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Abstract

Background: Self-interacting Proteins (SIPs) plays a critical role in a series of life function in most living cells.
Researches on SIPs are important part of molecular biology. Although numerous SIPs data be provided,
traditional experimental methods are labor-intensive, time-consuming and costly and can only yield limited
results in real-world needs. Hence,it's urgent to develop an efficient computational SIPs prediction method
to fill the gap. Deep learning technologies have proven to produce subversive performance improvements in
many areas, but the effectiveness of deep learning methods for SIPs prediction has not been verified.

Results: We developed a deep learning model for predicting SIPs by constructing a Stacked Long Short-Term
Memory (SLSTM) neural network that contains “dropout”. We extracted features from protein sequences using
a novel feature extraction scheme that combined Zernike Moments (ZMs) with Position Specific Weight Matrix
(PSWM). The capability of the proposed approach was assessed on S.erevisiae and Human SIPs datasets. The
result indicates that the approach based on deep learning can effectively resist data skew and achieve good
accuracies of 95.69 and 97.88%, respectively. To demonstrate the progressiveness of deep learning, we compared the
results of the SLSTM-based method and the celebrated Support Vector Machine (SYM) method and several
other well-known methods on the same datasets.

Conclusion: The results show that our method is overall superior to any of the other existing state-of-the-art
techniques. As far as we know, this study first applies deep learning method to predict SIPs, and practical

experimental results reveal its potential in SIPs identification.
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Background

As the embodiment of life activity, protein does not exist
in isolation, but through interaction to complete most of
the process in the cell. Protein-protein interaction (PPIs)
has been the focus of the study of biological processes.
SIPs are considered to be a unique protein interaction.
SIPs have the same arrangement of amino acids. This
leads to the formation of homodimer. Previous studies
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have proved that SIPs play a leading role in the discover-
ing the laws of life and the evolution of protein inter-
action networks (PINs) [1]. It is important to understand
whether proteins can interact with themselves, which
helps clarify the function of proteins, insights into the
regulation of protein function, and predicts or prevents
disease. The homo-oligomerization have proven to play
a significant role in the wide-ranging biological pro-
cesses, for instance, immunological reaction, signal
transduction, activation of enzyme, and regulation of
gene expression [2-5]. It has been found that SIPs are a
main aspect in regulating protein function by means of
allosteric means. Many studies have shown that the
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diversity of proteins can be extended by SIPs without
growing genome size. In addition, self-interaction helps
to increase stability and prevent protein denaturation by
reducing its surface area. SIPs have the potential to
interact with many other proteins, hence, it occupies a
significant position in cellular systems. SIPs have an
ability to improve the stability of protein and avoid the
denaturation of proteins and reduce its superficial area.
An endless stream of experimental methods is used to
detect protein self-interaction. However, these methods
have certain drawbacks and limitations. It is urgent to
develop an effective and reliable novel approach for
predicting SIPs.

In recent years, some computational systems have
been designed for predicting PPIs. Zaki et al. [6] pro-
jected a scheme for predicting SIPs that used only pro-
tein primary structure based on pairwise similarity
theory. Zahiri J at el. [7] introduced an approach called
PPlevo for predicting PPIs using a feature extraction al-
gorithm. You et al. [8] gave a method called PCA-ELM
that shows great ability in predicting PPIs. M. G. Shi et
al. [9] shown a powerful method, which used correlation
coefficient (CC) combined with support vector machine
(SVM). This proposed method could be used in predict-
ing PPIs, giving satisfactory results. These methods gen-
erally tend to use certain information about protein
pairs, for instance, colocalization, coexpression and co-
evolution. Nevertheless, such feature is not applicable to
deal with SIPs problems. Besides, the PPIs data sets
adopted in above approaches do not cover SIPs. Hence,
these computational-based methods not suitable for pre-
dicting SIPs. In the past research, Liu et al. [10] devel-
oped a prediction model to predict SIPs named as
SLIPPER by mixing several typical known attributes.
However, there is a major defect in this prediction
model, which cannot deal with proteins that are not in-
cluded in the current human interatomic. Given the
limits of the above-mentioned approaches, it is needed
to develop a more practical computational method for
identifying SIPs.

In this study, a novel computational scheme based on
deep learning named ZM-SLSTM is proposed for detect-
ing SIPs from protein sequence. We firstly converted the
SIPs sequence into Position Specific Weight Matrix
(PSWM). Second, a novel feature extraction approach
named as Zernike moments (ZMs) is adopted to generate
feature vector from PSWM. Then, we build a Stacked
Long Short-Term Memory (SLSTM) to predict SIPs. The
proposed model was executed on S.erevisiae and human
SIPs data sets. Satisfactory results are obtained with high
accuracy of 95.69 and 97.88%, respectively. This method is
also compared with other methods including Support
Vector Machine (SVM), other (named as SLIPPER, CRS,
SPAR DXECPPI, PPlevo and LocFuse). The results show
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that the ZM-SLSTM method perform better than any
those methods. For all we know, our study is the first to
adopt the deep-learning technology to predict SIPs, and
experimental results show that our method can effectively
resist data skew and improve the prediction performance
relative to the existing technique.

Method

Datasets

We download 20,199 data of human sequences protein
from the Uniprot database [11]. The PPIs data come
from Various resource libraries including MatrixDB, Bio-
GRID, DIP, IntAct and InnateDB [12-16]. In order to
obtain the SIP data set, the PPI data that can interact
with itself were collected. Accordingly, we obtained 2,
994 human SIPs sequences.

To collect datasets scientifically and efficiently, the hu-
man SIPs dataset is screened by the following steps [17]:
(1) the protein sequence(>5000residues or < 50 residues)
was removed from the whole human sequences protein;
(2) For the construction of the positive data set, the se-
lected SIPs must meet one of the following situations:
(a) At least two mass experiments or one small scale ex-
periment have shown that this protein sequence can
interact with itself; (b) the protein must be homooligo-
mer in UniProt; (c) the self-interaction of this protein
have been reported by more than one publication; (3)
For the sake of establish negative data set, all known
SIPs were deleted from the whole human proteome.

As a result, 1441 human SIPs were selected to build
positive data sets and 15938 human protein that
non-interacting were selected to build negative datasets.
In addition, to better verify the usefulness of the de-
signed scheme, we constructed the S.erevisiae SIPs data-
set that cover 710 SIPs and 5511 non-SIPs by using
above strategy.

Position specific weight matrix

PSWM [18] was first adopted for detecting proteins of
distantly related. The PSWM successfully applied in the
field of biological information, including protein disul-
fide connectivity, protein structural classes, and sub-
nuclear localization, DNA or RNA binding sites [19-23].
In the study, we used PSWM for predicting SIPs. A
PSWM for a query protein is a Yx20 matrix M = {m;;: i
=1 --Yandj=1 - 20}, where the Y represents the size
of the protein sequence and the number of columns of
M matrix denotes 20 amino acids. In order to construct
PSWM, a position frequency matrix is first created by
calculating the presence of each nucleotide on each pos-
ition. This frequency matrix can be represented as p(u,
k), where u means position, k is the k;;, nucleotide. The

PSWM can be expressed as M;; = S0 p(u, k) x w(v, k
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), where w(v, k) is a matrix whose elements represent the
mutation value between two different amino acids. Con-
sequently, high scores represent highly conservative po-
sitions, and low points represent a weak conservative
position.

In this paper, the PSWM of a protein sequences were
generated by using Position specific iterated BLAST
(PSI-BLAST) [24]. To get high and broad homologous
information, we set three iterations and set the e-value
to 0.001.

Zernike moments

In this paper, the Zernike moments are introduced to
extract meaningful information from protein sequence
and generate feature vector [25-30]. We introduce the
concept of the Zernike function to clearly define the mo-
ments of the Zernike. A set of complex polynomials are
introduced by Zernike which form a complete orthog-
onal set within the unit circle. These polynomials are
represented as V,,,,,(x,y). These polynomials have the fol-
lowing form:

Viy(n,m) = Vy(p,0) = Ryy(p)e?for p<1 (1)

where x is a positive integer greater than zero, y is inte-
ger, and satisfies |y| < x, where x - |y| is an even number.
p is the length from (0, 0) to the pixel (n, m). 6 repre-
sents included angle between vector p and n axis in
counterclockwise direction. R, (p)is

Ryy(p) = (x“zyl:/2> (-1)° (x-9)! 5
y =0 s! <x—;|y| —s> ! <x—|—2|y —s)!
(2)

From equation (2), we can find R, _,(p) = R,,(p). These
orthogonal polynomials are satisfying:

21
1

. b
|| Vo0 Vinto.00pdpae = 58,8, (3
0

with

1 a=b

Oap = { 0 otherwise )

The Zernike moments can be obtained by calculat-
ing (5)

x+1 X
ny = T Z(pﬂ)eunit circle Zf(p’ 6) Vnm (p7 6) (5)

To calculate the ZMs of a protein sequence repre-
sented by a PSWM matrix, the origin is at the center of
the matrix, and the points in the matrix are mapped in-
side the unit circle., i.e., n*+m*<1. The value falling
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outside the unit circle is not calculated [31-35]. Note
that A} = A,y

Feature selection

To sum up, Zernike moments can extract some import-
ant information. When we use the Zernike moments,
there is a problem that must be considered is how big
1,.a-should be set? The moments of lower order extract
unsophisticated feature and the moments of higher
order capture details feature. Figure 1 shows the magni-
tude plots of the Zernike moments with low order. Con-
sidering that we not only need enough information for
more accurate classification, but also need to control the
dimension of feature to reduce the computational cost.
In this experiment, x,,,, is set to 30 [36—40]. This mo-
ment information constitutes the feature vectors of pro-
tein sequences

.
F =[|Aul, |A%|, ooes |Anm|])" (6)

where |A,,,| represents the absolute value of Zernike
moments. The zeroth order moments are not computed
because they do not contain any valuable information
and ZMs without considering m <0, since they are in-
ferred through 4, _,, = 4;,,,.

Finally, in order to eliminate noise as much as
possible and to reduce the computational complexity,
the feature dimensional was reduced from 240 to
150 by means of principal component analysis (PCA)
method [41].

Long short-term memory

Long Short-Term Memory (LSTM), a special recurrent
neural network, performs much better than standard re-
current neural networks in many tasks. Almost all excit-
ing results based on recurrent neural networks are
implemented by them. In this work, the deep LSTM net
structure was first introduced to predict self-interaction
protein.

The main difference between LSTM network and
other networks is its use of complex memory block in-
stead of the neurons of general network. The memory
block contains three multiplicative ‘gate’ units (the input,
forget, and output gates.) along with some memory cells
(one or more). The gate unit is used to control the infor-
mation flow, and the memory cell is used to store the
historical information [42-44]. The structure of the
memory block is shown in the Fig. 2, to better under-
stand the work of the gate unit, memory cells are not
shown in the Fig. 2. The gate removes or restore infor-
mation to the cell state by controlling the information
flow. More specific, the input and output of the informa-
tion flow are respectively handled by the input and out-
put gates. The forget gate determines how much of the
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Order 1 Order 2 Order 3 Order 4

Fig. 1 Plots of the magnitude of the Zernike moments with low order
A\

previous unit’s information is retained to the current iy = sigm(W[Cyo1, %4, 1] + by) (7)
unit. In addition, in order to enable memory blocks to
store earlier information, we add a peephole to the block fi= Sigm(Wf‘[Ct—laxta hea] + bf) (8)
to connect the memory cell to the gate [45, 46].

The information flow passing through a memory block or = sigm(Wo:[C, ¢, he1] + by) )
needs to do the following operations to complete the )
mapping from input x to output A C = tanh(Wc-[x;, he1] + be) (10)
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Fig. 2 The structure of memory blocks in SLSTM networks
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C = Ctl*ft+ct*lt (11)

h; = tanh(C;) x 0; + C ; * i, (12)
Here, symbols related to the letter C represent cell ac-
tivation vectors, the symbol £, i, 0, and C are respectively
the forget gate, input gate, output gate. The items re-
lated to W (W;, W W}), represent weight matrices, the
items related to b (b;, by b,, bc) denote bias, o is sigmoid
function, = is the element-wise product of the vectors.

Stacked long short-term memory

A large number of theoretical and practical results sup-
port that the deep hierarchical network model can be
more competent for complex tasks than shallow one.
We construct the Stacked Long Short-Term Memory
(SLSTM) net by stacking multiple LSTM hidden layers
on top of each other, which contain one input layer,
three LSTM hidden layers, one output layer. Figure 3
shows a SLSTM network. The number of neurons in the
input layer is equal to the dimension of the input data.
Each SLSTM hidden layer consist of 16 memory blocks.
The number of neurons in the output layer equals the
number of classes. Therefore, the number of neurons or
memory blocks in each layer of the network are 200-
16—16-16-2. In output layer, the softmax function is used
to generate probabilistic results.

Prevent over fitting

Opverfitting problems exist in many prediction or classifi-
cation models. Even the deep learning model with
superior performance is no exception. A great deal of
theoretical and practical work has proved that
over-fitting can be reduced or avoided by adding “drop-
out” operation on neural net. “dropout” provides a way
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to approximate combine exponentially different neural
network architectures [47]. More specific, “dropout” in-
volves two important operations: 1) Dropout randomly
discards hidden units and edges connected with them
with a fixed probability in each training case; 2) In the
test, dropout is responsible for integrating multiple
neural networks generated during training. The first op-
eration makes it possible to produce a different network
almost every training case and these different networks
share the same weights for the hidden units. The Fig. 4
describes a network model after using dropout. At test
time, all hidden layer neurons are used without “drop-
out”, but the weight of the network is a reduced version
of the trained weights. The proportion of weight reduc-
tion equals to the probability of the unit being retained
[48]. By weight reduction, a large number of dropout
networks can be merged into a single neural network
and provide a similar performance to averaging over all
networks [49].

Results

Performance evaluation

In order to evaluate the methods presented in this paper,
we used a few commonly used indicators: The accuracy
(ACCQ), true positive rate (TPR), positive predictive value

(PPV), specificity (SPC), and Matthew’s Correlation

Coefficient (MCC). The definition is given as follows:
ACC=7x +£?\[112"2+FP (13)
TPR = FNT P a4
PPV = TP:TFP (15)

e S ————

/
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Fig. 3 A Stacked Long Short-Term Memory network
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Fig. 4 Network structure after using dropout

TN

PC=— "
SPC TN + FP

(TP x TN) + (FP x FN)
/(TP + EN) x (TP + FP) x (IN + FN) x (TN + EP)

(17)

where TP means those samples, have interacting, are
predicted correctly, FP represents those samples, true
non-interacting with each other, are judged to be inter-
action. TN represents those samples, true noninteract-
ing with each other, are predicted correctly. FN
represents those samples, true interacting with each
other, are judged to be non-interacting. Furthermore,
the Receiver operating characteristic (ROC) is por-
trayed to appraise the performance of a set of classifica-
tion results and the AUC is computed as an important
evaluation indicator [50, 51].

MCC =

Assessment of prediction

The proposed method is validated on two standard SIPs
dataset. Each dataset is divide into three parts: The
training set, accounted for 40 % of the total data; The
verification set, accounts for 30 % of the total data; and
the test set, accounts for 30 % of the total data. The
training data sets are used to fit the weights of connec-
tions between memory block in the SLSTM network.
The validation sets are used to fine tune model parame-
ters and determine optimal performance models. An-
other function of the validation data set is to prevent

overfitting by early stopping: when the errors on the val-
idation data set begin to increase, the model stops train-
ing, because is a token of overfitting. The test data set is
used for unbiased evaluation of the trained model. We
train model only setting 200 epochs and using Nadam
optimization method, that has more constraints on the
learning rate, and also has a more direct impact on the
gradient update.

As Table 1 shows, the accuracy obtained by the
ZMs-SLSTM is 95.69% for S.erevisiae and 97.88% for
Human data sets. Beyond that, several other evaluation
indicators also show the potential of our approach. More
specifically, on S.erevisiaze, the proposed method
achieved TPR of 92.97%, SPC of 95.94%, PPV of 67.23%,
MCC of 77.43% and AUC of 0.9828, respectively. For
Human dataset with more samples, this method pro-
duces better results with TPR of 88.00%, SPC of 98.70%,
PPV of 84.93%, MCC of 85.60% and AUC of 0.9908, re-
spectively. The ROC curves achieved by the proposed
ZMs-SLSTM method was exposed in Fig. 5.

The performance of SVM-based approach

We verify the performance of our classifier by compare
it with the SVM (Support Vector Machine) classifier
representing the most advanced technologies. In this ex-
perience, we took the same feature extraction process in
S.erevisiae and Human datasets, respectively. We used
LIBSVM tools [52] to implement the classification of
SVM. The SVM parameters of ¢ and g are 0.5 and 0.6
by the grid search method.

Table 1 The results produced by the proposed method and the SVM-based method on PPIs datasets

Model Data Sets ACC (%) TPR (%) SPC (%) PPV (%) MCC (%) AUC

SLST™M S.erevisiae 95.69 9297 95.94 67.23 7743 0.9828
Human 97.88 88.00 98.70 84.93 85.60 0.9908

SVM S.erevisiae 93.06 57.22 97.68 76.25 64.59 0.9345
Human 95.30 54.26 99.01 83.27 66.07 0.9261
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Fig. 5 ROC curves achieved by the proposed approach

Table 1 indicates, our ZMs-SLSTM method is signifi-
cantly superior to SVM-based methods, particularly for
predicting the true self-interacting protein pairs. Focus
on S.erevisiae dataset, 95.69% ACC, 92.97% TPR, 77.43%
MCC and 0.9828 AUC of the ZMs-SLSTM is much
higher than the corresponding values for the SVM-pre-
dictor with 93.06% ACC, 57.22%TPR, 64.59% MCC and
0.9345. AUC. Similar situations also appear on the Hu-
man data set, the performance of the ZMs-SLSTM
method has been found to be better with 97.88% ACC,
88.00% TPR, 98.70% SPC, 84.93% PPV, 85.60% MCC
and 0.9908 AUC versus 95.30% ACC, 54.26% TPR,
99.01% SPC, 83.27% PPV, 66.07% MCC and 0.9261
AUC, respectively. In particular, higher TPR (92.97% on
S.erevisiae dataset and 88.00% on Human dataset) indi-
cates our method can give more accurate results than
SVM-based approach (57.22% on S.erevisiae dataset and
54.26% on Human dataset) in predicting true SIPs.

Comparison with other methods

To further evaluate our proposed approach, we also
compared it with six existing methods (SLIPPER, CRS,
SPAR, DXECPPI, PPlevo and LocFuse). Table 2 presents
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the results of several methods on S.erevisiae and Human
data sets. From Table 2, compared with other methods,
our method significantly improves the overall perform-
ance of the SIPs prediction. In addition, SLIPPER con-
tains some restrictions. Second, it integrates a large
amount of known knowledge, such as GO terms, PINs,
drug targets, and enzymes. In particular, the degree of
protein in the PIN makes a significant contribution to
SIP predictions. However, for unknown or artificial pro-
teins in actual applications, all information is difficult to
access directly. Therefore, as long as the protein se-
quence is known, our method is necessary for improved
SIP prediction. DXECPPI is a PPI predictor, because the
traditional PPI predictor uses correlation information
between two proteins, such as co-expression, co-evolu-
tion and co-localization, and cannot be effectively used
for SIP prediction. Therefore, our method can be used
as a necessary supplement for PPI prediction. For S.ere-
visiae data set, the method presented by this paper
achieves the best accuracy of 95.69%, which is much
higher than that of other methods. More obvious im-
provements are reflected in TPR, MCC, and AUC. Ob-
serve the results on the S.erevisiae data set, 92% TPR
achieved by the ZMs-SLSTM approach is more than
three triple that of the DXECPPI method, and 77.43%
MCC achieved by the ZMs-SLSTM approach is more
than four triple that of the PPlevo method. 0.9828 AUC
achieved by the ZMs-SLSTM approach is 37% higher
than the average of other methods. High TPR shows that
our method has little error rate in identifying
self-interacting proteins. The high MCC and AUC show
that our model is robust, practical, and can effectively
resist data skew. The SIP prediction for Human dataset
(Table 2) have also been greatly improved by using our
approach. 97.88% ACC, 85.60% MCC and 0.9908 AUC
of the ZMs-SLSTM is are way above the corresponding
values for the other method. In addition, compared the
results of SVM-based method (Table 1) and six existing
methods (SLIPPER, CRS, SPAR, DXECPPI, PPlevo and
LocFuse), it can be found that our method is still overall
superior to the six existing predictors. This shows that

Table 2 Performance comparison of seven approaches on both the S.erevisiae and Human datasets

Methods S.erevisiae Human
ACC (%) SPC (%) TPR (%) MCC (%) AUC ACC (%) SPC (%) TPR (%) MCC (%) AUC

SLIPPER 71.90 7218 69.72 2842 0.7723 91.10 95.06 47.26 4197 0.8723
DXECPPI 87.46 94.93 29.44 28.25 0.6934 30.90 25.83 87.08 8.25 0.5806
PPlevo 66.28 87.46 60.14 1801 06728 78.04 2582 87.83 20.82 0.7329
LocFuse 66.66 68.10 5549 15.77 0.7087 80.66 80.50 50.83 20.26 0.7087
CRS 72.69 74.37 59.58 23.68 0.7115 91.54 96.72 3417 36.33 0.8196
SPAR 76.96 80.02 53.24 24.34 0.7455 92.09 9740 3333 3836 0.8229
ZM-SLSTM 95.69 95.94 92.97 7743 0.9828 97.88 98.70 88.00 85.60 0.9908
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the proposed feature extraction strategy proposed in this
paper is efficient, useful and plays an important role in
the SIPs prediction model. The results of this study illus-
tration that the ZMs-SLSTM approach is capable of ef-
fectively improving the prediction performance of SIPs.

Discussion
This method can produce good results mainly due to: ef-
fective feature extraction strategy and reliable classifiers.
The protein feature extraction scheme consisting of
PSWM and ZMs effectively captures the evolutionary in-
formation of protein and produces the most characteris-
tic features that improve the ability of the classifier to
distinguish unknown samples during the testing phase.
The robust and efficient SLSTM deep neural network
also make a great contribution to accuracy improvement
that provide stronger classification performance than
traditional machine learning method in interaction pat-
tern recognition. The performance improvement
brought by SLSTM comes mainly from the following
reasons: 1) Compared with the traditional machine
learning methods, the hierarchical structure of deep
learning algorithms can process more complex data, and
automatically learn abstract and more useful features. 2)
Two mechanisms to prevent overfitting, dropout and
early stopping, make the prediction model trained more
reliable, robust and excellent. 3) In the testing phase, we
merged all dropout networks generated by the training
processes, which led to a better result. 4) The SLSTM
network uses memory blocks instead of simple neurons,
which allows the network to learn more knowledge
about self-interacting proteins during training.

Conclusion

In recent years, the rise of deep learning technology has
constantly affected the development of various fields.
However, the ability of deep learning techniques in pre-
dicting self-interacting proteins has not been witnessed.
In this work, a SLSTM neural network was constructed
as a deep learning model to predict SIPs only using pro-
tein sequences. The method is applied to two standard
data sets and the results show it is reliable, stable and
accurate for predicting SIPs. The contribution of the
proposed approach comes mainly from three technolo-
gies: SLSTM network, ZMs feature extractor, PSWM.
Specifically, each protein sequence was converted into
PSWM by using PSI-BLAST. The ZMs then is adopted
to catch the valuable information from PSWM and form
feature vectors that as input of classifier. Finally, the
SLSTM deep network is used to predict SIPs. For further
measuring the performance of the ZMs-SLSTM method,
ZMs-SVM and other six methods were implemented on
S.erevisiae and Huamn data sets for comparing with the
proposed approach. The results from these experiments
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indicate that the SIPs detection capability of the pro-
posed scheme is overall ahead of that of the earlier
methods and SVM-based approach. The performance
improvement caused by this method is mainly
dependent on the use of an excellently deep learning
model and a fresh and high-performance feature extrac-
tion scheme. To the best of our knowledge, this study is
the first to build a deep learning model for SIP predic-
tion using protein sequence, and the results demonstrate
our method is strong and practical.
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