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Abstract

Background: Traumatic brain injury (TBI) represents a critical health problem of which timely diagnosis and
treatment remain challenging. TBI is a result of an external force damaging brain tissue, accompanied by delayed
pathogenic events which aggravate the injury. Molecular responses to different mild TBI subtypes have not been
well characterized. TBI subtype classification is an important step towards the development and application of
novel treatments. The computational systems biology approach is proved to be a promising tool in biomarker
discovery for central nervous system injury.

Results: In this study, we have performed a network-based analysis on gene expression profiles to identify
functional gene subnetworks. The gene expression profiles were obtained from two experimental models of injury
in rats: the controlled cortical impact and the fluid percussion injury. Our method integrates protein interaction
information with gene expression profiles to identify subnetworks of genes as biomarkers. We have demonstrated
that the selected gene subnetworks are more accurate to classify the heterogeneous responses to different injury
models, compared to conventional analysis using individual marker genes selected without network information.

Conclusions: The systems approach can lead to a better understanding of the underlying complexities of the
molecular responses after TBI and the identified subnetworks will have important prognostic functions for patients
who sustain mild TBIs.

Keywords: mTBI subtype classification, Biomarkers, Weighted protein interaction network, Subnetwork modularity,
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Background

Traumatic brain injury (TBI) results from an external
force causing immediate damage to brain tissue,
followed by secondary pathogenic events which ultim-
ately give rise to neurodegeneration. Dependent on the
context of the primary injury, different cell responses are
initiated, which can exacerbate the injury to varying de-
grees. Cell death resulting from the initial impact on the
brain tissue is irreversible, so treatments normally focus
on minimizing the secondary injury that is due to these
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cell responses [1]. To date, these secondary injury re-
sponses have been poorly characterized, leaving molecu-
lar classification of TBI difficult [2, 3]. TBI remains a
leading cause of death and disability in the industrialized
countries and represents a growing health problem [4].
Thus, even a modest improvement in patient outcome
could have significant public health benefits [5, 6]. It is
estimated that at least 25% of patients experiencing a
mild TBI (mTBI) do not seek hospital care [7]. Among
these mTBI patients, some of the post-concussive symp-
toms have been reported to remain up to one year or
more and can significantly affect the long-term morbid-
ities [8]. It has been shown that concussive force can
elicit physical and structural changes in the brain. These
changes can be focal or diffuse through the brain [9].
Therefore, identification of both common and
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pathology-specific molecular mechanisms underlying
different types of injuries may aid in identification of tar-
gets for effective TBI treatments. We have utilized two
common experimental models of injury in this study: the
mild controlled cortical impact (mCCI) model that causes
a focal injury, and the mild fluid percussion injury (mFPI)
model that causes a more diffuse brain injury. Both injury
models qualitatively recapitulate a number of functional
deficits and pathological responses exhibited in human
TBI cases. In this study, we employ a systems approach to
improving the identification of biomarkers that can distin-
guish there two models. These biomarkers, if successfully
identified, could be used to better guide treatments to
mTBI patients, and more optimistically they could be po-
tential targets of novel treatments.

Recent years have witnessed an increasing number of
disease markers identified through computational ana-
lysis of genome-wide expression profiles. Typically, gene
expression profiling studies are limited to focus on indi-
vidual genes that are significantly differentially expressed
between different classes of diseases. However, single-
gene analyses have been criticized for several reasons
[10, 11]. In the cases of mTBI classification, if we only
examined the differences in the expression levels of indi-
vidual genes across different mTBI models and neglected
the genes that are not associated with a TBI subtype at a
significance threshold, we would fail to account for the
complexities and redundancies that arise from gene in-
teractions inherent to the mTBI responses. Discarded
genes showing modest differential expression between
mTBI classes may represent important biomarkers of
mTBIL In this study, we have proposed a data-driven
model and identified biomarkers not as individual genes
but as gene subnetworks, by incorporating the gene ex-
pression profiles from injury models and the protein-
protein interaction information from existing databases.
The genes in each of the identified subnetworks are ex-
pected to be highly correlated with each other and ex-
hibit a coherent expression profile across samples, while
others exist as background noise. It is also expected that
the genes in a functional subnetwork exhibit high topo-
logical similarity with each other and should lead to a
biologically meaningful sample classification. The
network-based approach has been widely adopted to
identify gene subnetworks as biomarkers in the field of
cancer research and other human diseases [12, 13], but
has never been applied in the discovery of biomarkers
for brain injury. Here, with simulation and real data ana-
lysis, we have demonstrated that our computational sys-
tems approach based on network theory performs better
than individual gene analyses as well as other gene
grouping strategies in mTBI classification. The identified
subnetworks can provide insights into the multifactorial
relationships of genes and delineate the underlying
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complexities of the biological processes involved in dif-
ferent mTBI classes.

Methods

Animal subjects and surgeries

Male Sprague-Dawley (SD) rats (275-300 g) were pur-
chased from Charles River Laboratories (Wilmington, MA).
All experimental procedures were approved by the local In-
stitutional Animal Care and Use Committee and were con-
ducted according to the recommendations provided in the
Guide for the Care and Use of Laboratory Animals. Proto-
cols were designed to minimize pain and discomfort during
the injury procedure and recovery period. Our mCCI and
mFPI injury models were described in [3]. After injury
preparation, animals were placed in a warm chamber and
allowed to completely recover from anesthesia, and then
returned to their home cages.

Gene expression microarray

Using the mTBI animals (n = 4/group), ipsilateral cortical
issues underlying the injury site was quickly dissected at
24 h post-injury. Total RNA from the cortical tissue was
isolated using the mirVana miRNA Isolation Kit (Invitro-
gen, Carlsbad, CA), following the manufacturers’ recom-
mended protocol, and amplified using the Illumina
TotalPrep RNA Amplification Kit (Ambion, Austin, TX).
RNA amplification and microarray hybridization were car-
ried out by The University of Texas Health Science Center
Houston Microarray Core Laboratory (Houston, TX).
Briefly, first-strand complementary DNA (cDNA) was gen-
erated from total RNA by reverse transcription. Second
strand ¢cDNA synthesis was initiated by the addition of
RNase H/DNA polymerase mix. The complementary RNA
(cRNA) was amplified by the in vitro transcription reaction
(IVT). cRNA (750 ng) was loaded onto RatRefSeq-12 Illu-
mina Sentrix Beadchip Arrays (Illumina, Inc., San Diego,
CA), hybridized overnight, washed, and incubated with
streptavidin-Cy3 to detect hybridized biotin-labeled cRNA
probes. Arrays were dried and scanned with a BeadArray
Reader (Illumina). It was noted that most raw gene expres-
sion values were not normally distributed but highly
skewed. Therefore, the Box-Cox transformation [14] was
used to normalize the distribution for each gene expression
values. The Kolmogorov-Smirnov test was used to test for
normality of the transformed distribution at a 5% signifi-
cance level.

Constructing a weighted network from protein

interaction information and gene expression data
Experimentally detected protein-protein interactions
(PPIs) were downloaded from BioGRID [15], DIP [16],
and HPRD [17] databases. Since there are a limited num-
ber of experiments detecting PPIs in the rat genome, we
also obtained predicted rat PPIs based on onthology,
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where orthologous interactions were generated by map-
ping experimentally detected PPIs in human or mouse ge-
nomes to pairs of orthologs in rat genome, if such
orthologs are available in HomoloGene database [18].
Each edge of the protein interaction network was further
weighted by overlaying gene expression information. Spe-
cifically, we calculated the absolute value of the Pearson
correlation coefficient abs(cor(x;x;)) as the edge weight,
where x; and &; represented the normalized gene expres-
sion vectors for genes i and j, respectively. Therefore, each
edge of the protein interaction network was weighted by
the level of co-expression between its two corresponding
genes, with the weights between 0 and 1.

Identifying significant subnetworks

We performed functional network analysis by following
the protocol described in [19]. We defined the subnet-
work scoring function S as a weighted sum of class rele-
vance R and modularity M.

S=pBM+R (1)

Here M describes the subnetwork connectivity, and R is a
measure of the discriminatory power of the subnetwork
genes to differentiate classes. In addition, the parameter S
allows us to trade off the effects of the gene expression in-
formation with the network modularity on the subnetwork
score. To simplify the scoring algorithm, we set =1, as-
suming equal weights of network modularity and class rele-
vance on calculating the network score.

To get a measure of how strongly the genes within a
subnetwork are connected, the modularity M was calcu-
lated as the mean clustering coefficients C; of the genes
in a subnetwork,

M= % [for n >= 3;0 otherwise] (2)

(3)] where C; was defined as in Dong and Horvath [20,
21]. C; is the clustering coefficient for node i, where nodes /
and m are node neighbors of i, and w represents the weight
of the edge between nodes in the subnetwork:
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Intuitively, C; is a ratio of the weighted triangles that
can be made with node i and its neighbors over the sum
of the weighted possible triangles extending off of node
i. For a general weighted network with edge weights be-
tween 0 and 1, the clustering coefficient of node i, C;
also lies between 0 and 1. C; equals 1 if and only if all
neighbors of node i are connected to each other.

The class relevance R is a measure of the ability for a
subnetwork to distinguish two classes. To calculate this,
the expression values of each gene i in sample j were

i
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first normalized to z-scores, zj, which had a mean of 0
and standard deviation of 1 for each gene over all sam-
ples. The individual z-scores of each member gene in
the subnetwork K for sample j were averaged into a

summarized expression Vkj = %
number of genes in the subnetwork K. A t-test was then
used to compare the summarized expression values of
samples between two classes and the resulting t-value
was denoted as the class relevance R. In this study, the
two classes refer to mCCI and mFPI injury models.

A framework demonstrating the steps for finding sig-
nificant subnetworks is described in Fig. 1. We applied
the greedy search algorithm in searching subnetworks
[22]. To identify significant subnetworks that discrimin-
ate mCCI and mFPI, candidate subnetworks were scored
comparing two classes. First, individual differentially
expressed genes were used as seeds for growing potential
subnetworks. For each seed, two neighboring genes were
iteratively added to the seed and subnetwork scores were
recalculated. The pair of neighboring genes that yielded
the biggest improvement in subnetwork score was added
to the seed to form an initial subnetwork of three genes
(i.e., an initial triangular subnetwork). Single neighbor
nodes were then added iteratively until the subnetwork
score could no longer be improved. It is likely that genes
are shared across different subnetworks, resulting in po-
tentially redundant subnetworks. The redundant subnet-
works were removed by the following steps:

, where n is the

1. Obtaining the scores of all subnetworks and sorting
them in a descending order of scores.

2. Iterating through the list of subnetworks and
checking for redundancy.

a) if a subnetwork was contained within a higher-
scoring subnetwork, we discarded the lower-scoring
subnetwork;

b) if a subnetwork was a super set of a higher-scoring
subnetwork, we discarded the super set;

c) if there was an overlap in genes between a lower-
scoring and higher-scoring subnetwork:

i. if the overlap =50% (number of overlapping genes/
total number of unique genes), we discarded lower-
scoring subnetwork;

ii. if the overlap <50%, we kept both subnetworks
(document them for manual inspection).

To select the significant subnetworks, we calculated the
empirical p-values of the identified subnetworks. We first
generated the null distribution by permuting the expression
vector of genes in the full network. This permutation test
dissociated the relationship between protein interaction and
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gene expression information. We then ran the same subnet-
work identification procedure on the permuted data. This
process was repeated 100 times and the scores of the re-
sulted random subnetworks were recorded for each permu-
tation. The empirical adjusted p-value for the real
subnetwork score was calculated as the fraction of the ran-
dom subnetworks having a higher score than that real sub-
network [23]. Only the subnetworks with empirical adjusted
p-values smaller than 0.05 were selected for further evalu-
ation and analysis.

Gene grouping strategies

To evaluate our approach for identifying biomarkers that
distinguish different mTBI classes (mCCI vs. mFPI), we
compared our approach with other gene grouping strat-
egies to be used in classification. Two other gene grouping
strategies were included in this study: 1) Pathway based
gene sets using the list of canonical pathways extracted
from the Molecular Signature Database (MSigDB) [24]. 2)
Functionally related gene sets based on Gene Ontology
(GO) annotations. GO gene sets were determined by re-
trieving genes for all GO terms that contained less than
50 genes, in order to eliminate the GO terms that were
too general in function annotation. The resulted two
groups of gene sets were evaluated for their discriminatory
potential in classifying TBI classes. For each gene group-
ing strategy, expression values for each gene set were con-
verted into summarized expression scores as described
previously. These expression scores were used to test dif-
ferential expression between mCCI and mFPI classes and
gene sets were ranked according to their discriminatory

powers. After redundant gene sets were removed, the
resulting gene sets were used as features in training algo-
rithms to build models for predicting TBI classes.

Results

Protein interaction network weighted with gene co-expression
data

Given the resources of protein interactions as described in
the Materials and Methods section, a protein interaction
network was constructed with 18,781 proteins and 207,829
edges. Gene expression values were then overlaid on the
protein interaction network. Each edge of this subnetwork
was weighted by the level of co-expression between its two
corresponding genes using Pearson correlation, as described
previously. Fig. 2 shows the distribution of node degrees,
weighted node degrees and edge weights for this network.
There were 3 outlier gene nodes that had over 200 direct
neighbors. These genes can be problematic depending on
how subnetworks are searched for. In our current method
of finding subnetworks, we aimed to find complex interac-
tions within a small set of genes, more specifically, we
looked for enriched triangular relationships amongst genes.
Since these particular hub genes could generate a lot of
star-shaped structures for subnetworks, they were removed
from the network subject to further network analysis.

Overview of functional subnetworks

The subnetwork identification step yielded a total of 189
significant subnetworks, consisting of 695 genes. An ex-
ample of the resulting discriminative subnetworks is
shown in Fig. 3. The genes mitogen-activated-protein
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Fig. 2 Network structure profile. Distribution of node degrees in PPI, weighted node degrees and edge weights in the constructed weighted
network. The y-axis represents the probability density for each of the distribution

edge weights

kinase 1 (MAPK1) and interleukin 6 family cytokine
(LIF) did not show significant differentiated expression
between mCCI and mFPI samples, but they played an
important role in the subnetwork by interconnecting
many differentially expressed genes, such as CEBPB,
MYC, JAK2 and STAT3. Given the fact that both
MPAK1 and LIF genes are well-known players in the
cytokine signaling pathway involved in inflammatory re-
sponse, our results suggest they can serve as potential
targets for intervention. To further investigate the func-
tions of the identified subnetworks, we extracted the
Biological Process annotations from Gene Ontology

(GO) database [25], and examined whether any GO
terms were overrepresented by the union of genes in the
50 most significant subnetworks, compared to an ex-
pected genome-wide representation [26]. Because there
is a lot of redundancy in the GO tree, we used the GO
terms from levels 3 to 10 to determine specific biological
process categories which the subnetwork genes belong
to [27]. The GO enrichment p-values were calculated by
the hyper-geometric test, followed by Benjamini and
Hochberg’s multiple hypotheses testing correction pro-
cedure [28]. The ten most significantly enriched GO
terms are listed in Table 1. Overall, the GO analysis of

)
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Fig. 3 Top five most significant subnetworks. The colors on the nodes indicate how the gene node differentiates between the mCCl and mFPI
classes. Green indicates that the expression level of the gene in the mCCl class is significantly higher compared to that in the mFPI class. Red
indicates that the gene expression level in the mCCl class is significantly lower compared to that in the mFPI class. If a node is white, the
corresponding gene does not significantly differentiate (p-value < 0.05) the two sample groups. The intensity of the color corresponds to the
level of significance. The numbers inside each node represent the discriminatory power of the gene, indicated by the t-score and the
corresponding p-value. The numbers along each edge represent the edge weights in our constructed weighted network




San Lucas et al. BMC Systems Biology 2018, 12(Suppl 8):131

Table 1 Gene Ontology (GO) biological process annotations for
significant subnetwork genes

GO Biological Process FDR

Dendrite development 8.16E-08
Neuron development 2.86E-07
Regulation of cell differentiation 8.11E-07
Neurogenesis 541E-06
Regulation of programmed cell death 8.19E-06
Regulation of membrane potential 1.02E-05
lon transmembrane transport 1.13E-05
Cell-cell adhesion 1.68E-05
Blood coagulation 4.52 E-05
Wnt signaling pathway 6.32E-04

The top 10 most enriched GO biological process terms with their
corresponding corrected p-values are listed. FDR, adjusted p-values for
multiple testing by Benjamini and Hochberg’s procedure

the top 50 subnetworks showed significant overrepresen-
tation of genes belonging to some fundamental cellular
processes, such as cell differentiation and cell-cell adhe-
sion. We also found there were significant enrichment of
GO terms related to brain injury, such as neuron devel-
opment, neurogenesis, ion membrane transport, and
blood coagulation.

mTBI subtype classification evaluation

Given the identified subnetworks, we tested their validity
and performance in the classification problem. However,
in this study, we only had experimental data available for
8 rats (4 samples/injury model). The small sample size
made it difficult to train and test a classifier. Therefore,
we performed a simulation study to achieve an unbiased
classification evaluation. The mean and standard devi-
ation of each gene were estimated from the observed
data. Given these parameters, we used the packages in R
studio [29] to simulate gene expression datasets corre-
sponding to mCCI and mFPI classes, with 100 samples
per class. Using the simulated datasets, we performed a
five-fold cross validation to compute the classification
accuracy. First, the simulated gene expression data cor-
responding to the identified subnetwork markers were
used to encode features for a Support Vector Machine
(SVM) classifier [30]. Then, we divided the mCCI and
mFPI samples into five equal parts, respectively. We
used four-fifth of the samples to train SVM and the
remaining one-fifth of samples to test the trained classi-
fier. Finally, we evaluated the sensitivity and specificity
of our method and calculated its ROC curves and the
areas under ROC curve (AUC). We compared the per-
formance of TBI subtype classification of our subnetwork
markers with the genes that were most significantly differ-
entially expressed between mCCI and mFPI samples. We
selected the top 695 individual genes, the same number of
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genes as that in the union of identified subnetworks, to
achieve a fair comparison. Our subnetworks yielded an
AUC score of 0.71, while the individual gene set yielded a
lower AUC score of 0.58 (Fig. 4). Therefore, the subnet-
work markers identified based on our network analysis
outperformed the individual gene markers in classifying
mild TBI subtypes. In addition, we compared our method
with another subnetwork identification method by
Chuang et al,, which didn’t consider the subnetwork
modularity when identifying subnetworks [13]. As a result,
it led to many star-shaped networks. When comparing the
method performance using ROC curves, we found our
method performed better than the method by Chuang et
al. [13], based on the comparison of sensitivity and specifi-
city (Fig. 4).

We also compared the performance of TBI subtype
classification of the subnetwork markers with those
based on predefined functionally related genes extracted
from GO annotation and canonical pathways. The classi-
fication results were evaluated using an F-score as in
[31], where F =2* Precision*Recall/(Precision + Recall).
In this particular classification task, the precision is the
proportion of classified mCCI samples that are true
mCClIs, and the recall is the proportion of true mCCI
samples that are correctly classified by a method. Simi-
larly, we performed a five-fold cross validation to com-
pute the classification accuracy. Using the features
drawn from different gene sets, we trained SVM based
on the simulated gene expression data from four-fifth of
samples, and then we tested the performance of the
learned feature weights on the remaining one-fifth of
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Fig. 4 Comparison of classification performance between subnetwork
markers and individual genes. The activities of identified subnetworks,
calculated as the mean activities of its member genes, are used as the
features of the support vector machine (SVM) to classify the samples.
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Fig. 5 Comparison of classification performance among
subnetworks, individual genes, and predefined functionally gene sets
from GO or MSigDB. For each size of feature set, five iterations of
five-fold cross validation are used to split the dataset, train, and
evaluate classifier. The curves show the median of classification
performance, measured by the F-scores, and error bars indicate the
standard deviation over five cross-validation experiments

samples. We repeated the process for five times to ob-
tain an averaged F-score over iterations of cross valid-
ation experiments. We examined the classification
accuracy using different sizes of feature set (the top 5,
10, 20, 30, 40, or 50 features), and summarized the com-
parison results in Fig. 5. It is demonstrated that over all
the tests, the SVM using 20 functional subnetwork fea-
tures achieves the highest performance with an F-score
of 0.85. We have also shown the functional subnetworks
outperform significant individual genes or predefined
functionally related genes across different sizes of feature
sets, indicating the advantage of using gene subnetworks
for sample classification and prediction.

Discussion

The parameter setting in variable selection methods can
impact the performance of the selected feature genes
sets. In this study, we showed the relative robustness
and superior performance of our network analysis across
different numbers of selected features. We have demon-
strated that effectively incorporating gene expression
profiles into protein interaction information can identify
functional subnetworks that better classify different clas-
ses of mTBI than the gene markers selected without net-
work information. We understand that translating the
knowledge gained from an animal model onto molecular
biomarkers identification in patients is practically chal-
lenging, simply because the brain tissue in TBI patients
is rarely available, but the use of peripheral tissues such
as lymphoblast or blood could be a potential solution.
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Conclusions

We have aimed to improve the identification of bio-
markers that can distinguish two different classes of TBI
in rodent animal models: the mild Controlled Cortical
Impact (mCCI) and the mild Fluid Percussion Injury
(mFPI), representing focal and diffuse TBIs, respectively.
We have developed and applied a network-based ap-
proach on gene expression profiles from the entire rat
genome. Our network based analysis can identify genes
that are essential for maintaining the integrity of a sub-
network whose overall expression is discriminative be-
tween samples. In addition, we demonstrated that our
network-based analysis achieves higher sensitivity and
specificity in differentiating the heterogeneous responses
corresponding to different classes of mTBI, compared to
conventional analyses using either individual genes or
predefined functionally related gene sets. These identi-
fied biomarkers could be used to better direct the diag-
nosis and treatment to TBI patients, and more
optimistically, they could help to develop rationale-based
therapies for treating the millions of Americans who suf-
fer from TBI.
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