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Abstract

Background: Movement of populations on fitness landscapes has been a problem of interest for a long time.
While the subject has been extensively developed theoretically, reconciliation of the theoretical work with recent
experimental data has not yet happened. In this work, we develop a computational framework and study evolution
of the simplest transcription network between a single regulator, R and a single target protein, T.

Results: Through our simulations, we track evolution of this transcription network and comment on its dynamics
and statistics of this movement. Significantly, we report that there exists a critical parameter which controls the
ability of a network to reach the global fitness peak on the landscape. This parameter is the fraction of all
permissible values of a biochemical parameter that can be accessed from its current value via a single mutation.

Conclusions: Overall, through this work, we aim to present a general framework for analysis of movement of
populations (and particularly regulatory networks) on landscapes.
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Background

Movement of populations on fitness landscapes has been
a topic of interest for a long time. Since first proposed
by Wright [1], fitness landscapes have offered a tool for
visualization of how populations enhance their fitness
with time, and move towards local/global peaks [2, 3].
However, despite a large volume of theoretical develop-
ment of representations of landscapes, few realistic
representations exist [4—8]. This is most strongly due to
the challenges associated with gathering enough experi-
mental data to build an appropriate landscape [9-13]. A
few, recent efforts in this direction have highlighted the
challenge in building experimental systems to provide
sufficient information for our understanding of fitness
landscapes of real systems [14] .

While the experimental treatment of this subject is
still small, and theoretical contributions becoming in-
creasingly rare; alternate approaches to visualization can
be of assistance in understanding landscapes and move-
ment of populations on them. In this regard, while, given
a fitness landscape, the rules which dictate a population’s
movement on that landscape are well known; the
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primary challenge stems from limited understanding of
the precise structure on which populations are supposed
to be moving. In this regard, in a report published in
Nature, Draghi and colleagues developed a quantitative
framework for understanding the relationship between
the variables robustness and evolvability [15]. Previous
work from our group quantified how, using a cost-benefit
framework, organisms choose and optimize the value of
parameters in biochemical networks [16].

Borrowing from these two reports, we develop a quan-
titative framework to analyze movement of populations
on fitness landscapes, and more importantly, how is this
movement dictated by the precise nature of the land-
scape. We, as reported earlier, use the simplest transcrip-
tion factor network possible (between a single regulator
R and a target protein, T) (Fig. 1a) [16]. Proteins R and
T serve a physiological function in the cell, and hence
we link their expression levels with the benefit conferred
to the cell. However, protein expression in a cell is
costly, and maintaining R and 7 incurs costs too. We
develop expressions for these cost and benefit and link
them with the fitness contribution towards the cell.

In our study, we focus particularly on two variables
associated with the landscape and the population. First,
the connectivity of the landscape, k. By this, we mean
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Fig. 1 a The regulatory network simulated in this work. The protein R, in the presence of signals,
expression of the target protein, T. b The simulation scheme. Each of the six parameters was allotted a distinct minimum and maximum value,
and 998 other distinct values in the range. The red dots represent one such parameter set. For each parameter, from its current value, movement
via a single mutation is only permitted to k distinct values (highlighted in green). The likelihood of a value being taken by the parameter, post
mutation, is given by a normal distribution centered around the current value of that parameter. In this work, P1 is bas (eq. 1); P2 is k (eq. 1); P3 is
kd (eq. 1); P4 is 3 (eq. 3); P5 is K, (eq. 3); and P6 is kgt (eg. 3). To reduce the computational complexity of the set-up, in this work, kqz was taken

acts as a transcription factor, R*, and activates

the fraction of fitness levels (among all) that an organism
can access via acquisition of a single mutation. The sec-
ond variable is the fitness associated with the population
at that instant, f; (see methods for more details).

In particular, in this work, we focus on the impact of
the structure of the landscape on the movement, and do
not take into account effects of stochasticity (such as
drift), which allow populations to move through valleys
on landscapes. Through our work, we show that there
exists a critical value of the connectivity parameter, &,
beyond which populations are almost certain to reach
the global peak in the landscape. Below this critical value
of k, the populations are almost always likely to get
“trapped” in local optima. Such a sharp transition in
the probability to reach the global peak with changing
k represents an inherent property of the graph associ-
ated with the fitness landscape. In addition, we also
comment on the time to reach fitness peak and the
predictability associated with a population’s movement
on the landscape.

Results

Evolutionary trajectories reach the global peak on the
fitness landscape

Our model is a six dimensional parameter space, where
each is allowed to change according to set rules (see
methods section). These rules defining how changes in
parameter values are acquired, we feel, represent the
biochemistry of alterations in promoter/protein function.
In the first set of simulations, we set the value of param-
eter k =50; that is, each parameter is allowed to move
to, on an average, 50 different values (out of a total of
1000). Later in this work, we report how changing the
value of k changes the results from these simulations.
For this first simulation, we choose a parameter set with
a corresponding fitness of 0.08. This value represents
about 12% of the maximum possible fitness (0.9371) on
our fitness scale. From this starting parameter set, we let
the system evolve by changing one of the parameter
values at a time, thereby, leading to movement of the
population towards higher fitness values. As shown in
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Fig. 2a, we note that after a large number of mutations
in the simulation, the system is able to reach the global
fitness in the scale used in this study. We repeat this
process a hundred times and the resulting trajectories
from each simulation are as shown in Fig. 2.

Next, we repeat this procedure for five distinct values
of starting fitness, and note a similar trend (Fig. 2a-e).
The mean fitness of the hundred trajectories are as
shown in Fig. 2f. From this data, we calculate the speed
of evolution (rate of increase of fitness), and note that
the maximum rate of increase of fitness is observed
when the starting fitness of the set is intermediate (0.23)
(Fig. 3). We speculate that this happens because when
starting from low values of fitness, the first few muta-
tions are potentiating mutations [17]. These mutations
do not themselves increase the fitness of the system
qualitatively, however, they provide the parameter set to
thereafter acquire new beneficial mutations and undergo
maximal rate in change in mean fitness. We also note
that, for k=50, with increasing initial fitness, there is a
statistically significant decrease in the number of steps
needed to reach fitness peak on the landscape. Perhaps
another way to think about this result is to imagine the
fitness peak in the landscape associated with the network
as a normal distribution (see Fig. 3). In such a setting, the
first few beneficial mutations confer a lower fitness advan-
tage, compared to the intermediate mutations.

On the whole, our results suggest that in a fitness
landscape of rather small dimensionality, there exist a
large number of paths to reach the global fitness peak.
Each trajectory explored in our study is unique in its
fitness levels, and the order of mutations it acquires.

The value of k indicates a critical transition in the
network’s ability to reach the fitness peak

Next, we were interested in studying how changing the
value of k changes the dynamics of this process. To ex-
plore this, we repeated the simulations described in the
previous section for k=3, 5, 7, 10, 12, and 20. Our naive
assumption before performing these simulations was
that as the value of k decreases, the fraction of times the
fitness is able to reach the peak on the landscape would
reduce linearly. Increasingly, with decreasing k, the
population would get trapped at a local peak. However,
prior to performing the simulations, we could not com-
ment on the precise nature of this decrease observed
with increasing k.

As shown in Fig. 4, with increase in the value of &,
there is a sharp transition in the fraction of trajectories
that are able to reach the maximal fitness on our land-
scape. Our data shows that at low values of k, the network
dynamics are such that the system is almost always never
able to reach the fitness peak. However, as the value of k
increases (beyond 10), the system is almost always able to
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reach the peak fitness. Since 1000 levels exist for value of
each parameter, this suggests that an access for 1% of all
fitness levels is able to ensure that there is a Darwinian
path to maximal fitness.

Interestingly, the transition from a zero probability of
reaching the peak fitness (at k< 10) to a probability of
one (at k> 10) becomes sharper as the fitness of the
starting parameter set decreases. This is likely because at
high starting fitness, if there does not exist a direct
connection to a higher fitness; then the system will likely
be stuck at that fitness level. At lower starting fitness,
however, the chances of there being access to higher
fitness will be high — leading to eventual access to the
peak fitness. To test the possibility whether this result
was dependent on the exact fitness function chosen, we
performed a number of simulations with altered values
of a and b in the fitness function. As shown in Add-
itional file 1: Figure S1, value of k at which the popula-
tion trajectories reach the global peak is invariant with
respect to the fitness function. Thus, our results show
that this property is an inherent property of the graph
being analyzed.

Time to reach peak fitness indicates a critical transition
Although all values of k greater than 10 are able to reach
the fitness peak, the time to do so varies significantly. In
general, the greater the value of k, the lesser the time (in
terms of number of mutational events) to reach the fit-
ness peak. However, as in the previous section, in this
result too there is a critical value of k beyond which the
time to reach the fitness peak changes qualitatively.

As shown in Fig. 5, we plot the number of mutational
events needed (on an average) to reach the fitness peak
for different values of k and different starting fitness. In
general, the number of steps needed to reach the fitness
peak decreases linearly as starting fitness increases.
However, the time taken reduces qualitatively beyond a
specific value of k. For small values of k (<10), the
number of steps needed to reach the global fitness peak
is infinite. Moreover, beyond that, our data shows that as
the value of k changes from 10 to 20, the time to reach
the fitness peak changes (reduces) by less than 10%.
However, as we next change the value of k to 50, the
value of time taken to reach the fitness peak changes
(decreases) by almost 100%. This qualitative change in
behavior, interestingly, occurs at a value of k which is
different from the transition value of k from the previous
section (where the percent of times the system is able to
reach the fitness peak changes from 0 to 100%).

Predictability or randomness in the evolutionary
trajectories

One of the questions we were interested in addressing
through our framework was that of predictability of
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Fitness

Fig. 2 The dynamics of increase in fitness of the R-T transcription network. Dynamics of 100 different trajectories when starting from a parameter
set which corresponds to a unique initial fitness. (Top left) Starting fitness of 0.08264. (Top right) With starting fitness of 0.22515. (Middle left) For
starting fitness 0.44999. (Middle right) For starting fitness 0.62639. (Bottom left) For starting fitness 0.85257. (Bottom right) Average of the hundred
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Fig. 3 (a) Speed of evolution (increase in fitness) with increasing fitness of the parameter set. For all initial starting fitness, the rate of increase in
fitness decreases as time (or the current fitness) increases. However, for small initial fitness (0.0826), the first phase of the evolutionary trajectory
includes potentiating mutations which facilitate a more rapid increase in fitness. This phase is followed by the second phase where the rate of
increase of fitness decreases with time. (b) Speed of evolution is maximum at intermediate fitness values. The trajectory shown by small initial
fitness (blue filled square in Fig. 3(@)) can be visualized as movement on a landscape whose shape is characterized by the peak as shown in the
lower panel. In such a scenario, the speed of evolution (fitness gain per mutation) is maximal at intermediate fitness values, and is lower for both
cases, when fitness is too high or too low

the trajectories that starting parameter sets follow. In 100 times and the difference in dynamics recorded.
this regard, we set up simulations for a starting point Prior to analysis of our trajectories, we anticipated
of the parameter set, P and the associated value k. the following result: starting points where trajectories
The simulation from this starting point was run a move towards both, local and global optima will show
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Fig. 4 The likelihood of reaching the peak fitness increases from
zero to one around a critical value of k. Independent of the starting
fitness corresponding to a parameter set, the likelihood of reaching
the global fitness peak on the landscape increases from zero to one
as the value of k increases beyond 10. The y-axis represents the
average of 100 distinct simulations for each set of parameter values
and a k value

a non-zero variance in the values of fitness at steady
state (where all 100 trajectories have reached an
optima). On the other hand, starting points which
enable all trajectories to reach the global peak will
lead to zero variance at the time when all trajectories
have reached fitness peaks.
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Fig. 5 The mean number of mutational events needed to reach the
global fitness peak decreases linearly with increasing starting fitness
of the parameter set. The data is average of 100 distinct simulations
for each set of parameter values and a k value. For K equal to 5 and
7, for all starting fitnesses (except 0.8525), the populations get
trapped in local optima and never reach the global peak. As a result,
the number of mutations to reach global peak is infinite, and hence,
not shown on the graph
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As shown in Fig. 6, the above mentioned intuition is
reflected in our results. For the starting point which
corresponds to all trajectories reaching the global peak,
we note an increase in variance of fitness values between
trajectories, as the trajectories diverge from the starting
point (P, k). Thereafter, as all trajectories converge
towards the global peak, the variance converges to zero.
This result is analogous to the classical fitness experi-
ments from Lenski’s LTEE experiments from the early
1990s [18]. On the other hand, the starting points which
do not lead all trajectories to the global optima result in
a non-zero, finite non-zero variance is observed at the
end of the experiment (when all trajectories have
reached fitness peaks).

Interestingly, the variance among trajectories which
start from a lower fitness is qualitatively higher than
the variance between trajectories which start from a
higher value. This result is consistent among all
values of k tested in this work. Intuitively, this is
likely because starting at a lower value of fitness, the
parameter set has an exponentially greater number of
trajectories to follow from (compared to another
starting point at a higher fitness). As the fitness of
the starting set increases, the number of options
available to acquire a mutation that leads to an in-
crease in fitness decrease. Hence, the variance is
much higher among trajectories starting from a lower
fitness, as compared to those starting from higher
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Fig. 6 The dynamics of variance in fitness between the 100
trajectories for each parameter set a k value. For the smallest starting
fitness value (0.0826), the peak variance is achieved much later as
compared to the other starting fitness. This is due to the first phase
of the fitness trajectory includes potentiating mutations. The data
shown is for a k value of 15. Other values of k show qualitatively
similar trajectories (data not shown)
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fitness values. This result is perhaps best understood
from the mountain climbing analogy. At the foot of
the mountain, the number of paths leading to the top
are very many. However, close to the top, there are
only going to be a few (or one) paths leading to the
summit.

Secondly, as discussed in the previous section, the first
few mutations to the parameter set which corresponds
to the lowest fitness are “potentiating mutations”. These
mutations, as discussed above, do not lead to a great
increase in fitness but prepare the set for acquisition of
mutations which lead to a much greater increase in
fitness. As a result, although the greatest variance is seen
in starting points where P corresponds to lowest fitness;
the variance among the trajectories starting from P
increases after a brief lag. This lag corresponds to the
period where the “potentiating mutations” are being
acquired by the set.

Methods

Model system

The model used in this work is the simplest transcrip-
tion factor network in bacteria — a single regulator, R
and a single target protein, T (Fig. 1la). In presence of
appropriate environmental signal, s, the transcription
factor gets transformed to its active state, R*. In its
active form, R* working as a dimer, is able to control
expression of the target protein, 7. The dynamics of
this process can be represented by the following
equations.

d.

d—f = bas-k.R.S + k,.R*~k,.R (1)
dR*

—— = k.R.S-k,.R"—k,.R* 2
" d (2)
dTr B.R*

— = —kyr.T 3
at 12+ R T ?

where, k is the rate of conversion of R to R’; k, repre-
sents the rate of conversion of R” to R; ky is the rate of
degradation of the regulator R; B is the maximal rate
of expression of the target protein T (when supply of
R is infinite); k, corresponds to the regulator concen-
tration at which target protein is expressed at half its
maximal rate; and bas is the basal expression level of
the regulator. This dynamic representation of the
model assumes that the regulator expression is not
regulated. On the other hand, the target production is
controlled by the regulator. More precisely, in the
presence of the signal, the regulator molecule interacts
with the cue and changes to its functional form R*.
The active form then forms a dimer and interacts with
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the operator site in the promoter of target gene, lead-
ing to expression of the parget. Both regulator and the
target are assumed to degrade and diluted because of
growth, and this process is quantitatively captured as
first order kinetics.

The benefit and cost associated with expression of R
and T can be represented as the following. While alter-
nate qualitative expressions of benefit curves are known
to exist [16], in this work, we work with the most intui-
tive representation of the benefit curve associated with a
target protein production in a cell. When the production
of target starts in the cell, the rate of increase in the
benefit that the cell derives is maximal. However, with
increasing production of the target protein, the
incremental benefit for the cell decreases. This diminish-
ing return of benefit with increase target amounts is
captured by the following expression. We note, however,
that there could also be scenarios where the target acts
on physiology as a dimer, or that excessive production of
target is detrimental to the cell (e.g., via accumulation
of a toxic metabolic intermediate). In either of these
two settings, the benefit function represented in Eq.
(4) will not be representative. However, the expression
below captures the physiology of most proteins in
bacterial physiology.

axT
= 4
T+b )

This benefit function (B), with increasing target pro-
tein concentration, is assumed to be an increasing and a
saturating function. The constant ¢ was assumed to be
1, and b as 10. Other values of the variables were also
taken. The results for those simulations are as shown in
Additional file 1: Figure S1.

C=«xx(T+R +R) (5)

Where, o represents the cost per molecule times the
degradation constant of a protein. Collectively, this en-
sures that the expression for cost is the number of pro-
tein molecules needed to be synthesized per unit time to
maintain steady state levels of R and T times the cost in-
curred per protein molecule. The value of a was taken
as 2.5x 107",

From these two expressions, the fitness of the individ-
ual, £, was defined as the difference between the benefit
and cost values, as shown below.

F=B-C (6)

Since in the fitness calculations we are only making
use of the steady state expression values of R and T, we
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note that our analysis is valid for situations where the
signal s is time invariant. For example, enteric bacteria,
once they enter the body, face a more or less constant
temperature and oxygen concentration.

Neighbor-network

To define the fitness landscape associated with the par-
ameter values, the following approach was used. Param-
eters were allowed discrete values, the range of each
value was confined to a min and a max value, which are
based on the thermodynamics of the biological processes
represented by each parameter (Additional file 1: Table
S1) [19-21]. Between the min and max value for each
parameter, 998 unique values were chosen randomly.
These 1000 values collectively represented the set of
values that a particular parameter is allowed to take (see
Fig. 1). The range of the values permissible for the
parameters were taken from previous works which have
identified physiologically relevant constraints on these
biochemical parameters [19-25].

However, from its current value, a parameter was not
permitted to take any of the remaining 999 values via
acquisition of a single mutation. Instead, we define a
variable called connectivity, kK which defines the number
of discrete values that the parameter can acquire post a
single mutation. For example, if the value of k is 50, the
parameter can go to 50 distinct values of k after acquir-
ing a mutation. The remaining 949 levels remain in-
accessible to the parameter, via a single mutation.

After defining the value of k, we next devised a strat-
egy to decide which 50 of the 999 values are accessible
to a parameter via a single mutation. To do this, a
Gaussian distribution, centered on the current value of
the parameter and with a sigma value of 2% of the 1000
(i.e. 20), was defined. This Gaussian distribution defined
the probability of a particular value of a parameter being
accessed from its current value of that parameter in a
single mutation. Using this distribution, thereafter, 50
distinct values of the parameter were chosen as a
one-mutation distance neighbors of the current level. By
definition, if value i was neighbor of value j; automatic-
ally, j was allotted to be a neighbor of value i.

Locating global or local optimal positions for parameter
vectors

Based on the model formulation, there are seven parame-
ters in our model. To reduce the dimensionality of the
problem, we assume that k7 is equal to 0.001 times k [16].
The other six parameters are allowed to take on values in
the range as given in Additional file 1: Table S1.

Each of the six parameters was permitted to take 1000
values between its minimum and maximum permissible
values. Previous work in this direction has treated par-
ameter values as a continuous variable. In this work,

Page 8 of 10

however, we argue that discrete values are more repre-
sentative of physiology of biochemical parameters, and
hence, only permit discrete values of parameters. As a
result, the parameter set (consisting of six parameters)
could take one of 1000° values.

From a particular value of a single parameter, it was
allowed to move to any one of the k pre-determined
values, by acquisition of a single mutation. Which means
that a particular parameter set had 6k one-mutant
neighbors associated with it. Each of these mutant sets
corresponds to a particular value of fitness. To locate
the trajectory and the fitness optima associated with a
particular set, the following was done.

Starting from the original parameter set, all 6k
one-mutant neighbors were analyzed for their fitness.
Thereafter, the resulting mutations (and mutants)
were characterized as beneficial or deleterious (de-
pending on their impact on the fitness). Of all the
beneficial mutations, one was chosen randomly (with
uniform probability), and the parameter set assumed
to move to the value associated with this beneficial
mutation. This process was then repeated for the new
parameter set. Once a parameter set was reached
such that all 6 k neighbors were of fitness lower than
the root set, it implied that the particular trajectory
had reached a global or a local maximum of fitness.
The corresponding parameter values, the value of the
fitness were, thereafter, recorded.

We note that we do not take into consideration effects
like drift, and the consequent fact that mutations with
stronger benefit have a higher likelihood of surviving
drift. We also ignore in this framework that occasionally,
even deleterious mutations could establish themselves
and thereafter, go to fixation; particularly if the popula-
tion size is small. In this work, we do not take into ac-
count these two factors, as we only address the question
of the likelihood of reaching a fitness peak in a
selection-dominated framework, and ask how does the
network structure impact this movement?

Simulation scheme
In this work, the dynamic trajectories were computed
for the following conditions. Eight different values of the
variable k were chosen: 3, 5, 7, 10, 12, 15, 20, and 50.
Parameter sets corresponding to five different initial
fitness were chosen. The fitness values were: 0.0826,
0.2251, 0.45, 0.6264, and 0.8526. Our premise behind
these choices was to cover dynamics of trajectories
starting from highly diverse starting fitness values, varying
from very low (0.0826) to very high (0.8526). In our
system, the global optimum has a fitness of 0.9371.
Finally, to track the diversity of trajectories starting
from the same location in the parameter space, dynam-
ics of population movement from each starting point
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(defined by the parameter set P and k) was tracked a
100 times. The trajectories associated with each were
noted, and are as presented in the results section. All
simulations were performed on Python version 3.6.

Discussion

In this work, we develop a framework to answer the fol-
lowing question: how does the network connectivity (the
fraction of nodes one particular node is connected to)
influence the ability of a network (or an organism) to
reach the peak fitness on a landscape? The question is
relevant since biological parameters, since they are
sequence dependent, are discrete variables, and from a
given position, can only move to a fraction of all permis-
sible values. We develop the framework to answer this
question and note that there is a sharp transition in the
network’s ability to reach the global peak at a particular
value of the connectivity variable, k. From our work, we
note that at a value where a node is able to access 1% of
all nodes via a single mutation, the network is able to
access the global peak almost 100% of the times. Below
the 1% connection, the network is almost never able to
reach the global peak, and evolutionary trajectories get
trapped in a local optima. These results suggest a link
between the connectivity, k and the dimensionality of
the network (in this case six). We anticipate that for
networks with higher dimensionality, the critical value of
the connectivity parameter would be less than 1%. This
is likely to be so because higher dimensions would offer
qualitatively different number of routes for populations
to not get “trapped” in local optima.

Since the number of values a biological parameter can
take is constrained by thermodynamics and biochemis-
try, it is likely to be independent of the network. This
implies that larger networks (with a greater number of
parameters) would have a greater likelihood of reaching
global peak as compared to smaller networks (with
smaller number of degrees of freedom). To test this, we
performed a similar set of simulations with the lactose
utilization network in E. coli, and show that for this
network, where the number of degrees of freedom is 10,
exhibits the critical transition (from a near zero prob-
ability of reaching the global peak to a near one prob-
ability of reaching the global peak) at a lower value of k
(at 0.25%) (data not shown). Thus, higher connectivity
between networks is likely to result in a greater likeli-
hood of reaching a global peak on fitness landscapes.

One of the crucial assumptions in this work is the fact
that the likelihood of the new value of a parameter, post
mutation, is distributed normally centered around the
current value. The distribution of mutations has been a
topic of interest of a number of experimental and theoret-
ical studies, but remains an open question [26-31]. In a
recent work from our group, we have developed a
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computational framework for analysis for studying these
distributions (in review). Our results suggest that exponen-
tial or normal distributions can statistically approximate
the distribution of mutational effects to a satisfactory de-
gree. This is especially true when the starting fitness corre-
sponding to a particular set is low (compared to the peak
permissible fitness). What distribution of a parameter value
in its prescribed range results in an exponential or a nor-
mal distribution, however, remains an open question.

Additional file

Additional file 1: Figure S1. The likelihood of reaching global optima
increases from zero to one around critical value of K when the benefit is
higher than the cost. In this simulation the parameter (A) a is increased
by a factor of 10; (B) parameter associated with cost per protein
molecules (a) is increased by a factor of 10; (C) the parameter associated
the sensitivity of the benefit function (b) is increased by a factor of 10;
and (D) the parameter associated the sensitivity of the benefit function
(b) is decreased by a factor of 10. Table S1. Parameter range of all 6
parameters (k, k;, kq, b, kq,, bas) used in the simulations. (DOCX 503 kb)
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