filter out low information
genes [18, 19]. Then ASD risk genes and IncRNA genes
within the dataset were identified (Additional file 1). ASD
risk genes were compiled from three different sources. We
selected 290 genes from the Gene Scoring Module from
the Simons Foundation Autism Research Initiative
(SERARI) on the criteria of a score of 1-4 with 1 being high
confidence and 4 being minimal evidence [20]. An add-
itional 170 genes were from the core set of the Autism
Knowledge Base from the Center for Bioinformatics in
Peking University [21]. The third source from which we se-
lected 107 genes was from an exome sequencing study for
de novo loss-of-function mutations in ASD cases [22].
Redundancy among the three datasets were removed
resulting in an ASD risk gene set consisting of 433 genes.
Genes of the IncRNA biotypes were indicated in the GEN-
CODE build.

Co-expression network analysis

Genes were clustered into modules using the weighted gene
co-expression network analysis (WGCNA) package in R
[23]. The package first generates a topological overlap
matrix using neighbourhood analysis and the weighted
pairwise correlation between genes |corr(x; xj)|P where P is
a soft threshold for network scalability. In this study, we
found that a scale free topology was reached with a soft
threshold of 7. Then a dissimilarity dendrogram from the
topological overlap matrix is created, and the genes are
grouped using a dynamic tree-cutting algorithm. The
network in this study was an unsigned bi-weight network
with a minimum module size of 30 and a merge cut-off
height of 0.2. The heatmap of the expression patterns for
the modules was generated using the gplots package in R
[24]. The expression patterns themselves are the eigengene
(first principal component) for the respective modules.
Enrichment of IncRNA and ASD risk genes within the
modules was calculated by applying Fisher’s exact test to
gene type frequency within the module compared to gene
type frequency for the entire dataset. The P-value was ad-
justed to a false discovery rate (FDR) to account for mul-
tiple testing using the p.adjust function in the stats package
in R [25]. For better visualization of enrichment, signifi-
cance values were —log;o(FDR) transformed.

Enrichment analysis
Functional term enrichment for each module was imple-
mented through the use of the Database for Annotation,
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Visualization and Integrated Discovery (DAVID) [26].
This software receives a gene list and applies the EASE
algorithm, which is a variation of the Fisher’s exact test,
using gene annotations present in the database and a
designated background. In this study, enrichment was
measured against a human genome background, and
genes which could not be mapped were not considered
in the enrichment calculations. The FDR values gener-
ated from DAVID were transformed as mentioned previ-
ously. Enrichment for significantly expressing genes
within brain structures was calculated using the same
methodology used to determine ASD and IncRNA gene
enrichment in the previous section. Frequencies were
grouped by developmental time periods and gene types.
The three developmental time periods used were pre-
natal (8pcw-37pcw), childhood (4mos-15 yrs), and adult-
hood (18 yrs—40 yrs) (pcw =post conception weeks;
mos = months; yrs.=years). The gene types were
IncRNA genes, ASD risk genes, and all genes within the
module. The values were determined by the number of
genes with expression greater than or equal to 1 RPKM
for a given sample divided by the total possible number
of genes compared to the appropriate background.

Network visualization and analysis

To visualize a co-expression network, we first sought to
determine significant interactions between genes. We con-
structed an adjacency matrix for the entire dataset using
the absolute Pearson product moment correlation to a
power of 7 as a measure of connectivity between genes.
We then selected the top 5% of the correlations which be-
came the edges in our network while the genes became
the nodes. The network was then sub-divided based upon
module assignments to determine changes in topology
specifically in regard to IncRNA gene and ASD risk gene
interactions. Representative modules were visualized using
the Cytoscape software [27]. To prioritize IncRNA genes
within our dataset for ASD association, we adapted a
methodology used by Oliver et al. [28], which used con-
nectivity as a means of prioritization. Here we sum the
pairwise connectivity from the adjacency matrix between
the target IncRNA gene and all the known ASD risk genes
in the dataset. The connectivity score is then normalized

; (xi— min(x))
using ( max(x)- min(x))

for the range of all IncRNA genes

analysed.

Results

Co-expression network analysis within the developing
brain shows high co-enrichment of IncRNA genes and
ASD risk genes in elevated pre- and postnatal expression
modules

The BrainSpan dataset offers an opportunity to analyse
in depth the gene expression patterns of the developing
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human brain [16]. However, the dataset required further
curation for efficient co-expression analysis to prevent
noise from low-expression or low-variance genes. We
first removed the genes which did not show sufficient
expression (<1 RPKM) in all the samples, and then
selected for genes which showed high pairwise covari-
ance with other genes within the dataset. The 20,456
genes which remained after the curation presented an
interesting distribution of gene biotypes (Fig. 1a). While
protein-coding genes account for only 40.4% of the
genes within the original dataset, after curation they
account for 71.1% while antisense IncRNA genes and
long intervening RNA (lincRNA) genes originally com-
prised 19.1% of the dataset were reduced down to 11%.
After dataset curation, weighted gene co-expression
network analysis (WGCNA) was performed [23]. We
found 29 modules. We mapped the expression pattern
of the eigengene (first principal component) for each
module onto a hierarchically clustered heatmap to better
visualize shared expression patterns. Coenrichment for
IncRNA genes and ASD risk genes were also mapped to
the modules (Fig. 1b). We found two distinct clades
from the module clustering, which show coenrichment
for IncRNA genes and ASD risk genes. One clade com-
prised of modules M1, M4, M6, M8 and M12, which ac-
count for 9355 genes within the dataset, shows elevated
expression in prenatal samples and lower expression in
postnatal samples. These sets are further referred to in
this paper as early expression modules. Intriguingly, the
other clade comprised of modules 3 and 7 shows an
inverse pattern in that prenatal expression is low and
postnatal expression is elevated. These sets are referred
to as late expression modules. Only 5 of the 29 modules
did not show significant enrichment (FDR<O0.5) for
IncRNA genes while 10 of the modules showed signifi-
cant enrichment for ASD risk genes with module 6
being alone in showing high enrichment for both gene

types.

Enrichment analysis of two module groups shows term
enrichment for transcriptional regulation and synapse
formation respectively and complementary structure
enrichment for sensory cortical regions

To further characterize our module groups of interest,
we performed term enrichment analysis. The Database
for Annotation, Visualization and Integrated Discovery
(DAVID) term enrichment analysis assigns Gene Ontol-
ogy (GO) terms based upon their enrichment within the
gene set [26]. It should be noted that the gene sets are
comprised of all of the genes within a module and not
limited to ASD and IncRNA genes. While there are sev-
eral categories for terms, we chose biological process,
molecular function, and cellular component functional
annotation terms to characterize our module groups.
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Fig. 1 Gene co-expression analysis using the BrainSpan dataset. a Pie chart of the distribution of genes by biotype for the curated gene set. b Heatmap of
module eigengenes from co-expression analysis for all samples chronologically. The row labels correspond to the module (M1 =Module 1) and the column
labels indicate the time point ranges (pcw = post conception weeks, mos = months, and yrs. = years). To the right of the heatmap is a color sidebar mapping
the enrichment of the modules for INcRNA genes and ASD risk genes respectively. The legend indicates the level of significance with the threshold set at 1.3

These categories offer the most relevant information for
IncRNAs whereas the other categories are more relevant
to protein coding genes or partially redundant to the
given categories. For each module in either the early ex-
pression or late expression group, the most significant
terms for each category are shown in Fig. 2a and b. The
early expression modules (M1, M4, M6, M8, and M12)
show overlap in biological processes for the broad terms
of transcription and modification-dependent macromol-
ecule catabolic process, which corresponds to the break-
down of large macromolecules. There is also overlap in
localization to the nuclear lumen, and the molecular
function of DNA-binding as well as general nucleotide
binding. Collectively this implies that the early expres-
sion modules are enriched for transcriptional regulators
as well as partially involved in the breakdown of nucleo-
tides. However, the late expression modules (M3 and
M?7) are enriched for a different aspect of brain develop-
ment. While module 7 has enrichment for relatively

ambiguous terms associated with protein transport,
module 3 shows enrichment for genes involved in synap-
tic transmission and localized to the synapse.

Grouping together the samples based on brain struc-
tures and developmental periods (prenatal, childhood,
and adulthood), we analysed the enrichment of struc-
tures for expressed genes collectively, IncRNA genes,
and ASD risk genes for the two module groups (Fig. 3a
and b). Some structures had samples for the prenatal
period but did not have samples for childhood and
adulthood. Therefore, for the early expression modules, we
analysed all the structures for just the prenatal period as
the later developmental periods (childhood and adulthood)
showed little to no enrichment for structure-specific
expression. For the late expression modules, we analysed
only structures present in all three developmental periods.

Enrichment of expressed genes in the early expression
modules was significant for all of the structures. Interest-
ingly, expressed IncRNA genes and ASD risk genes show
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similar patterns of enrichment in the different brain
structures for the early expression modules. Not surpris-
ingly, expressed IncRNA genes and ASD risk genes are
highly enriched for the sensory cortical regions, stri-
atum, and amygdaloid complex. These three structures
have been implicated in ASD [29-31].

Enrichment of expressed genes in the brain structures
for the late expression modules shows distinct patterns
based on gene type. With the exception of the medio-
dorsal nucleus of thalmus, all of the structures were sig-
nificantly enriched (FDR<0.05) for expressed genes
during the prenatal period. Thirteen of the structures
were significantly enriched for expressed genes during
childhood, and 13 structures were significantly enriched
for expressed genes during adulthood. The hippocampus
became significantly enriched during the transition from
childhood to adulthood, and the cerebellar cortex lost

significant enrichment in the same transition period. En-
richment values for expressed IncRNA genes and ASD
risk genes within structures do not show the same simi-
larities as was observed for the early expression modules.
Expressed IncRNA genes are significantly enriched in
the prenatal period for every structure, only significantly
enriched for the cerebellar cortex in the childhood
developmental period, and significantly enriched for six
structures in the adult developmental period. Expressed
ASD risk genes show no enrichment for any structure in
the prenatal period, significant enrichment in eight
structures during the childhood developmental period,
and significant enrichment in eight structures during the
adult developmental period. Intriguingly, there is no
significant enrichment for expressed ASD risk genes in
the striatum, which has been implicated in the physiopa-
thology of ASD [29].
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of brain structure enrichment for late expression modules
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Fig. 3 Gene expression enrichment analysis of early and late expression module groups. a Heatmap of brain structure enrichment for early expression

modules. Row labels indicate the brain structure and the columns indicate the developmental period and the gene type with all corresponding to all
of the genes within the module. The enrichment values are shown in each cell, and rows are clustered based on their enrichment values. b Heatmap

Visualization of the topology of module networks
demonstrates high connectivity between IncRNA genes
and ASD risk genes in early expression modules

While term and structure enrichment can give general
information about the biological roles associated with
modules and provide potential annotation for uncharac-
terized IncRNA genes, it does not indicate the interactiv-
ity between ASD risk genes and IncRNA genes. The
enrichment analysis did demonstrate the possibility that
IncRNAs and ASD risk genes may be more closely asso-
ciated in the early expression modules than in the later
ones. This is confirmed by network analysis. To form
the network, we used an adjacency matrix to establish
pairwise correlation for all of the genes. We then
selected for the most significant (highly correlated) inter-
actions for the network. For each of the modules of

J

interest, we observed the significant connections be-
tween IncRNA genes and ASD risk genes and found that
for the early expression modules there was greater con-
nectivity between the two gene types. Figure 4a and b
show the networks for a representative early expression
module (M12) and late expression module (M7) respect-
ively. One module from each group was chosen to dem-
onstrate the contrast in topologies between them.
Module 12 shows dense connectivity for all of the nodes
but does have a greater number of interactions between
ASD risk genes and IncRNA genes than between
IncRNA genes and ASD risk genes respectively. Notably,
there is a high degree of interaction between IncRNA
genes. However, module 7 shows a less dense network
even though the number of genes present is comparable
to that of module 12. Interactions between ASD risk
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Fig. 4 Co-expression network topology for modules of interest.

a Network topology for INcRNA genes and ASD risk genes in
module 12. ASD genes are red rectangles, and IncRNA genes are
blue ellipses. Interactions are color coded as follows: ASD to ASD = Green,
ASD to IncRNA = Purple, INcRNA to IncRNA = turquoise. Modules are in an
attribute based circular layout with the attribute being gene
type. b Network topology for INcRNA genes and ASD risk genes
in module 7

\

genes and IncRNA genes are greater than other interac-
tions in the network with few interactions between
IncRNA genes.

Prioritization of candidate IncRNA genes using
connectivity with known ASD risk genes implicates
biologically relevant targets

To identify high-priority targets for further study, we
prioritized the IncRNA genes in our dataset based on
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their connectivity with known ASD risk genes. For each
IncRNA gene, the pairwise correlation from our adja-
cency matrix was summed for all ASD risk genes. Genes
were ranked relative to their sums of connectivity with
higher values associated with greater potential associ-
ation with ASD. The complete list of IncRNAs with their
module assignment and normalized values for ASD gene
connectivity and adjusted intramodular connectivity are
provide in Additional file 1. Adjusted intramodular con-
nectivity is the sum of the pairwise connectivity of a
gene for all other genes within the module with the sum
of pairwise connectivity for the gene for all genes not in
the module subtracted from it. The normalized value is
based upon the range for all the genes in the dataset and
calculated using the same method as for the normalized
value for ASD gene connectivity. Table 1 shows highly
prioritized IncRNA genes for tentative links to ASD. The
gene prioritized the highest is RP11-281C10.5, an anti-
sense IncRNA to CEP170, which is a component of the
centromere and critical to cell division [32].
KDM4A-AS1 is antisense to KDM4A, a lysine
de-methylase, which has been shown to increase copy
number gains in CNVs associated with ASD [33].
LINC-PINT is a lincRNA, which is activated by P53 and
like the well-characterized IncRNA, HOTAIR, has been
shown to associate with polycomb recessive complex 2
[34]. TUGLI is one of the few highly prioritized genes not
grouped to module 1, and it has low intramodular
connectivity. It has no direct link to ASD but has been
implicated in neurodegenerative disorders [35]. The role
of IncRNAs in ASD is still being elucidated, so it is not
surprising that many of the genes have no direct link to
ASD. The list itself acts as a putative implication of the
highly prioritized IncRNAs for their role in ASD.

Discussion

With the relatively recent expansion of autism to include
Asperger’s Syndrome, Rett Syndrome, uncharacterized
pervasive developmental disorders, and Autistic Dis-
order under the common banner of Autism Spectrum
Disorders (ASD), the complexity of finding its causality
increases [8]. While there have been significant advances
in clinical diagnostic tools, the number of ASD-affected
individuals has increased at a rate greater than what is
estimated to be due to improved diagnostics with the
CDC reporting a 10-fold increase over a 20-year period
[36]. There are competing theories on the underlying
cause of the disorder, which are not mutually exclusive
[11]. However, the leap from genetic abnormalities to
phenotypic causation has been difficult due to a multi-
tude of factors, including the difficulty of studying the
brain physiology of affected individuals and the com-
plexity of genetic interactions associated with the dis-
order. In this study, we utilized the most comprehensive
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Table 1 List of selected biologically significant and highly prioritized INcRNA genes for ASD association

Name Biotype ASD Connectivity (Normalized) Module Intramodular Connectivity (Normalized)
RP11-261C10.5 Antisense 1 1 0.8482
KDM4A-AST Antisense 09015 1 0.8479
LINC-PINT Antisense 0.7091 1 0.7510
TUGI Antisense 0.6992 6 03157

expression dataset currently available for the developing
human brain to further elucidate the complex interac-
tions in an effort to show the role of IncRNAs in brain
development and ASD.

LncRNAs have been shown to be in evolutionarily
conserved gene families unique to primates and even
further to humans alone [7], yet their functional roles in
brain development warrant further definition. This study
indicates a critical role for IncRNAs in transcriptional
regulation and synaptic formation in the brain during
development. In this study, we have broadly character-
ized the role of IncRNAs in brain development and
ASD. Clustering our curated gene list, we found that
IncRNAs were enriched nearly ubiquitously across our
modules but only co-enriched with ASD risk genes in
two distinct module groups showing high prenatal and
high postnatal expression respectively. This distinction
in expression at that particular developmental point is
interesting as it has been previously implicated as a crit-
ical time for ASD development [13]. This data combined
with term enrichment suggesting transcriptional regula-
tion and the network topologies showing higher num-
bers of significant interactions between IncRNA genes
and IncRNA genes strongly suggest that IncRNAs within
the group of early expression modules regulate brain de-
velopment through repression of genes controlling syn-
apse formation possibly in the late expression modules.

ASD is a neurodevelopmental disorder, and in identify-
ing potentially important IncRNA regulators of brain
development we have also begun to identify putative
high priority targets for potential therapeutics and diag-
nostics. Due to their tight regulatory control [5],
IncRNAs are excellent biomarkers. One of the most not-
able examples was in 1995 when the IncRNA PCA3 was
discovered and has since become a diagnostic for pan-
creatic cancer [37]. It was recently found that 90% of
disease associated SNPs from genome-wide association
studies were found outside of protein coding regions
[14], which indicates non-coding genes and regulatory
regions within the genome could have a major role in
disease. These regions may also provide insight into the
etiology of complex disorders such as ASD.

We have previously applied the approach of
co-expression network analysis to define high priority
disease-associated IncRNA genes based upon normal tis-
sue expression patterns when we published work

showing strong associations between cancer genes and
IncRNAs [6]. Our approach allows for disease associa-
tions to be implied based solely on expression patterns.
It is our hope that this study will highlight IncRNA
genes that can act as diagnostic markers to the disorder
as well as genes that can further elucidate the etiology of
ASD. We also hope that this study further demonstrates
the wutility of co-expression network analysis on
non-disease samples to implicate IncRNAs in disorders.

Conclusions

In this study, we performed gene co-expression network
analysis to identify candidate IncRNAs associated with
ASD. Co-enrichment of IncRNAs and ASD risk genes was
found in two distinct groups of modules showing different
expression patterns and enriched functional terms. We
prioritized the candidate IncRNAs based on their connect-
ivity with the known ASD risk genes. The results suggest
that IncRNAs may have a key role in ASD, and thus the
prioritized list of candidate IncRNAs can be useful for fur-
ther experimental studies to understand the etiology of
ASD.
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