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Abstract

Background: Evidences have increasingly indicated that lncRNAs (long non-coding RNAs) are deeply involved in
important biological regulation processes leading to various human complex diseases. Experimental investigations of
these disease associated lncRNAs are slow with high costs. Computational methods to infer potential associations
between lncRNAs and diseases have become an effective prior-pinpointing approach to the experimental verification.

Results: In this study, we develop a novel method for the prediction of lncRNA-disease associations using bi-random
walks on a network merging the similarities of lncRNAs and diseases. Particularly, this method applies a Laplacian
technique to normalize the lncRNA similarity matrix and the disease similarity matrix before the construction of the
lncRNA similarity network and disease similarity network. The two networks are then connected via existing
lncRNA-disease associations. After that, bi-random walks are applied on the heterogeneous network to predict the
potential associations between the lncRNAs and the diseases. Experimental results demonstrate that the performance
of our method is highly comparable to or better than the state-of-the-art methods for predicting lncRNA-disease
associations. Our analyses on three cancer data sets (breast cancer, lung cancer, and liver cancer) also indicate the
usefulness of our method in practical applications.

Conclusions: Our proposed method, including the construction of the lncRNA similarity network and disease
similarity network and the bi-random walks algorithm on the heterogeneous network, could be used for prediction of
potential associations between the lncRNAs and the diseases.
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Background
Long non-coding RNAs (lncRNAs) form a new class
of important ncRNAs, with length longer than 200nt
[1–3]. Accumulating evidences have indicated that a large
quantity of lncRNAs play critical roles in many impor-
tant biological processes such as chromatin modifica-
tion, transcriptional and post-transcriptional regulation,
genomic splicing, differentiation, immune responses, and
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cell cycle control [1–4]. Mutations and dysregulations
of these lncRNAs have been found to be linked to the
development and progression of various complex human
diseases [2, 3].

Computational models have been developed to pre-
dict potential associations between lncRNAs and diseases.
Chen et al. [4] had an assumption that functionally sim-
ilar lncRNAs tend to associate with similar diseases and
vice versa. Based on this assumption, Chen et al. [4] pro-
posed a method of Laplacian regularized least squares for
lncRNA-disease association (LRLSLDA) to infer human
lncRNA-disease associations. LRLSLDA calculates the
Gaussian interaction profile kernel similarity for both
diseases and lncRNAs based on known lncRNA-disease
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associations, and computes the lncRNA expression sim-
ilarity of Spearman correlation coefficient between each
lncRNA pair, then utilizes Laplacian regularized least
squares in the lncRNA space and disease space to com-
bine the optimal classifiers in these spaces to identify
potential associations. LRLALDA is a semi-supervised
classification algorithm that does not require negative
training samples. However, a major issue of LRLSLDA is
how to combine two classifiers and how to select suitable
parameters. Chen et al. [5] developed two novel calcula-
tion models for lncRNA functional similarity (LNCSIM).
Chen et al. [6] proposed a fuzzy measure-based LNCRNA
functional similarity computational model(FMLNCSIM).
Chen et al. [7] introduced the model of KATZ measure to
predict potential lncRNA-disease association.

Based on the fact that non-coding genes are often coop-
erated in human diseases to predict potential lncRNA-
disease association, Peng et al. [8] proposed a new vector
to represent diseases, and applied the newly vectorized
data for a positive unlabeled learning algorithm to predict
and rank disease-related lncRNAs. Ding et al. [9] pro-
posed a model constructing lncRNA-disease-gene tripar-
tite graphs (TPGLDA) includes gene-disease associations
and lncRNA-disease associations, and then applied to the
process of resource-allocation on tripartite graphs to con-
struct the potential lncRNA-disease association. However,
TPGLDA only focuses on unweighted tripartite graphs.

Some models predict novel associations without refer-
ring to known associations between lncRNAs and dis-
eases. Chen [10] proposed a model of hypergeometric
distribution for lncRNA-disease association (HGLDA) to
predict potential lncRNA disease associations. Zhou et al.
[11] proposed a rank-based method called RWRHLD,
which integrates the miRNA-lncRNA association net-
work, disease-disease similarity network and known
lncRNA-disease association network into a heteroge-
neous network and implementing a random walk with
restart on this heterogeneous network to predict novel
lncRNA-disease associations. However, RWRHLDA can-
not be applied to lncRNAs without a known miRNA
interaction partner.

Some computational models have been applied to pre-
dict lncRNA-disease associations based on random walk
on networks. Chen et al. [12] considered the limitations
of traditional random walks with restart (RWR), and pro-
posed a model of improved random walk with restart
(IRWRLDA) to predict lncRNA-disease associations. Sun
et al. [13] proposed a method of RWRlncD based on global
network to predict potential lncRNA disease associations.
However, RWRlncD only considers lncRNAs which have
known associations with the disease and ignores lncRNAs
that are currently not associated with the disease. Consid-
ering the differences in the network topology of lncRNA
and disease, Gu et al. [14] proposed a random walk

model on global networks for predicting lncRNA-disease
associations (GrwLDA). Yu et al. [15] proposed a model
that performs bi-random walks to predict lncRNA-disease
associations (BRWLDA). However, BRWLDA only con-
siders the semantic similarity of the disease, and the tran-
sitional probability between diseases is only empirically
estimated.

In this study, we propose a novel computational model
of Laplacian normalization and bi-random walks on
heterogeneous networks for predicting lncRNA-disease
associations (Lap-BiRWRHLDA). Firstly, the method cal-
culates the Gaussian interaction profile kernel similarity
of lncRNAs and diseases by known lncRNA-disease asso-
ciations. Next, we integrate the two sources of similarity
to construct an lncRNA-lncRNA similarity network. The
disease-disease similarity network can be constructed by
the profile kernel similarity of diseases. Subsequently we
perform Laplacian normalization on the similarity matri-
ces of lncRNAs and diseases as the transpose matrices.
Furthermore, we apply random walks on the lncRNA
similarity network and the disease similarity network,
respectively. Finally, we use a weighted average of ran-
dom walks on both networks as a predictor of lncRNA
disease associations. We believe that the higher scores
of lncRNA-disease associations will have greater possi-
bility for further verification. To evaluate our proposed
method, we utilize leave-one-out cross-validation experi-
ments to demonstrate its superior performance compared
with existing approaches. Furthermore, the analyses of
three cancers (namely, breast cancer, lung cancer, and
liver cancer) effectively support the practical application
of our method. We then use Lap-BiRWRHLDA to infer
potential lncRNA-disease associations. Some high-score
results are successfully verified by the LncRNADisease
and Lnc2Cancer databases.

Results
Leave-one-out cross-validation
To assess the performance of our proposed method, we
use the leave-one-out cross-validation to perform the
assessment. We leave out each known lncRNA-disease
association in turn as test sample, while other known rela-
tionships are used as training samples and all unknown
relationships are taken as candidate samples. Since disease
similarity and lncRNA similarity depend on the Gaussian
interaction profile kernel similarity of the known lncRNA-
disease association, the disease similarity and lncRNA
similarity will change when we delete a known lncRNA-
disease association, so we will get different similarities.

A receiver-operating characteristics (ROC) curve
is applied to determine the predictive performance,
which plots the correlation between true-positive rate
(TPR) indicating sensitivity and false-positive rate (FPR)
indicating specificity at different thresholds. Sensitivity
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represents the percentage of the left-out associations
achieving the ranking higher than a given threshold;
specificity means the percentage of candidate associations
achieving the ranking lower than this given threshold.
When we vary thresholds, we will obtain the correspond-
ing different TPRs and FPRs. In this way, ROC is drawn
and AUC is calculated. As a result, Lap-BiRWRHLDA
achieved the AUC of 0.8409, 0.8527 and 0.8429 for three
datasets used, respectively.

The effect of parameters in Lap-BiRWRHLDA
Parameter α controls the probability of the random walk
restart. To optimize the parameter α, we increased α

from 0.1 to 1 with step size 0.1, and then calculated the
corresponding AUC value by LOOCV. After experimen-
tal verification, we chose α = 0.9, and we achieved
the AUC values of 0.8409. The experimental results indi-
cate that Lap-BiRWRHLDA offers better performance
on the LncRNADisease dataset on October 2012, when
α = 0.9 is selected. Similarly we achieved the AUC val-
ues of 0.8527 (α = 0.2) and 0.8429 (α = 0.8) based on
Lnc2Cancer dataset on July 2016, and the LncRNADisease
dataset on April 2016.

Performance comparison with other methods
We compared Lap-BiRWRHLDA with previous pub-
lished methods in LOOCV based on the LncRNADisease
dataset on October 2012. (1) LRLSLDA [4] computes
Gaussian interaction profile kernel similarity for both
diseases and lncRNAs from known lncRNA-disease asso-
ciations and lncRNA expression profiles, and then applies
the framework of Laplacian regularized least squares to
identify potential associations. (2) GrwLDA [14] pre-
dicts potential associations by a random walk model on
global networks for predicting lncRNA-disease associa-
tions (GrwLDA). The comparison is shown in Fig. 1. We
also compared our method, LRLSLDA and GrwLDA in
LOOCV based on the LncRNADisease dataset on April
2016. The comparison is shown in Fig. 2. Figure 3 shows
the comparison of Lap-BiRWRHLDA, LRLSLDA and
GrwLDA in LOOCV based on the Lnc2Cancer dataset on
July 2016. These comparisons consistently indicate a bet-
ter performance of our method over the state-of-the-art
methods for predicting lncRNA-disease associations.

We also compared the LncRNADisease dataset on April
2018 with the LncRNADisease dataset on October 2012,
then selected 50 lncRNA-disease associations which were
unverified in the LncRNADisease dataset on October
2012 but were verified in the LncRNADisease dataset on
April 2018. We compared our method with LRLSLDA,
GrwLDA by independently testing the ranking of the 50
relationships. Through experimental tests, our method
has 30 rankings higher than the LRLSLDA method, and
41 rankings higher than the GrwLDA method.

Case studies
To further highlight the performance of Lap-
BiRWRHLDA, we studied the predictive performance of
three cancers: breast cancer, lung cancer, and liver cancer.
For each type of cancer, we take the top 10 most probable
lncRNAs as candidates associated with this cancer. Next,
we manually checked these lncRNAs by mining biomedi-
cal literature from the LncRNADisease dataset and the
Lnc2Cancer dataset.

Breast cancer is the second leading cause of female
cancer deaths, comprising 22% of all cancers in women
[16, 17]. Lap-BiRWRHLDA identifies potential lncRNAs
associated with breast cancer and six of the top 10 ver-
ified by the recent LncRNADisease dataset. The list in
Table 1 shows the lncRNAs associated with breast cancer.
Lung cancer is one of the fastest increases in morbidity
and mortality, and one of the greatest threats to human
health and life. In the past 50 years, many countries have
reported that the incidence and mortality of lung can-
cer are significantly higher. The incidence and mortality
of male lung cancer account for the first place among all
malignant tumors. Lap-BiRWRHLDA identifies eight out
of the top 10 verified (see Table 2). Liver cancer is the
fifth most commonly diagnosed cancer and the second
most frequent cause of cancer deaths in men worldwide
[18, 19]. Lap-BiRWHLDA correctly identifies five liver
cancer related lncRNAs. Table 3 lists the lncRNAs related
to liver cancer. From these case studies, we can con-
clude that Lap-BiRWRHLDA is a powerful tool for pre-
dicting lncRNA-disease associations with a high level of
reliability.

Discussion
Accumulated experimental evidences have shown that
lncRNAs play an important role in the human com-
plex disease mechanism, and mutations or disorders of
lncRNAs are associated with various complex diseases.
More and more evidences show that it is crucial to pro-
pose an effective computational model to infer potential
lncRNA-disease associations. In this article, we proposed
a novel computational model of Laplacian normaliza-
tion and bi-random walks on heterogeneous networks
for predicting lncRNA-disease associations. Our method
shows better performance in LOOCV experiments by
comparison with previous methods. In 50 unverified
lncRNA-disease associations experiments, We compared
our method with LRLSLDA, GrwLDA. The results indi-
cated that our method has the higher ranking. Further-
more, the study of the cases of breast cancer, lung cancer,
and liver cancer shows that our method improves the
performance of predicting potential relationships.

Although our method can improve the prediction accu-
racy, it still has some limitations. For example, construc-
tion of the disease-disease similarity matrix relies on the
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Fig. 1 Performance comparison between La-BiRWRHLDA, LRLSLDA and GrwLDA based on the LncRNADisease dataset on October 2012

Gaussian interaction profile kernel similarity matrix for
diseases from the known disease-lncRNA associations. In
further work, we will improve our method in the following
aspects: Firstly, Lap-BiRWRHLDA relies on the calcula-
tion of similarity matrix when constructing an lncRNA

similarity network, and so the incompleteness of data may
affect the final performance. Therefore, the integration
of gene disease correlation data or the addition of more
bioinformatics data may improve the performance of our
method. These aspects have been considered in previous

Fig. 2 Performance comparison between La-BiRWRHLDA, LRLSLDA and GrwLDA based on the LncRNADisease dataset on April 2016
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Fig. 3 Performance comparison between La-BiRWRHLDA, LRLSLDA and GrwLDA based on the Lnc2Cancer dataset on July 2016

methods such as TPGLDA [9] and BRWLDA [15]. Sec-
ondly, the bi-random algorithm performs random walk
restarts on lncRNA similarity networks and disease simi-
larity networks separately; how to better integrate random
walks on two networks is an issue in our future research.

Conclusions
In this study, we proposed a method called Lap-
BiRWRHLDA to predict the relationship between
lncRNA and diseases. This model utilizes the Laplacian
normalization of the lncRNA similarity matrix and the
disease similarity matrix. Then constructs a heteroge-
neous network based on lncRNA similarity network,
disease similarity network and available lncRNA-disease
associations. Next, it applies bi-random walks on the
heterogeneous network to predict potential associations
between lncRNAs and diseases. Our method can be used

Table 1 Breast cancer associated lncRNAs in the top 10 ranking
list of Lap-BiRWLDA

Cancer type lncRNA Rank Evidence

Breast MALAT1 1 LncRNADisease,Lnc2Cancer

Breast BCYRN1 2 LncRNADisease

Breast H19 3 LncRNADisease,Lnc2Cancer

Breast PVT1 5 LncRNADisease,Lnc2Cancer

Breast NEAT1 6 Lnc2Cancer

Breast TUG1 8 Lnc2Cancer

to better identify potential associations between lncRNAs
and diseases.

The reason why our method has good results is mainly
due to two factors. On the one hand, we exploit the sim-
ilarity of lncRNAs by integrating Gaussian interaction
profile kernel similarity of lncRNA and lncRNA expres-
sion similarity, and then apply Laplacian normalization.
We also rely on lncRNA similarity matrices to construct
an lncRNA similarity network. On the other hand, the bi-
random walk algorithm simulates random walk restarts
on the lncRNA similarity network and disease similarity
network; we then infer the relationship between lncRNAs
and diseases by weighted averaging. We believe that the
higher the score of potential lncRNA-disease relationship
is, the higher the probability of association is.

Table 2 Lung cancer associated lncRNAs in the top 10 ranking
list of Lap-BiRWLDA

Cancer type lncRNA Rank Evidence

Lung PVT1 1 Lnc2Cancer

Lung H19 2 LncRNADisease,Lnc2Cancer

Lung MALAT1 3 LncRNADisease ,Lnc2Cancer

Lung HOTAIR 4 LncRNADisease,Lnc2Cancer

Lung BCYRN1 5 LncRNADisease

Lung UCA1 6 lnc2Cancer

Lung GAS5 7 lnc2Cancer

Lung MEG3 9 LncRNADisease,Lnc2Cancer
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Table 3 Liver cancer associated lncRNAs in the top 10 ranking
list of Lap-BiRWLDA

Cancer type lncRNA Rank Evidence

Liver H19 1 LncRNADisease,Lnc2Cancer

Liver MALAT1 2 LncRNADisease,Lnc2Cancer

Liver HOTAIR 5 LncRNADisease

Liver UCA1 7 Lnc2Cancer

Liver MEG3 9 Lnc2Cancer

Methods
Data sets
We downloaded three data sets of lncRNA-disease asso-
ciations from the supplementary files of published arti-
cles [4, 8], which contains 293 experimentally confirmed
lncRNA-disease relationships between 167 diseases and
118 lncRNAs from the LncRNADisease database on
October 2012 [4], 454 known lncRNA-disease associ-
ations between 162 diseases and 187 lncRNAs from
the LncRNADisease database on April 2016, and 594
lncRNA-disease associations between 79 diseases and 310
lncRNAs from the Lnc2Cancer database on July 2016 [8].
The adjacency matrix of lncRNA-disease associations is
denoted as A, where the value A(i, j) of row i and column
j is 1 if disease d(i) is related to lncRNA l(j), otherwise it
is 0. Let L = {l(1), l(2), · · · , l(nl)} denote the set of lncR-
NAs, and D = {d(1), d(2), · · · , d(nd)} denote the set of
diseases.

We also downloaded lncRNA expressions and the gene
expression levels from the supplementary files of the pub-
lished articles [4, 8], which contain 21626 expression
profiles across 22 human tissues or cell types and 60245
gene expression levels in 16 tissues. Let set L1, where L1
is composed of lncRNAs with lncRNA expression pro-
files (L1 ⊆ L). According to the previous approaches [4],
if l(i), l(j) ∈ L1, we calculated the Spearman correla-
tion coefficient of l(i) and l(j) as the lncRNA expression
similarity. The lncRNA expression similarity matrix is rep-
resented by matrix SPC, where SPC(l(i), l(j)) is the expres-
sion similarity between l(i) and l(j) if they belongs to L1,
otherwise 0.

Laplacian normalization
Suppose that M = M(i, j), i, j = 1, 2, · · · , N , is a symmet-
ric matrix, D is a diagonal matrix of which D(i, i) is the
sum of row i of M and D(i, j) = 0 for i �= j. M is normal-
ized by M̂ = D−1/2MD−1/2, which also yields a symmetric
matrix. The elements of M̂ are defined by

M̂(i, j) = M(i, j)
√

D(i, i)D(j, j)
(1)

This process is called Laplacian normalization of M. It is
often used to normalize a weighted matrix of a network
[4, 20, 21].

Construction of the lncRNA-lncRNA similarity matrix
Based on the assumption that similar diseases tend to
show a similar interaction or non-interaction with the
lncRNAs, the Gaussian interaction profile kernel similar-
ity of lncRNAs can be calculated from known lncRNA-
disease associations [4]. The lncRNA interaction profile
IP(l(i)) is a binary vector which is 1 if lncRNA l(i) is
related to the disease, 0 otherwise, defined as the i-th
column of the adjacency matrix A of the known lncRNA-
disease association network constructed above. Then we
can calculate the Gaussian interaction profile kernel sim-
ilarity of lncRNA l(i) and lncRNA l(j) from their interac-
tion profiles as

KL(l(i), l(j)) = exp
(−γl‖IP(l(i)) − IP(l(j))‖2) , (2)

where the parameter γl controls the kernel bandwith,
which is calculated based on the new kernel bandwidth
parameter γ ′

l as follows:

γl = γ ′
l /

⎛

⎝ 1
nl

nl∑

i=1
‖IP(l(i))‖2

⎞

⎠ , (3)

where nl denotes the number of lncRNAs. For simplicity
we set γ ′

l = 1 as in the previous works [4, 22].
Following previous approaches [4], we construct the

similarity of lncRNAs by combining the lncRNA expres-
sion similarity and Gaussian interaction profile kernel
similarity. We denote by SL the lncRNA similarity matrix,
where the element SL(i, j) defines the similarity between
lncRNA l(i) and lncRNA l(j) as

SL(l(i), l(j)) =
{

ew · SPC(l(i), l(j)) + (1 − ew) · KL(l(i), l(j)), if l(i), l(j) ∈ L1

KL(l(i), l(j)), otherwise

(4)

where SPC(l(i), l(j)) represents the expression profile sim-
ilarity of lncRNA l(i) and lncRNA l(j), and its value is
the Spearman correlation coefficient of lncRNA l(i) and
lncRNA l(j), so the matrix SPC is a symmetric matrix.
KL(l(i), l(j)) represents the Gaussian interaction profile
kernel similarity of lncRNA l(i) and lncRNA l(j), so the
matrix KL is also a symmetric matrix. Therefore the
lncRNA similarity matrix SL is a symmetric matrix. In
Eq. (4), ew is the weight coefficient of lncRNA expression
similarity; for simplicity we set ew = 1/2.

Next, using Laplacian normalization, the element
SL(i, j) is calculated through two steps:

LL′(i, j) =
{ SL(i,j)√∑

iSL(i,j)
∑

jSL(i,j)
, SL(i, j) �= 0

0, otherwise
(5)

LL(i, j) =
{

LL′(i,j)∑
jLL′(i,j) , SL(i, j) �= 0

0. otherwise
(6)
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Construction of the disease-disease similarity matrix
Similar to lncRNAs, the Gaussian interaction profile ker-
nel similarity of diseases can be constructed as

KD(d(i), d(j)) = exp
(−γd‖IP(d(i)) − IP(d(j))‖2) .

(7)

Here IP(d(i)) is defined as the i-th row of the adjacency
matrix A of the known lncRNA-disease association. It is
a binary vector representing the relationship between dis-
ease d(i) and each gene. The Gaussian interaction profile
kernel similarity matrix KD is a symmetric matrix. The
parameter γd is calculated as

γd = γ ′
d/

⎛

⎝ 1
nd

nd∑

i=1
‖IP(d(i))‖2

⎞

⎠ , (8)

where nd denotes the number of diseases; for simplicity
we set γ ′

d = 1 as in the previous works [4, 22].
From relevant research [4, 19], to improve the predictive

accuracy of disease similarity, we apply the logistic func-
tion transformation to represent the similarity of diseases.
The disease similarity is redefined as

SD(d(i), d(j)) = 1
1 + exp(c · KD(d(i), d(j)) + d)

, (9)

where c and d are two parameters, for which we adopt
the same parameter selection as in the previous studies
[4, 19], i.e. c = −15, d = log(9999). The disease similar-
ity matrix SD is a symmetric matrix. Next, using Laplacian
normalization, the element SD(i, j) is calculated through
two steps:

LD′(i, j) =
{ SD(i,j)√∑

iSD(i,j)
∑

jSD(i,j)
, SD(i, j) �= 0

0, otherwise
(10)

LD(i, j) =
{

LD′(i,j)∑
iLD′(i,j) , SD(i, j) �= 0

0. otherwise
(11)

Construction of the heterogeneous network
We first use the two matrices LD, LL to construct two
networks, namely a disease similarity network, and an
lncRNA similarity network. In the lncRNA similarity net-
work, the edge between l(i) and l(j) is weighted by the
similarity value of these two lncRNAs.

Likewise, in the disease similarity network, the edge
between d(i) and d(j) is weighted by the similarity value
of these two diseases.

Besides, the lncRNA-disease association network can be
modeled as a bipartite graph. In this graph, the heteroge-
neous nodes correspond to either lncRNA or disease, and
edges denote the presence or absence of the associations
between them. If there is a known association between
disease d(i) and lncRNA l(j), the weight of the edge is 1;
otherwise it is 0. We divide the nodes of the heteroge-
neous network into two types. Those nodes connecting
the lncRNA similarity network with the disease similarity
network are called bridging nodes, and the other nodes
are named internal nodes [21].

The heterogeneous network can be constructed by con-
necting the lncRNA similarity network and the disease
similarity network via the known lncRNA-disease associ-
ations. A simple example of a heterogeneous network is
illustrated in Fig. 4.

Fig. 4 An illustrative example of heterogeneous network. An illustrative example of heterogeneous network. The squares indicate the nodes of
diseases, and the edges between disease nodes describe the weights determined by the similarity value between diseases. The circles indicate the
nodes of lncRNAs, and the edges between lncRNAs nodes describe the weights determined by the similarity value between lncRNAs. The edges
between diseases and lncRNAs indicate the known lncRNA-disease associations, and the dashed lines indicate the predicted potential
lncRNA-disease relationship
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Fig. 5 The flowchart of Lap-BiRWHLDA

Lap-BiRWHLDA
In this study, we develop a novel computational method
called Lap-BiRWHLDA to predict human lncRNA-
disease associations. Figure 5 shows the flowchart of
Lap-BiRWHLDA. Firstly, lncRNA similarity and disease
similarity can be calculated based on the known lncRNA-
disease associations taken from the LncRNADisease
database. Secondly, the global heterogeneous network is
built by combining the lncRNA similarity network, the
disease similarity network and the lncRNA-disease asso-
ciation network. Finally, the bi-random walk algorithm
is performed on the heterogeneous network to obtain
the association probability scores between lncRNAs and
diseases.

Suppose a random walker can jump from d(1) to l(1)

and then to l(2). We can take d(1) as the starting node for
the random walk. To simulate this process, we apply a ran-
dom walk on the lncRNA similarity network. The iterative
process can be described as

RTt
L = αRTt−1

L LL + (1 − α)Rt0. (12)

Similarly, we can also apply a random walk on the
disease similarity network as follows:

RTt
D = αLDRTt−1

D + (1 − α)Rt0, (13)

where α is a parameter to control the restart probability
for the random walker, RTt

L is the predicted association
between lncRNA l and disease d in the t-th iteration, RLt

D
is the predicted relevance between disease d and lncRNA
l in the t-th iteration, with

RT0
L = RT0

D = Rt0 = A/sum(A). (14)

After the bi -random walks in the disease similarity
network and in the lncRNA similarity network in the t-
th step, Lap-BiRWHLDA further combines RTt

L and RTt
D

into RTt as follows:

RTt
L = RTt

D = RTt = RTt
L + RTt

D
2

. (15)

After several steps, when the change between RTt+1

and RTt is less than 10−10, we obtain the steady predic-
tion score matrix RT, where RT(i, j) is the probability of
potential association disease d(i) and lncRNA l(j).

Abbreviations
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