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Abstract

enriched by breast cancer were identified.

prediction and biomarker identification accuracy.

Background: Many mathematical and statistical models and algorithms have been proposed to do biomarker
identification in recent years. However, the biomarkers inferred from different datasets suffer a lack of reproducibilities
due to the heterogeneity of the data generated from different platforms or laboratories. This motivates us to develop
robust biomarker identification methods by integrating multiple datasets.

Methods: In this paper, we developed an integrative method for classification based on logistic regression. Different
constant terms are set in the logistic regression model to measure the heterogeneity of the samples. By minimizing
the differences of the constant terms within the same dataset, both the homogeneity within the same dataset and
the heterogeneity in multiple datasets can be kept. The model is formulated as an optimization problem with a
network penalty measuring the differences of the constant terms. The L1 penalty, elastic penalty and network related
penalties are added to the objective function for the biomarker discovery purpose. Algorithms based on proximal
Newton method are proposed to solve the optimization problem.

Results: We first applied the proposed method to the simulated datasets. Both the AUC of the prediction and the
biomarker identification accuracy are improved. We then applied the method to two breast cancer gene expression
datasets. By integrating both datasets, the prediction AUC is improved over directly merging the datasets and
Metalasso. And it's comparable to the best AUC when doing biomarker identification in an individual dataset. The
identified biomarkers using network related penalty for variables were further analyzed. Meaningful subnetworks

Conclusion: A network-based integrative logistic regression model is proposed in the paper. It improves both the

Keywords: Data integration, Logistic regression, Meta-analysis, Network penalty

Background

Biomarker plays an important role in early detection,
diagnosis, monitoring, and prevention of disease, and it
also helps in evaluation of the safety and efficacy of new
drugs or new therapies. With the fast development of
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biotechnologies, more and more biological data are avail-
able, such as the gene expression, miRNA expression,
DNA methylation and so on (NCBI GEO [1], TCGA).
This makes it much easier to identify the genes, proteins,
miRNAs etc. as the biomarkers.

In recent years, many statistical models and compu-
tational algorithms have been developed to do variable
selection, which can be applied to identify the biomark-
ers in both regression and classification problems [2-8].
A pioneering work in this area is LASSO [2]. It adds
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Ly penalty to the original least square problem, which
leads to the sparsity of the coefficients and thus achieves
the variable selection goal. Based on this idea, several
other variable selection methods are proposed, such as the
sparse logistic regression [9], sparse partial least square
regression [4], sparse partial least square classification [3].
Due to the high co-linearity of some covariates, these
methods may select different variables that have simi-
lar effects on the responses. To take into account this
issue, elastic net model adds both the L; and Ly norm
as the penalty of the coefficients [10]. With a balance
of both norms, the highly correlated variables can be
selected together. This model is further extended to the
network constraints with sparsity [11-14]. In [11], the
Ly norm in elastic net model is changed to a Lapla-
cian term, which penalizes the variables that have con-
nections in a given network, such that the coefficients
of these variables tend to be the same. In [12, 13],
the coefficients in the Laplacian term are replaced by
their absolute value, which considers the case that the
highly correlated variables have opposite contributions
to the response. Different computational algorithms are
given in these two papers. By adding the network con-
straints, the variables having high correlations or connec-
tions can be selected together, which reduces the effect
of co-linearity, and thus improves the variable selection
robustness.

Though such a lot of methods have been developed for
variable selection, these models are mainly for one sin-
gle dataset. Due to the small sample size relative to the
large number of variables and the batch effects in dif-
ferent platforms or different laboratories, the biomarkers
inferred from one dataset often suffer a lack of repro-
ducibilities. As a potential solution to such problems,
integrative analysis is a cost-effective option, since many
genomic databases are nowadays publicly available. For
example, the public functional genomics data reposi-
tory NCBI GEO has more than 2.5 billion samples on
more than 18 thousand platforms [1]. Here, integrative
analysis means combining the data or information from
multiple independent studies that are designed for the
same biological or medical problems in order to draw
more reliable conclusions, though some integration meth-
ods focusing on incorporating different data types have
been developed [15-23]. To this purpose, there mainly
exist two types of approaches: analysis by data merg-
ing and meta-analysis. The merging approach integrates
the same data type after transforming the original data
to numerically comparable measures or correcting the
confounder factors first [24—28], while the meta-analysis
approach combines the results of individual studies at
the interpretative level [29-37]. In the data merging
approach, the first step is to do cross-platform normal-
ization or confounder correction, followed by the variable
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selection methods for one single dataset. Compared to
data merging approach, meta-analysis is more complex
and has taken into account more factors in the integra-
tive process. The key issues for guiding conducting a
meta-analysis of gene expression microarray datasets has
given in [30]. An early R package for implementing meta-
analysis is in [29], which has been widely applied such as
the work in [34, 37]. Later on, several methods were pro-
posed on meta-analysis. Ma et al. first proposed a Meta
Threshold Gradient Descent Regularization (MTGDR)
approach [31], then they developed a 2-norm group bridge
penalization approach such that the markers with consis-
tent effects across multiple studies can be identified [32].
They further proposed a sparse boosting for marker iden-
tification [33]. Li et al. proposed meta-lasso (MetaLasso)
method for variable selection in meta-analysis, which
used a hierarchical decomposition on regression coeffi-
cients to identify important genes, and kept the selection
flexibility across different datasets [36]. These methods
are all based on logistic regression for selecting the genes
in microarray datasets, without considering the gene-gene
interactions or the high correlations between the genes.
Though the work [35] presented a statistical framework
for identifying the differential co-expressed gene pairs
as markers, they did not consider the general gene-gene
interactions.

In this article, we investigate the integrative analysis of
multiple datasets from different platforms or laboratories
that are designed for the same biological questions. We
propose a penalization approach based on logistic regres-
sion for biomarker selection. The penalization includes
two parts: penalization of the sample relations and penal-
ization of the variables. Penalization of the sample rela-
tions defines a new penalty as the the function of the
sample relation network, and aims to make the regres-
sion coefficients for the samples from the same source
be the same while allowing the heterogeneity across dif-
ferent datasets. The advantages of taking into account
the sample relation network in general regression have
been addressed in [38]. The penalization of the vari-
ables takes advantage of the recent development on net-
work constraints penalization methods in single dataset
such that the variables having high correlation or given
connections can be selected together, which cannot be
easily extended to from the current integrative models
[31-33, 36, 37]. Numerical experiments on both simulated
datasets and real datasets show the performance of our
formulation.

Methods

We assume the variables are measured in M differ-
ent experiments with M > 1. Let X" denote the
measurement of the variables in the m-th experiment,
which is an N x p matrix with N being the sample
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size and p being the number of variables. We let X}"
denote the i-th row in X™. Let Y denote the clini-
cal outcomes in the m-th experiment, which is a vec-
tor of binary values representing case/control state or
different disease states, and Y/” be the i-th entry of
v Welet X = ((x)7, ()7, ,(XM)T)T be the
values of the variables for all the samples, and Y =
((Yl)T, (YZ)T,--- ,(YM)T)T be the clinical outcomes
for all the samples. Let X; denote the i-th row in X, and Y;
the i-th entry in Y, correspondingly. N = an/[:l N is the
total number of samples for all the considered datasets.

We first consider the logistic regression model for each
single dataset. Let p/" = P (Y]" = 1|X]") denote the prob-
ability that the sample i in the m-th experiment has the
outcome 1. Then the logistic regression model can be
formulated as:

m> = B + X", i=1,2,--- N,

i

T
where " = (/3{",,35”,“- ,ﬁ;”) . To obtain B[, ™, we
can maximize the log-likelihood function, which can be
formulated as a minimization problem as follows:

in —¢ (B, 8", 1
Jnin, € (5", 8" (1)

where ¢ (B, p") = STIL (¥[" - (B +X["p") — log
(1 +exp (BY + X"B™)).

To do biomarker identification using logistic regression
model, different penalties have been proposed to add to
(1), which can be formulated as:

1
min ——
gy.pm N™

By, B") + 2Py (™), >0,  (2)
where A is a parameter to control the importance of the
regularization term.

One formulation of P,(8") is P, (B") = %(1 — )
||,3m||% + a||”|l1. When o = 0, it corresponds to ridge
penalty, when o = 1, it corresponds to the LASSO [2], and
when 0 < @ < 1, it corresponds to the elastic net (Enet)
[10]. Later on, Li et al. proposed the network penalty
(Network) [11], where P, (B") = %(1 —a)(BMTLE™ +
a||8™1, and L is the normalized Laplacian matrix for a
network measuring the connections or the correlations of
the variables. With this model, the connected variables in
the network tend to be selected together. This penalty is
further extended to Py (B8") = %(1 —a)(I1B™TLIB™ +
al| ™1 to tackle the case when the highly correlated
variables have opposite contributions to the response
(Abs-Network) [12, 13].
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When we identify the biomarkers from multiple
datasets generated for the same biological question, dif-
ferent biomarkers may be selected when we do the exper-
iments in each individual dataset. This may be due to the
batch effects from different platforms/experimental con-
ditions, or the high co-linearity among the variables. In
reality, the same variables should contribute to their cor-
responding response equally. Thus we assume ! = g2 =
... pM = B. To estimate these parameters, direct merg-
ing all the datasets together is one choice. However, it
cannot explain the heterogeneity of different datasets. To
explain the heterogeneity, and to make the final response
appear with high probabilities, we set the constant term
in the model to be different for different samples. We let
Bo; be the constant term corresponding to the sample i
in the m-th experiment. Due to the homogeneity within
the same dataset, all the parameters should be the same
for the same dataset. Thus we add constraints to make
the model satisfy this condition. Our formulation now
becomes:

1 M N™
+log (1+ exp (B + XI"B)))
AP, (B) + BT LBo
M
1 m T§
=52t (B3', B) + APo(B) + 1By Lpo.
m=1
T
Here, By = ((ﬁé)T’(ﬁg)T""'(ﬂ(l)w)T> ’ ﬁ(r)n =
(B, Bty Bifm) ' om = 1,2, M. u is a param-

eter to control the importance of the penalty term
/30T LBo. L is the Laplacian matrix for the sample rela-
tion network, where if two samples are from the same
dataset, we assign an edge between them, otherwise,
there is no edge. By minimizing the term ,Bg LBo, B
will tend to be the same for different i and a fixed
m, and it depends on m when sample i is from dif-
ferent experiments. This penalty helps make the con-
stant term in logistic regression be the same for the
same dataset, and allowing the differences across different
datasets.

To solve the optimization problem (3), we notice that
its formulation is similar to (2), except the constraint on
Bo- Thus we can apply similar methods to the one solving
(2).In [9, 39], proximal Newton method is applied to solve
the problem (2) [40]. This method mainly includes two
steps: first a Newton step is applied to the log-likelihood
term to get a temporal point; then the original optimiza-
tion problem is approximated at this point by a quadratic
function with the original penalty kept. Usually this
quadratic optimization problem can be solved efficiently.
Using the same technique, for our formulation (3), we
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first derive a temporal point with Newton method for
the log-likelihood term. Different from (2), here Sy is
a vector of size N. To take advantage of the stan-
dard logistic regression, we let X = X, InxN), /§ =
(ﬁT, /SOT ) T, where Iyxn is an identity matrix. Then for
any sample i in X, we have log (1_Pim> = X;B, where
pi = P, = 11X;),i = 1,2,---,N for the integrated
datasets.

Now we can use standard Newton method to get a new
point A%”P by computing:

Z=XpM 4+ Wy —p), (4)
~ - \—1 -
ftemp — (xwa) xTwz.

Here p = (p1,p2,- -+ ,Pn)’, W = diag(p) - diag(1 — p).
(XTWX) is the Hessian matrix for the likelihood func-
tion.

The quadratic
solved is:

approximation problem to be

~ 1 - ~ ~
prox (" }=arg min = | 5" ~BI}+.Pu (B)+18] Lo
B

(5)

where H = XTWX. It is equivalent to the following
problem:

N
~ . 1
proxy, (") =argmin =3 pi(1—p)(Zi— o, ~XiB)’
2 i=1

+AP, (B) + B Lpo. (6)

To solve problem (6), we refer to the coordinate
descent algorithm [41]. Given §, the objective function
is convex and smooth with respect to Sy, thus we can
compute the elements in Sy simultaneously. Given Sy, the
objective function is nonsmooth when L; penalty exists,
and may be convex or not depending on the penalty
term for 8. When we use the Abs-Network penalty, it is
nonconvex. However, as described in [41, 42], this term
follows the regularity condition, which implies that if
moving along all coordinate directions fail to decrease
the objective function, it arrives at the local minimum.
Thus we can use the coordinate descent algorithm.
In the following, we derive the computation proce-
dure for (6) with Abs-Network penalty. For other
penalties mentioned above, the computation pro-
cedure is similar. Given B, Bp should satisfy the
equation:

(;[W 4 2@) Bo = W(Z - XB), @)
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which is obtained by computing the partial derivative
with respect to fo. Given By, we compute B using cyclic
coordinate descent, which can be computed using:

B = S(ux, vi), 8)
where
v Zim Wi (Z" — o — X Xyﬁf)
Uy =
1 N 2 A,
N 2im WiilXi + A1 — o) X 7
ey S B,
ra— Al —a) Z,;ﬁk \/ﬁﬂAk'/
Vi =

LWk A e

Here, we use fo, ,3,' to denote the fixed parameters in the
coordinate descent process. S(u,v) is a soft-thresholding
function defined as: S(u, v) = sign(u) max(|u| — v,0). Ag;
denotes the (k,j) entry in the network adjacency matrix
for the variables, d; denotes the degree of the j-th variable
in the network of variables. Algorithm 1 shows the full
process of computing f. For other penalties, we can infer
the algorithm similarly.

Algorithm 1 Network-based integrative logistic regres-
sion
Input:
Information for all the considered samples: X, Y;
Normalized network Laplacian for the variables: L;
Network Laplacian for the datasets information: L;
Parameters: A, u, o.
Output:
Coefficients in logistic regression model:fo, B;
repeat
Compute Z using (4);
repeat
Compute By by solving the linear equations (7);
fork =1topdo
Compute B using (8);
end for
until The objective function in (6) converges
until The objective function in (3) converges
return Sy, S;

After the computation, we can get 8 and Sp. Then we
average the value 8" to get an estimate of the constant
term for the data in the m-th experiment, and do the
prediction.

Results

In this section, we first evaluate the proposed integra-
tive logistic regression model using simulation studies,
we then apply the method to multiple gene expression
datasets for studying breast cancer metastasis.
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Simulation study

The experiments are designed to classify the case/control
samples using gene expression datasets. We simulated the
gene expression datasets using the similar method as that
in [11]. Suppose we have nyr transcription factors (TFs)
and each regulates npg genes. The resulting regulatory
network includes n1r 4 ngg genes and the edges between
each of the TFs and the regulated genes. We assume four
TFs and the genes that they regulate are related to the
response Y. We generated the input variables using the
following distributions:

e The expression levels for the nyr TFs follow standard
normal X7 ~ N(0,1);

e The expression levels of the TF and the gene that it
regulates are jointly distributed as a bivariate normal
with a correlation of 0.7, which implies that
conditioning on the expression level of the TF, the
regulated gene expression level follows normal
distribution: N (0.7X 7F;» 0.51).

We designed two settings of the regression coefficients.
The first one is shown in (9),

5|5 5 5 -5 -5 _5
B V100 V10 V/10° V107 V10
—— ——
7

- -5 -5 5 5 5
V100 V100 V/10° V10 V10
~———— ————
7
3 3 -3 -3 -3
\/gx P ) ) bl )
V10 V10 V10" /10" /10

V3, =2 3 3 3 3 5 0 |(9)
)m) ,m’ lo’m’m, bl b

—~—
7

The constant term fy is set to be different in multiple
datasets. Here, we generated four different datasets, and
the mean of BJ": Bg‘ for m = 1,2,3,4 is set to be — 3,
—1, 1, and 3. By for each sample i follows N (B(’)”,O‘S).
In this case, when integrating the four datasets, one main
concern for predicting Y is the batch effects shown in By.
Y; is generated following Bernoulli distribution with the
probability P(Y; = 1|X;).

The second setting is that the regression coefficients
for the TFs and their regulated genes are generated using
uniform distribution in [0, 3], with their signs shown in
the following vector:
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——— e —— s — ) —— —

11 11 7 4
_1’...,_1’1,...’1 R (10)
————— ——

7 4

where ‘1’ means the corresponding coefficient is positive,
and ‘-1’ negative. Similarly, we set the mean of gj’ for
m = 1,2,3,4 to be —3,—1,1, and 3. The heterogeneity
of the datasets is shown in both the regression coeffi-
cients and the constant term for different datasets. Y; is
also generated following Bernoulli distribution with the
probability P(Y; = 1]X;).

For each setting, we generated 100 training samples and
100 test samples for the four datasets. We set © = 1 and
a = 0.5 directly except the LASSO penalty, and used
5-fold cross validation (CV) to train the model and got the
parameter A. Then we applied the model obtained using
the full training set with the parameters that gave the best
AUC (area under ROC curve) to see the prediction results
in the test set. We took prediction sensitivity, specificity,
accuracy, AUC, and the variable selection precision, recall,
F; score to measure the prediction and variable selec-
tion results of the model. The variable penalty term is
set to be LASSO [2], elastic net (Enet) [10], network con-
straint (Network) [11], and network-regularized penalty
using absolute value of the coefficients (Abs-Network)
[12]. We note that better results are expected if we use CV
to choose all these three parameters (i, o, 1) together at
the cost of more parameter tuning computation time.

To evaluate the performance of the proposed method,
we compared it with the methods without integration,
direct data merging, and MetaLasso [36]. For the results
obtained without integration, we trained the model in
each of the four training datasets separately, and predicted
the samples in all the four test sets. We then recorded
the best result among the four. For direct data merging,
we merged the four training sets as the training set, and
the four test sets as the test set, followed by the penal-
ized logistic regression. We implemented the R package
‘MetaLasso’ for MetaLasso [36]. We added the prefix ‘Int-’
to denote the method after integration using the corre-
sponding penalty, and ‘Merge-’ to denote a direct merging
of all the datasets. We implemented the whole computa-
tion process for 30 times for each method, and computed
the mean and standard deviation (sd) values of the seven
evaluation measures.

Tables 1 and 2 show the prediction and variable selec-
tion results for setting 1, and Tables 3 and 4 show the
results for setting 2. We highlighted the highest val-
ues for each measure. For the prediction results, it is
clear that adding network constraints to integrate multi-
ple datasets in the model improves the results under both
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Table 1 Prediction results for simulation setting 1
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Table 3 Prediction results for simulation setting 2

Prediction Prediction
Method Sensitivity  Specificity  Accuracy  AUC Method Sensitivity Specificity Accuracy AUC
LASSO 0.63(0.05) 0.62(0.04) 062(0.02) 0.66(0.02) LASSO 0.63(0.05) 0.64(0.08) 0.62(0.02) 0.66(0.03)
Enet 0.65(0.05)  0.64(0.05) 0.63(0.02) 0.68(0.02) Enet 61(0.04) 0.63(0.06) 61(0.03) 0.65(0.03)
Network 0.82(0.06) 0.82(0.06) 0.81(0.05)  0.89(0.05) Network 0.83(0.04) 0.85(0.06) 0.84(0.04) 0.92(0.04)
Abs-Network 0.82(0.05) 0.82(0.06) 0.81(0.04) 0.89(0.04) Abs- 0.85(0.05) 0.84(0.05) 0.84(0.03) 0.92(0.03)
Network
Merge-LASSO 0.65(0.04) 0.65(0.06) 063(0.02) 0.68(0.02)
Merge- 0.63(0.05) 0.63(0.06) 0.61(0.02) 0.66(0.02)
Merge-Enet 0.65(0.05) 0.64(0.05) 063(0.02) 0.68(0.02) LASSO
Merge-Network 0.87(0.04) 0.88(0.03) 0.88(0.03) 0.95(0.02) Merge- 0.62(0.04) 0.63(0.07) 0.61(0.02) 0.66(0.02)
Merge-Abs-Network 0.88(0.04)  0.88(0.03) 0.88(002)  0.95(0.02) Enet
Merge- 0.82(0.04) 0.87(0.03) 0.84(0.03) 0.93(0.02)
Int-LASSO 0.88(0.02) 0.88(0.02) 0.88(0.02) 0.96(0.01) Network
Int-Enet 0.88(0.02) 0.88(0.02) 0.88(0.02) 0.96(0.01) Merge- 0.81(0.04) 0.86(0.04) 0.83(0.03) 0.92(0.03)
Int-Network 0.89(0.02)  0.90(0.02) 0.89(0.01)  0.96(0.01) Abs-
Network
Int-Abs-Network 0.90(0.02) 0.90(0.02) 0.90(0.01) 0.97(0.01)
Int- 0.82(0.03) 0.89(0.03) 0.85(0.03) 0.93(0.02)
Metalasso 075(005)  076(0.04) 076(0.04)  0.84(0.04) LASSO
Bis shown in (9), (B), B2 B2, BL) = (=3,-1,1,3) Int-Enet 0.82(0.04) 0.89(0.03) 0.85(0.03) 0.94(0.02)
The maximum value for each measure is highlighted using boldface font Int- 0.88(0.04) 0.87(0.03) 0.87(0.02) 0.95(0.02)
Network
of our simulation settings. Normally, direct data merg-  |nt-Abs- 0.89(0.04)  0.87(0.04) 0.88(0.02)  0.95(0.02)
ing outperforms the methods without integration, and ~ Network
integration outperforms direct merging. For MetaLasso,  Metalasso 0.81(0.03) 0.82(0.04) 0.81(0.04) 0.90(0.03)
it only uses the LASSO penalty, and outperforms LASSO 11 sign of s shown in (10), (B}, B2, B2, Bl) = (=3.-1,1,3)

and Merge-LASSO. But it is not as good as our proposed
integration method using LASSO penalty. This shows that
our integration technique can capture more information
in multiple datasets. For the variable selection results,
the highest F; score is achieved using Int-Abs-Network,
though Merge-Network and Merge-Abs-Network achieve

Table 2 Variable selection results for simulation setting 1

The maximum value for each measure is highlighted using boldface font

the highest precision. This should come from the fact
that data merging enhances the signal of the important
variables and variable network constraints combine the
related variables. However, merging may miss some
associated genes due to the heterogeneity across multiple

Table 4 Variable selection results for simulation setting 2

Variable selection

Variable selection

Method Precision Recall F1 Score Method Precision Recall Fy Score
LASSO 0.93(0.02) 0.26(0.06) 0.60(0.06) LASSO 0.91(0.04) 0.28(0.06) 0.60(0.07)
Enet 0.90(0.04) 0.41(0.06) 0.61(0.06) Enet 0.91(0.04) 0.35(0.07) 0.62(0.06)
Network 0.85(0.02) 0.91(0.05) 0.80(0.06) Network 0.85(0.03) 0.74(0.12) 0.84(0.05)
Abs-Network 0.82(0.02) 0.95(0.05) 0.81(0.06) Abs-Network 0.83(0.03) 0.77(0.13) 0.84(0.03)
Merge-LASSO 0.94(0.02) 0.49(0.05) 0.62(0.05) Merge-LASSO 0.95(0.01) 0.42(0.08) 0.60(0.06)
Merge-Enet 0.94(0.02) 0.56(0.04) 0.61(0.07) Merge-Enet 0.95(0.01) 0.50(0.07) 61(0.05)
Merge-Network 0.99(0.01) 0.94(0.03) 0.87(0.03) Merge-Network 0.98(0.01) 0.74(0.08) 0.84(0.03)
Merge-Abs-Network 0.99(0.01) 0.98(0.02) 0.88(0.03) Merge-Abs-Network 0.98(0.01) 0.77(0.08) 0.84(0.03)
Int-LASSO 0.95(0.01) 0.49(0.05) 0.88(0.02) Int-LASSO 0.95(0.01) 0.43(0.09) 0.85(0.02)
Int-Enet 0.96(0.01) 0.65(0.04) 0.88(0.02) Int-Enet 0.96(0.01) 0.64(0.07) 0.86(0.03)
Int-Network 0.94(0.04) 0.96(0.03) 0.89(0.01) Int-Network 0.93(0.03) 0.83(0.07) 0.87(0.03)
Int-Abs-Network 91(0.05) 0.98(0.02) 0.90(0.01) Int-Abs-Network 0.92(0.04) 0.84(0.09) 0.88(0.03)
MetaLasso 0.94(0.01) 0.05(0.02) 0.75(0.04) Metalasso 0.94(0.01) 0.04(0.02) 0.81(0.04)
Bisshownin ), (B, B3 B3, Bg) = (=3,—1,1,3) The sign of B is shown in (10), (B3, B2, B3 BS) = (—=3,—1,1,3)

The maximum value for each measure is highlighted using boldface font

The maximum value for each measure is highlighted using boldface font
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datasets, which may lead to a lower recall in some
experiments. Compared to it, Int-Abs-Network performs
more robust and gets the highest F; score.

Real data study

We downloaded two datasets GSE2034 and GSE1456
from Gene Expression Omnibus (GEO). These two
datasets were generated for studying breast cancer metas-
tasis. The information of the samples is shown in Table 5.
Both datasets were measured on Affymetrix HGU133
microarrays, and each dataset includes 22283 transcripts.
We combined those probes corresponding to the same
gene using their mean value as the gene expression level.
We then downloaded the protein-protein interaction
(PPI) data from https://thebiogrid.org for the humans,
and removed the genes that have no information in the
PPI network. We chose 2000 genes with the largest vari-
ance from each dataset and took their intersection as our
considered gene set. Finally a total of 1456 genes were
selected. For each gene, we imputed the missing value
using the mean value of the gene, and normalized the
expression of each gene.

We applied three types of methods to these two
datasets. The first type of method applied logistic regres-
sion model with the four penalties to the merged data
directly. The second type is MetaLasso, and our proposed
method is as the third type. When using our method, we
set © = 1 and o = 0.5 except LASSO penalty. We selected
the parameter A using 3-fold cross validation between 0.02
to 0.1 with a step size 0.02 and got the AUC under ROC
curve. We then trained the model using the whole dataset
and got the biomarkers. Table 6 shows the mean of AUCs
and its standard deviation when doing CV. It’s clear that
our method outperforms direct data merging. MetaLasso
achieved the AUC value 0.62 with sd 0.02, and it selected
three genes as the biomarkers. In [14], several biomarker
identification methods have been applied to these two
datasets separately. The best AUC for GSE2034 is 0.690
and 0.736 for GSE1456, respectively. The stability for the
selected genes measured using Jaccard index is about 0.2,

Table 5 Datasets summary [14]

Dataset Publication  # Patients  Classification # patients
GSE2034 [44] 242 time to relapse < 95

Sy &relapse=True

time to relapse > 147

7y & relapse

=False
GSE1456 [45] 111 time to relapse < 35

Sy &relapse=True

time to relapse > 76
7y & relapse
=False
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Table 6 Real data results. Metalasso achieved the AUC
0.62(0.02), and selected 3 genes as biomarkers

Data Merging Our model
Penalty AUC # Genes AUC # Genes
LASSO 0.67(0.01) 59 0.70(0.03) 122
Enet 0.67(0.01) 306 0.69(0.02) 104
Network 0.58(0.01) 255 0.70(0.04) 214
Abs-Network 0.59(0.03) 285 0.67(0.01) 270

which means the intersection of the selected genes in
both datasets over their union is about 0.2. This shows
the instability of biomarker identification from different
datasets. With our method, using the same biomark-
ers, we can get a comparable AUC 0.70. We note that,
if we tune all the three parameters X, «, i together, we
may get better results at the cost of more computational
time.

As we know, when LASSO penalty is applied, less genes
will be selected, while when the elastic penalty is added,
the correlated genes can be selected. By adding the PPI
network related penalties, we aim at finding the subnet-
works that cooperatively contribute to the disease devel-
opment. Table 6 also shows the number of the selected
genes for different penalties. Since the development of dis-
ease is a very complex process, subnetwork biomarkers
are reasonable. We presented the subnetwork biomarker
identification using Abs-Network penalty in the following.

When using Abs-Network penalty, 270 genes were
selected, among which there are 30 connected subnet-
works. We put all the 30 subnetworks in Additional file 1.
Figure 1 shows the connected components. We also did
gene ontology (GO) enrichment analysis and KEGG path-
way enrichment analysis for these subnetworks using
“clusterProfiler” [43]. Twenty one of all these networks
are enriched by GO: CC, MF and BP, and KEGG path-
way. We put all these enrichment results in Additional
files 2, 3, 4, and 5. One typical subnetwork is shown in
Fig. 2. This subnetwork is enriched by KEGG pathway
hsa05224: breast cancer with an adjusted p-value 1074,
There are 7 genes in this subnetwork, of which three
genes (“GSK3B” , “CTNNB1”, “PIK3CA”) are associated
with breast cancer. And these three genes are also associ-
ated with some other cancers such as endometrial cancer,
colorectal cancer, prostate cancer, and others. GSK3B
interacts with CTNNI1, while it interacts with PIK3CA
through BEX1.

Discussion

Biomarker identification has been a hot research topic for
several years. Many mathematical and statistical models
and algorithms have been proposed to tackle this problem.
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Fig. 1 Identified subnetwork biomarkers using network-based integrative logistic regression with Abs-Network penalty

However, due to the heterogeneity of datasets from dif-
ferent platforms or laboratories, the biomarkers inferred
from one single dataset are lack of reproducibilities. Even
different datasets are generated for the same purpose,
the intersection of the inferred biomarkers is small. This

motivates us to consider the integrative methods for
robust biomarker identification using multiple datasets.
In this work, we assumed the regression coefficients
of the variables for multiple datasets are the same. The
differences in predicting the response of each sample

Fig. 2 One identified subnetwork biomarker using network-based integrative logistic regression with Abs-Network penalty
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lie in the constant term. To combine the information
from different samples, we added the network penalty to
make the constant term within the same dataset be the
same. To achieve the biomarker identification purpose,
we added more penalties than LASSO, such as network
related penalties to select the subnetworks as biomark-
ers. We then developed proximal Newton method to solve
the optimization problem, and gave the detailed formula-
tions for the Abs-Network penalty. Algorithms for other
formulations can be easily inferred. Since this algorithm
involves solving linear equations, it is slower than that
solving the model without integration term. Developing
faster algorithms so as to apply the model to larger dataset
is very important.

We applied the proposed model to both simulated
datasets and real datasets. For the simulation study, it
is not easy to make simulations similar to the real data.
We tried two different settings to see the performance
of the model. Both experiments gave reasonable results.
In the real data study, we integrated two breast can-
cer gene expression datasets. We compared the results
with direct merging the datasets and MetaLasso, and we
checked the existing works on biomarker identification
and prediction in each dataset separately. Our method
performs much better than direct merging and Meta-
Lasso. And it achieved results comparable to the best
results in each single dataset. All these results show the
good performance of our proposed method. In our model,
we assumed the sources of the test dataset are included
in that of the training dataset, thus when we do predic-
tion, we can directly use the corresponding constant term
in logistic regression. This limits the application of the
proposed model for the datasets whose sources are not
known.

In this study, we tested our method in only one real data
setting. Other datasets may not have the same properties
as our tested datasets. Thus applying our model to more
real datasets, and incorporating more information to the
model so as to improve the prediction accuracy is one of
the future works.

Conclusions

In this work, we proposed an integrative method for clas-
sification based on logistic regression model. By adding
a network-based penalty for the constant term in logis-
tic regression for the samples from different datasets,
both the homogeneity within each dataset and the het-
erogeneity between different datasets are kept. After
adding network related penalties besides LASSO, sub-
network biomarkers can be identified. In both sim-
ulation datasets and the real datasets, the proposed
method shows good performance. This method may help
better identify the biomarkers by integrating multiple
datasets.
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Additional files

Additional file 1: The identified subnetwork biomarkers. The identified
subnetwork biomarkers using network-based integrative logistic
regression with Abs-Network penalty. (TXT 2 kb)

Additional file 2: GO:BP enrichment results of the subnetwork
biomarkers. The enrichment of GO: BP is included. (XLSX 220 kb)
Additional file 3: GO:.CC enrichment results of the subnetwork
biomarkers. The enrichment of GO: CC is included. (XLSX 46 kb)
Additional file 4: GO:MF enrichment results of the subnetwork
biomarkers. The enrichment of GO: MF is included. (XLSX 69 kb)

Additional file 5: KEGG pathway enrichment results of the subnetwork
biomarkers. The enrichment of KEGG pathway is included. (XLSX 36 kb)

Abbreviations

Abs-Network: Network regularized penalty using absolute value of the
coefficients; Enet: Elastic net; LASSO: Least absolute shrinkage and selection
operator
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