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Abstract

Background: Cells use signaling protein networks to sense their environment and mediate specific responses.
Information about environmental stress is usually encoded in the dynamics of the signaling molecules, and qualitatively
distinct dynamics of the same signaling molecule can lead to dramatically different cell fates. Exploring the design
principles of networks with multiple signal-encoding functions is important for understanding how distinct dynamic
patterns are shaped and integrated by real cellular networks, and for building cells with targeted sensing–response
functions via synthetic biology.

Results: In this paper, we investigate multi-node enzymatic regulatory networks with three signal-encoding functions, i.e.,
dynamic responses of oscillation, transient activation, and sustained activation upon step stimulation by three different
inducers, respectively. Taking into account competition effects of the substrates for the same enzyme in the enzymatic
reactions, we searched for robust subnetworks for each signal-encoding function by three-node-network enumeration
and then integrated the three subnetworks together via node-merging. The obtained tri-functional networks consisted of
four to six nodes, and the core structures of these networks were hybrids of the motifs for the subfunctions.

Conclusions: The simplest but relatively robust tri-functional networks demonstrated that the three functions
were compatible within a simple negative feedback loop. Depending on the network structure, the competition
effects of the substrates for the same enzyme within the networks could promote or hamper the target functions, and
can create implicit functional motifs. Overall, the networks we obtained could in principle be synthesized to construct
dynamic control circuits with multiple target functions.
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Background
The relationship between structure and function in bio-
logical circuits is a focus of systems biology [1, 2]. Structure
reflects the topology of interactions within a circuit, and
function is usually considered a static quantity (a steady
state) or a temporal behavior (dynamics) of the circuit’s out-
put [3]. In various signaling systems, cells transmit informa-
tion via dynamic control of signaling molecules [3]. The
information about the identity and quality of a stimulus can
be encoded in temporal patterns of a signaling molecule by
modulating its amplitude, duration, frequency and so on.
Cells mediate gene expression programs and induce cellular
responses according to the sequential dynamics of signaling
molecules [3–13]. Furthermore, signaling dynamics usually

have greater information transmission capacities compared
to non-dynamics responses [14–16]. For example, the
tumor suppressor p53 shows a series of pulses with number
modulation under γ-radiation, resulting in cell-cycle arrest.
By contrast, UV radiation triggers a single p53 pulse with a
dose-dependent amplitude and duration, leading to apop-
tosis [3, 17, 18]. In yeast, the transcription factor Msn2
plays a major role in the general stress response. Glucose
limitation stress induces nucleocytoplasmic shuttling of
Msn2. The duration of the initial peak and frequency
of the sequential bursts in Msn2 increase with the
strength of the stress [6, 19, 20]. Under osmotic
stress, Msn2 exhibits a similarly initial nuclear peak
and returns to normal. The duration of the peak in-
creases with the osmotic pressure [3, 21–25]. In
addition, oxidative stress leads to prolonged nuclear
Msn2 accumulation whose amplitude is dependent on
the concentration of H2O2 [6, 26, 27]. Other systems,
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such as ERK, NF-κB and Crz all drive distinct re-
sponses via dynamic control [3, 28–30].
These observations in real signaling systems raise fas-

cinating questions about how distinct input information
is encoded into different dynamic patterns of the signal-
ing molecule and the design principles for such net-
works with multiple signal-encoding functions. Instead
of considering the complex molecular interaction details
in real signaling networks, we here intend to perform a
theoretical investigation of multi-node enzymatic regula-
tory networks with three signal-encoding functions, i.e.,
dynamic responses of oscillation, transient activation,
and sustained activation when a respective input node is
stimulated. These dynamic patterns are similar to the
observed dynamic response of Msn2 in yeast under glu-
cose limitation, osmotic stress, and oxidative stress,
respectively.
General computational search strategies for detecting

network topologies for a target function include evolu-
tionary algorithms and the network enumeration ap-
proach [2]. These approaches have been used to explore
simple network solutions for dynamic functions such as
oscillations [31–33], switch-like responses [34, 35], adap-
tation [36–38] and dose-response alignment [39]. Core
motifs and design principles for these individual dy-
namic functions have been investigated previously. By
contrast, multi-functional networks that can execute
several distinct functions have rarely been considered
[1], despite the accumulation of experimental observa-
tions of multiple signal-encoding processes. The stum-
bling blocks for searching multi-functional networks are
mainly due to the increased network scale and the func-
tional complexity, which require enormous computing
power. As the multi-functional networks we consider have
at least four nodes, with three nodes for inputting three
external signals and one node for output, it is practically in-
feasible to enumerate all possibilities to detect
multi-functional network topologies. Evolutionary ap-
proaches are also inapplicable for deducing the architec-
tural landscape of tri-functional networks. Accordingly,
here we adopt the scenario of module combination for
searching multi-functional networks capable of the desired
multiple signal-encoding function. The module combin-
ation approach has recently been used to generate
bi-functional networks by hybridizing simpler
mono-functional modules [1]. It was also applied success-
fully to detect network structures with Pavlovian-like func-
tions capable of learning and recalling [40].
In our calculations, the external stimulus, which is a

temporal step function, acts on three different input
nodes, and generates on the output node sustained oscil-
lations (stable limit cycle), transient activation (adapta-
tion), and sustained activation, respectively. This mimics
the signal-encoding of Msn2 in yeast in response to

glucose limitation, osmotic stress, and oxidative stress,
respectively. To obtain the target multi-functional net-
works, we search first for robust subnetworks (sub-func-
tional modules) for each target input-output response by
enumerating all three-node network topologies and then
meld different modules through node merging. All com-
putations are performed with enzymatic regulatory net-
works. In addition, we take competition effects among
different substrates into account in situations when two
or more types of substrates bind competitively to the
same enzyme. This ubiquitous hidden interaction has
been considered in gene regulatory networks [41], but is
commonly omitted in most theoretical or experimental
models in enzymatic circuits [42]. We find that competi-
tion effects can increase the diversity of functional mod-
ules by creating implicit cross couplings within the
circuits, whereas in combined networks, competition
effects can promote or hamper the overall functionality.
These findings may be helpful for understanding
multi-functional networks in real biological systems and
also provide a guide to construct information-encoding
circuits in synthetic biology.

Results
Module selection for each signal-processing function
We use the method of three-node-network enumeration
to explore the functional networks of oscillation (F1) and
adaptation (F2), respectively. In a two- or three-node
network, one node serves as the input node (Node R)
and one as the output node (Node O), and a third node
will be the intermediate node (Node M). For each top-
ology, we sample 10,000 parameter sets using the Latin
hypercube sampling method [43]. For each parameter
set, the ordinary differential equations that describe the
network dynamics in response to one of the two stimuli
are then solved numerically. The topologies with at least
one or more parameter sets that produce the targeted
dynamical function are considered functional circuits.
The robustness of sub-functions F1 and F2 is measured
by the number of parameter sets, i.e., Q1- and Q2-values,
that generate the target dynamic functions. For functions
F1 and F2, we select the network topologies with rela-
tively high Q-values and fewer edges as functional F1
and F2 module pools.
The oscillation (F1) pool contains 73 networks with 3

to 6 edges with Q1 > 50 and 8 simplest networks with 3
edges with 10 < Q1 < 50 (as marked in Fig. 2a). Cluster-
ing analysis of these networks (Fig. 2b) shows that the
basic oscillation motifs for achieving function F1 are
negative feedback loops between the three nodes. Motifs
a1 and a3 are simply two forms of the repressilator, and
motifs a2 and a4 are the delayed feedback loop. All 73
networks contain explicitly one of the two negative feed-
back loops which are well-known motifs for oscillations.
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This is true even for networks with edge numbers
greater than 6. Additionally, the F1 functional pool also
contains the 8 simplest networks. They do not explicitly
have the structure of a repressilator or delayed feedback
loop (Fig. 2c). These topologies achieve self-sustained
oscillations because one of the two basic motifs of the
repressilator and delayed feedback loop is implicitly con-
tained in their topologies due to the hidden interactions.
Two such examples are illustrated in Fig. 2g, where the
oscillations are achieved through the implicit a3 and a4
motifs. Thus, the modular pool of F1 consists of 81 net-
works as marked in Fig. 2a.
Similarly, as marked in Fig. 2d, the F2 functional pool

also consists of 81 selected networks, i.e., 76 networks
with 3 to 6 edges and Q2 > 55, and 5 networks with 3
edges and 10 < Q2 < 55. Clustering analysis of the 76 net-
works reveals the backbones of the functional circuits
(Fig. 2e), two negative feedback loops with a buffer node
(motifs b1, b3), a delayed feedback loop (motif b2), and
an incoherent feedforward loop with a proportional
node (motif b4). The motifs for function F2 are similar
to Ma’s results [31], but different in that motifs b3 and
b4 (for which Q2 < 55) are less robust than motifs b1 and
b2 (for which Q2 > 55). This difference is attributable to
the inclusion of competitive regulations in both motifs
b3 and b4: node M3 and node O3 compete for enzyme
R3 to convert from the inactive to active state. Conse-
quently, there exit implicit positive interactions between
nodes M3 and O3, and the regulatory interactions are
more complex than those discussed in [36], in which the
competitive effect was ommitted. Figure 2f illustrates the
5 networks with three nodes and lower Q2 value as
marked in Fig. 2d. These simple functional circuits all
have implicit interactions, of which two are motifs b3
and b4. The left three motifs have very different topolo-
gies from the ordinary adaptation motifs. Checking the
implicit interactions reveals that these seemingly very
different adaptation motifs all have implicitly the core
structures discussed in detail in [36]. Two such examples
are illustrated in Fig. 2h where adaptation is achieved
through the core structures of b1 and b3.
As demonstrated in Fig. 1 and Fig. 2, the inclusion of

competition effects into the circuit dynamical descrip-
tion generates mutual activation or inhibition interac-
tions. Taking these implicit interactions into account
benefits analysis of the functioning of networks when we
judge whether a specific dynamical behavior is possibly
supported in a network topology. It has been well known
that oscillations are generated in circuits with topologies
of negative feedback loops and that adaptation is typic-
ally achieved with topologies of incoherent feedforward
or negative feedback loop with buffering node. For the
circuits that do not have apparent topologies that sup-
port oscillations or adaptations, one can add the implicit

interactions onto the network and then check whether
the newly formed network have the core structure of os-
cillation or adaption. In this way, implicit functional mo-
tifs that are previously unknown can be found as
depicted in Fig. 2g and Fig. 2h.
The functional circuits with sustained activation (F3)

are not searched by enumeration. We prefer to adopt
the simplest structure, i.e., a link of activation from the
input node R3 to the output node O3. Thus, we have
constructed the module pools for the sub-functions of
oscillation (F1, with 81 topologies), transient activation
(F2, with 81 topologies), and sustained activation (F3,
with 1 topology), respectively.

Module combination for bi-functional networks of F1 and
F2
By combining sub-function networks in the F1 and F2
module pools, we next construct F1-F2 bi-functional net-
works that encode the external signal received by nodes
R1 and R2 respectively into oscillations and adaptation in
the output node O. The network topologies from the
two sub-functional pools are united by merging their
nodes. As demonstrated in Fig. 3, we adopt the following
node-merging rules:

(i). Output O nodes have to be merged with each other
as we assume a unique output node.

(ii).M nodes may be merged with each other (unless
there are contradictory linkages).

(iii).R nodes may be merged with M nodes from the
other pathway (unless there are contradictory
linkages).

(iv).R nodes for receiving signals cannot be merged
with each other.

(v). R nodes are not permitted to merge with O nodes.

Here we do not consider the merging between R and
O nodes and node merging within pathway. As there are
two input nodes for receiving the signals and a unique
output node in a bi-functional network, there are three
possible ways to combine the F1 and F2 circuits as illus-
trated in the upper left of Fig. 3a-c. One approach is to
simply merge the output nodes O1 and O2. Another is
two-node merging of M1-M2, R1-M2, and R2-M2 in
addition to the O1-O2 merging. The third approach is
the three-node merging of O1-O2, R1-M2, and R2-M1.
We enumerate all possible networks combined from

the two module pools as candidate topologies for
bi-functional circuits. For each candidate network, we
randomly sample 10,000 parameter sets and check
whether it is bifunctional. The number of parameter sets
that can achieve both oscillation and adaptation is re-
corded as the Q1,2-value to estimate the robustness of
the bi-function. In the bi-functional networks with
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Q1,2 > 0, we obtain 3215 five-node, 1337 four-node, and
41 three-node networks by one-, two-, and three-node
merging, respectively. The Q1,2 distributions of these
three classes of bi-functional combined networks are il-
lustrated in the lower left of Fig. 3a-c. The networks
with relatively high Q1,2 are highlighted with red dashed
boxes in the histograms of Fig. 3. These robust networks
obtained by one-, two- and three-node merging are then
clustered (middle panels in Fig. 3a-c). Structure skele-
tons from the clustering analyses are listed alongside
(right panels in Fig. 3a-c). The robust bi-functional net-
works obtained via one-node and two-node merging are
composed of hybrid motifs from the F1 and F2 module
pools, such as hybrids of a3 + b1, a3 + b2, a4 + b2, and
a1 + b3 in five-node combined networks and a3 + b1 and
a3 + b4 in four-node combined networks. We find that

the networks containing the hybrid motif a3 + b1 have
the largest proportion; the mechanism for achieving the
bi-function is given in Additional file 1. As three-node
merging is full merging of the network, it is difficult to
find very robust bi-functional networks with large Q1,2

values (no more than 5). Due to regulation conflicts, the
F1 motifs (a1, a2, a3, and a4) and F2 motifs (b1, b2, b3, and
b4) cannot be fully merged to form a bifunctional motif.
Instead, the bi-functional networks of combination are
derived from non-core motifs that can achieve both os-
cillation and adaptation, such as the structure skeletons
c1 and c2 depicted in Fig. 3c.
By combining the nodes of functional F1 and F2 net-

works, the merged nodes function as a joint uniting the
sub-functional networks. This results in competing ef-
fects between substrates and additional implicit

a b c

d e

g h

f

Fig. 1 Defining objective functions for three distinct signal-encoding processes. a The temporal step functions (jump from Ii0 = 0.1 to Ii ∈[0.5, 1],
i = 1,2,3) represent three external signals that mimic glucose limitation, osmotic stress or oxide stress in the yeast Msn2 stress responses,
respectively. b The signals are received by the receptor nodes R1, R2, and R3, respectively, one signal at a time and are respectively encoded into
different dynamics of the circuit’s output node O through the unknown signaling network. c The target output dynamics of the output node
upon stimuli, i.e., F1 for oscillation (with Period > 0.1, Amplitude > 0.1), F2 for transient activation (with |Oend – Oini| < 0.1, Opeak – Oini > 0.2, |Oend –
Oini| < 0.5(Opeak – Oini)), and F3 for sustained activation (Oend – Oini > 0.2), respectively. (d-f) Illustrations of implicit interactions between M1 and O1

when active enzyme R*1 simultaneously activates (d), or deactivates (e) the substrate enzymes M1 and O1, or when it activates M1 and deactivates
O1 (f). The dashed links in the circuits represent the implicit interactions of mutual activations (d,e) and deactivations (f), respectively. (g,h)
demonstrates an example where the same circuit exhibits completely distinct dynamical behaviors of oscillations (g) and steady state (h) when
the substrate competition is considered (g) or not (h). Refer to additional file 1 for the rate equations and parameter values used in (d-h)
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interactions within the networks. This side effect of node
merging could promote, hamper, or have little influence
on the circuit’s function, depending on the strength of
the competing strength. In Fig. 3d-f, we list several ex-
amples of bi-functional networks that contain implicit
interactions as denoted by the dashed linkages. It is
noted that the three-node bi-functional networks belong
to the intersection of three-node networks in F1 and F2
pools, and that only a portion of networks in the inter-
section can achieve the bi-function. The node merging
procedure does not discover new three-node networks
that are bifunctional. For instance, all compatibly com-
bined networks of oscillation motifs a1-a4 and adaptation
motifs b1-b4 by full merging of the three nodes have a
zero Q1,2 value.

Extending the bi-functional networks into tri-functional
networks
Next, we extend the bi-functional networks to the target
tri-functional networks. As illustrated in Fig. 4a, a
bi-functional network can be processed in two ways to
include an extra node (R3) for receiving the third signal.
One approach is to adopt an existing regulatory node
(i.e., a node other than R1, R2 and O) as the receptor for
input of the third signal. The other strategy is to intro-
duce a new node as R3 into a bifunctional network for
receiving the third signal. As the third function requires
sustained activation of the output node O, an activation
from node R3 to the output node O is simply added. For
the circuit in Fig. 4a, the node M1 or M2 can be used as
the third receptor node R3; otherwise, an additional node

a b c

d e

g h

f

Fig. 2 Modular pools for oscillation and adaptation. a Distribution of networks capable of achieving function F1 in the space of the Q1-value and
the number of edges. A total of 81 three-node networks (73 plus 8) are selected into the F1 modular pool, as highlighted in the dashed boxes.
b Clustering of 73 networks as marked in (a). Each row in the clustering figure demonstrates the regulations among the three nodes within a
network. Positive, negative and null regulations within the networks are denoted by red, green and black, respectively. The core oscillation motifs
are labeled a1, a2, a3 and a4 as shown. c Eight simple F1 circuits, as marked in (a), that contain explicitly no oscillation motifs. d ~f Similar analyses
of 81 three-node networks (76 plus 5) that construct the F2 modular pool. (f) The 5 simplest topologies as marked in (d) all of which contain
implicit interactions due to the competitive effects. (g, h) Examples of functional networks with implicit motifs for functions F1 and F2, respectively,
with competitive edges highlighted in blue. The dashed linkages denote the implicit interactions due to competition effects. The implicit regulations
plus explicit linkages in the network form the ordinary F1 and F2 motifs (highlighted in grey)
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Fig. 3 Bi-functional networks via module combinations. (a), (b) and (c) depict the results for one-node, two-node, and three-node merging,
respectively. In each subfigure of (a), (b), (c), the upper left panel shows the form of node merging; two nodes in an ellipse represent the nodes
that are merged, and the bottom left panel is the Q1,2 distribution of the combined bi-functional networks. Clustering analyses of the networks
with relatively high Q1,2-values as marked by dashed red box in the histogram are depicted in the middle. The structure skeletons are illustrated
on the right. d-f Examples of bi-functional combined networks that contain implicit interactions due to the competitive effect. Competitive edges
are indicated in blue or purple. The dashed linkages represent the implicit interactions
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R3 is added that activates the output node. Both strat-
egies add no new competitive regulations to the
networks.
For each candidate tri-functional network obtained

from the above extension strategies, we sample 1000
random parameter sets for the newly introduced pa-
rameters while keeping the parameters in the original
circuits unchanged. The number of parameter sets
that can achieve the target tri-functional behavior is
recorded as the Q(F3|F1,2)-value, which manifests the
robustness for the triple signal-encoding function
(see Additional file 1). The distribution of Q(F3| F1, 2)
for all tri-functional networks obtained is shown in
Fig. 4b. There are 3190 tri-functional networks with
six nodes, 2092 tri-functional networks with five
nodes, and 255 tri-functional networks with four
nodes. The networks with Q(F3| F1, 2) > 500 are
highlighted in the red frame in Fig. 4b, with 4
six-node networks, 134 five-node networks, and 3
four-node networks.

In Fig. 5c, we plot the structure diagram for all
tri-functional networks with Q(F3| F1, 2) > 100 [44]. A
dot denotes a tri-functional network, and networks with
Q(F3| F1, 2) > 500 are represented by large dots. All net-
works are distributed with respect to the number of
links and nodes in the networks. We have linked any
two networks that could be transformed by the gain or
removal of one regulatory interaction. Most of the
tri-functional networks we obtained are connected, and
complex tri-functional networks can evolve from simpler
core topologies. Several core networks are illustrated at
the bottom in Fig. 5c, i.e., the networks labeled from N1

to N7. Network N4 is constructed by uniting motifs a3
and b1 and adding the R3 node. The network N3 is de-
vised on the bi-functional networks with hybrid motifs
of a1 + b3 via the first strategy. It has two possible nodes
(R3 and M) used as a buffer node for F2 and can be
reduced to the network N5 by removing node M. The
robustness of network N5 is comparable with that of
network N3. Thus, network N5 is the simplest robust

a

c

b

Fig. 4 Tri-functional networks constructed from the bi-functional networks. a Two extension strategies for constructing tri-functional networks
from bi-functional networks. A regulatory node that activates the output node O is adopted as the third input node (e.g., the node M1); otherwise, a
new node R3 is added to receive the third signal. b The distribution of Q(F3| F1, 2) for all tri-functional networks obtained, with 141 tri-functional
networks with Q(F3| F1, 2)> 500 (marked by dashed red box. c Structure diagram of all tri-functional networks for illustrating their structure relationships.
The blue, green, and red colors represent six-, five- and four-node networks, respectively. Small and large dots represent tri-functional networks with
Q(F3| F1, 2)> 100, and Q(F3| F1, 2)> 500, respectively. They are organized along the vertical axis with respect to the number of links in the network.
Several network topologies with the least number of links are highlighted at the bottom
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tri-functional network in our calculation. In the follow-
ing section, we perform an analysis of the dynamics of
network N5.

Dynamics analysis for the simplest tri-functional network
For the simplest and functionally robust network N5 in
Fig. 4c, we demonstrate its multiple signal-encoding dy-
namics in detail for illustrative purposes. The network
dynamics in concentrations of active forms of enzymes
R1, R2, R3 and O is described by the following ordinary
differential equations,

dR1

dt
¼ V 1I1

1−R1

K1 þ 1−R1
−V 5R3

R1

K5 þ R1
dR2

dt
¼ V 2I2

1−R2

K2 þ 1−R2
−V 6B

R2

K6 þ R2
dR3

dt
¼ V 3I3

1−R3

K3 þ 1−R3
−V 7O

R3

K7 þ R3
dO
dt

¼ V 4R2
1−O

K 4 þ 1−O
−V 8R1

O
K 8 þ O

8
>>>>>>>>><

>>>>>>>>>:

ð1Þ

In this description, the total concentrations of enzymes
are normalized, and the variables vary from 0 to 1. In
the normal condition, the receptor nodes R1, R2, R3

sense the surroundings with a base signal I1 = I2 = I3 =
0.1. With the parameter values in Fig. 5, the system rests
at its stable steady state (with R1 = 0.1179, R2 = 0.3431,
R3 = 0.0024, O = 0.1690). When node R1 is stimulated
with I1 ≥ 0.2 and I2 = I3 = 0.1, the system enters into the

regime of self-sustained oscillation (Fig. 5a). Oscillations
are generated due to the R1-R3-O negative feedback loop
within the circuit. The step signal is thus interpreted by
the system into stable limit cycle oscillation in the out-
put node. As depicted in Fig. 5d, the network dynamics
undergoes a subcritical Hopf bifurcation at I1C = 0.25
when the strength of stimulus I1 is tuned as the control
parameter.
For the second signal (I2 > 0.1, I1 = I3 = 0.1), the cir-

cuit’s output responds to the stimulus I2 transiently and
returns to its pre-stimulated level. This transient activa-
tion results from the saturated regulations of R3 from
both signal I3 and output node O, with K3≪ 1 −
R3, K7≪ R3. In this case, Eq. 1c for R3 is simplified as,

dR3

dt
≈ V 3I3−V 7O ð2Þ

At steady state, the above equation leads to the output
which is proportional to the amplitude of I3,

OSS ¼ V 3I3
V 7

ð3Þ

The independence of OSS on I2 results in a perfect
adaptation. Thus, the necessary condition for adaptation
under the second stimulus requires that the node R3

functions as a buffer node within the negative feedback
loop in the circuit. Figure 5b shows the responses of the

a b c

d e f

Fig. 5 Dynamics analysis for the tri-functional network N5 in Fig.4c. a Oscillations result from I1 signal stimulation of two different strengths.
b Transient activation or adaptation triggered by signal I2 of low and high strength. c Sustained activation when signal I3 of different amplitudes
acts upon node R3. d Bifurcation diagram for function F1 when the amplitude of signal I1 is tuned. (e) and (f) show the steady state concentrations as
functions of I2 and I3 signal strength, respectively. The low and high signal strengths in (a-c) correspond to 0.5 and 1.0, respectively. I1 = I2 = I3 = 0.1 are
adopted when no signal is present. The unit of time is arbitrary. Other parameters used in simulations: V1 = 0.3156, V2 = 1.8362, V3 =
0.7503, V4 = 0.5559, V5 = 2.3514, V6 = 0.2716, V7 = 0.7010, V8 = 0.6726, K1 = 5.1160, K2 = 0.3030, K3 = 0.0111, K4 = 1.2833, K5 = 0.0259,
K6 = 0.0277, K7 = 0.0014, K8 = 0.0099, B = 0.5
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output variable when node R2 is triggered by I2 of differ-
ent strengths. The steady state of the network dynamics
as a function of the signal amplitude I2 is depicted in
Fig. 5e.
When node R3 of the circuit receives the third stimu-

lus (I3 > 0.1, I1 = I2 = 0.1) of different amplitudes, the out-
put node is always activated (see Fig. 5c), and the
equilibrium state of the output increases with I3 strength
(Fig. 5f ). Therefore, the three signal-encoding processes
are mutually compatible and completed in the simplest
and robust topology.

Discussion
Biochemical reactions in cellular signaling processes
form complex molecular networks analogous to elec-
trical circuits. There has been a long tradition of theoret-
ical studies that looked into modules of small
biochemical networks and signaling motifs that are
viewed as simple building blocks of complex networks.
Proteins functioning as the transfer and processing of in-
formation can be linked into motifs of reoccurring bio-
chemical circuits that perform specific tasks such as to
amplify signal, integrate and store information et al. [51,
52]. Motifs of common features that may help formalize
the mapping from biochemical reactions to pathway
block diagrams in signaling processes have been previ-
ously examined [53, 54]. In signaling and transcription
regulation networks, the main classes of motifs that can
carry out specific dynamic functions such as bistability,
adaptation, oscillations, excitable pulse and et al. have
been reviewed in references such as [55] and [2]. Com-
pared to previous studies that considered mainly
mono-functional network motifs, we here report a sys-
tematic approach for extracting multi-functional motifs,
i.e., depending on different external signals, the simple
motifs can output dynamic responses of oscillation, tran-
sient activation, and sustained activation respectively.
The second novel point of this study lies in that com-

petition between substrates for the same enzyme has
been taken into account in our mathematical description
of signaling circuits. Substrate competition that was usu-
ally omitted in previous theoretical studies can have
pronounced effects. It has been reported that
ultra-sensitivity can be generated through substrate
competition between two sets of phosphorylation sites
[56] or through negative cooperativity in which the bind-
ing of ligand to a multimeric receptor makes it more dif-
ficult for subsequent ligands to bind [57]. Competitive
binding can lead to high-dose hook effect (also known
as prozone effect) in reactions where one protein acts as
a linker between parts of a complex [58]. In the inter-
action of Ca2+ and calcium binding proteins calmodulin
(CaM), the competitive binding among CaM’s seven
partners can tune the Ca2+/CaM binding frequency [59].

In this study, we demonstrate that competitive effects
could add implicit interactions within the networks that
can promote or hamper the anticipated behaviors, and
even create new dynamics unexpected from the explicit
network topologies. For simple network structures with-
out explicit functional motifs, the additional hidden reg-
ulations within the competitive nodes, combined with
the rest of the linkages in the networks, could form im-
plicit functional motifs that foster the networks to
achieve target functions. For complex network topolo-
gies with dense linkages within the network, such as in
the bi-functional networks obtained by two-node mer-
ging, the competitive effects could produce more com-
plicated connections within the circuits that can
drastically influence the network dynamics.
The multiple signal-encoding networks we consider in-

volve at least four nodes. It is time-consuming to exhaust
computationally all possible network topologies. We have
adopted a compromise approach to efficiently construct
multi-functional networks by enumerating modules of
three nodes that can achieve each sub-function and then
combing them by node merging. As the exploration is not
exhaustive, the tri-functional networks we obtained may
have occupied only a part of all functional topologies. As
demonstrated, we have constructed tri-functional net-
works with four to six nodes via module combinations.
The functions of oscillation and adaptation in the
tri-functional networks could share a negative feedback
loop, as long as the circuit could be driven to oscillate by
the first signal and a node within as a buffer node for
adaptation in the presence of the second signal. Alterna-
tively, the function of adaptation could also be achieved
via approaches such as the negative feedback loop with a
buffer node (M2) in networks N1, N2, or N3. The third
function of sustained activation, it requires at least one ac-
tivation regulation directly or indirectly from node R3 to
the output node O.
Compared to the functional networks we designed, the

real signal-encoding network of Msn2 in Saccharomyces
cerevisiae is much more complex [45–50]. A recent re-
port that integrated experiments and modelling revealed
that, the stimulus-dependent Msn2 dynamics is con-
trolled by coupled feedback loops [60]. At the core of
this Msn2 pathway is the Ras–cAMP–PKA negative
feedback loop which is crucial in shaping Msn2 dynam-
ics. It is coupled to the signal-dependent mutual inhib-
ition between protein kinase PKA and the yeast
AMP-activated protein kinase Snf1. The negative
feedback regulating PKA activity at the core of Msn2
pathway is abundant as sub-module in the functional
networks that we identified here. As can be seen in Fig.
3 and Fig. 4, the negative feedback appears in forms
of activator-inhibitor, delayed negative feedback, and
repressilator. In the networks we found, coupled
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negative and positive feedback loops are not apparent.
But when implicit interactions due to substrate com-
peting are taken into account, such as those demon-
strated in Fig. 2g, Fig. 2h, and in Fig. 3d, Fig. 3e, Fig.
3f, coupled negative and positive feedbacks are abun-
dantly found as sub-modules in the networks identi-
fied here.
In p53 signaling pathway, the information of hundreds

of cellular stress stimuli is encoded through the single
node of p53 protein, and stimulus-specific p53 dynamics
then triggers distinct cellular outcomes. While the real
p53 signaling pathway is very complex, modelling stud-
ies [61] revealed that the flexibility of p53 activity is
rooted in the core p53-Mdm2 negative feedback loop in
the pathway: the transcription factor p53 activates the
expression of Mdm2, and Mdm2 in turn inhibits p53 by
either turning down its transcription or triggering its
degradation. In the multifunctional networks that we
find here, the negative feedback loop featuring the p53
pathway is also a fundamental sub-module. Negative
feedback loops involving the output node are ubiquitous
in bi- and tri- functional circuits we find here. In single
cell study of p53 dynamics [17], γ-radiation and UV light
cause DNA double strand breaks (DSBs) and
single-stranded DNA (ssDNA) damage, respectively. It
was uncovered that the mechanism of stimulus-specific
response is relevant to two core coupled negative feed-
back loops. The upstream kinases ATM responding to
DSBs and ATR responding to ssDNA both relay the
damage signal to p53. This activates p53-Mdm2 and
p53-Wip1 negative feedback loops. The core topology of
two coupled negative feedback loops in p53 pathway in
response to DNA damages is closely related to some of
the networks that we identify here. As depicted in Fig.
3a, two coupled negative feedback loops are characteris-
tic of the combined a3 + b2 and a4 + b2 networks, and
apparently feature the combined networks in Fig. 3d and
Fig. 3e. Although the tri-functional networks we con-
structed are simple and omit the real aspects of dynamic
control, they could still be helpful for understanding the
mechanism of real signal-encoding processes. Further-
more, the networks we obtained and the method we
adopted could also be used in synthetic biology to con-
struct multiple functional dynamic circuits for practical
purposes.

Conclusions
The three signal-processing functions are compatible in
a well-designed multi-functional network, in which the
output dynamics is switched between oscillation, adapta-
tion, and sustained activation by changing the input
node for the signals, with no need to change the internal
links in the networks. Competition between substrates
for limited enzymes plays as a framework that renders

implicit interactions between the nodes that are not ex-
plicitly linked. The substrate competition brings virtual
links between nodes in the network and can create new
implicit motifs that are seemingly nonfunctional.

Methods
We aim to search for networks capable of encoding
the identity of distinct stimuli into the dynamics of
the circuit’s output as a whole. The dynamics of oscil-
lation, adaptation (transient activation) and sustained
activation are the three target input-output responses
considered. We assume that the functional network
has three independent receptors each receiving a re-
spective stimulus signal. Under normal conditions, all
input signals are set as a low baseline, and the func-
tional network remains in the resting state. When
facing one of the three stimuli, the input signal is
represented by a step function (Fig. 1a). The informa-
tion about the stimulus is processed through the
unknown components of the networks (Fig. 1b), and
then the identity of the stimulus is encoded in the
dynamics of the circuit’s output. The target dynamic
outputs are illustrated in Fig. 1c as oscillations (F1),
transient activation (F2), and sustained activation (F3).
We intend to find the unknown networks in Fig. 1b
that generate the target output when each receptor
node receives its stimulus from an external signal.
In our calculations, the networks we consider are lim-

ited to enzymatic regulatory interactions. Each node in
the network represents an enzymatic protein with a
fixed total concentration (normalized to 1) and can be
interconverted between its active and inactive forms by
other enzymes that are active. Two types of links are
considered. The arrow in the network denotes activation
of the target enzyme, that is, the enzyme catalytically
transforms its substrate from the inactive form to active
form. The blunt-headed arrow indicates catalytic inacti-
vation of the active substrate. In our model, we assume
that nodes in the network can possibly be auto-activated
or auto-inhibited. If a node in the network has no activa-
tion or deactivation from other nodes, it is assumed to
be regulated by basally available enzymes in the
background.
To take into account the competition effects among

the enzymes that compete to bind the same target
enzyme [42], we model the network dynamics with
modified Michaelis-Menten rate equations. The dy-
namic variables represent the concentrations of en-
zymes (normalized to 1) in their active forms. For
example, when enzyme R1 in the network converts
both the enzymes M1 and O1 to active states M*

1 and
O*

1 (Fig. 1d), the activation rate (RA) of M1 and O1

take the following forms (see additional file 1 for the
full dynamical equations):
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RAofM1 ¼ V 1R1

1−M1

K1

1þ 1−M1

K1
þ 1−O1

K2

RAofO1 ¼ V 2R1

1−O1

K 2

1þ 1−M1

K 1
þ 1−O1

K 2

ð4Þ

where R1, M1 and O1 are the concentrations of active
enzymes R*

1, M*
1 and O*

1, K1 and K2 denote the
Michaelis-Menten constants, and V1 and V2 denote the
regulation rate constants. Due to competition between
enzymes M1 and O1 for binding enzyme R*

1, an increase
in the concentration of O*

1 and therefore a decrease in
inactive O1 (due to the constant total concentration)
would increase the concentration of enzymes available
for the inactive M1. This leads to an increased rate of
M*

1 production and vice versa. The situation is similar
when enzyme R*

1 deactivates both active enzymes M*
1

and O*
1. In these two cases, the competition effect re-

sults in implicit positive interactions between the two
nodes as illustrated in Fig. 1d and Fig. 1e (note the
dashed arrows in the circuits). Figure 1f illustrates the
situation when enzyme R*

1 activates M1 but deactivates
O*

1, resulting in implicit negative interactions of sup-
pression. These competitive effects inducing implicit
positive or negative interactions in enzymatic circuits
have commonly been omitted in most theoretical or ex-
perimental models.
For a concrete demonstration of the competition effect

between substrates, Fig. 1g and Fig. 1h demonstrate with
a simple three-node network the distinct temporal be-
haviors generated with modified Michaelis-Menten
equations and the normal Michaelis-Menten equations,
respectively. With the same set of parameter values and
same initial conditions, the description that takes into
account competitive bindings depicts self-sustained os-
cillations (Fig. 1g) while a stationary steady state is gen-
erated when the normal Michaelis-Menten mechanism
is adopted (Fig. 1h). The ordinary differential equations
for the circuit in Fig. 1g and Fig.1 h are listed in add-
itional file 1. One sees that the competition effect gener-
ates implicit mutual activation interactions as
demonstrated with dashed links in Fig. 1g and sustains a
completely different dynamical behavior. From the cir-
cuit that is added with two more edges, the oscillations
not expected in the original topology are supported due
to that a negative feedback loop forms with the aid of
the implicit interactions coming from the competition
effects. The competition effect could thus play signifi-
cant roles in the topology of functional circuits and need
to be considered in the design principles of multiple
signal-encoding functional networks.

We adopt the method of module combination to con-
struct the multi-functional networks. The scenario con-
sists of three steps. First, we search separately for
functional network topologies capable of oscillation and
adaptation by enumerating all possible networks with
three nodes. Typical and simple functional networks, i.e.,
those topologies that have less links and are relatively
more robust, are then selected to form module pools for
these two signal-encoding sub-functions. The combined
network topologies are then constructed from the two
sub-functional pools by merging nodes. Those that are
capable of achieving both oscillation and adaptation in
response to external stimuli are selected as bi-functional
circuits. The final topologies for our target multiple
signal-encoding functions are completed by adding to
the bi-functional circuits an extra node that directly acti-
vates the output node upon receiving the signal, or alter-
natively by adopting an existing regulatory node for
input of the third signal that directly or indirectly acti-
vates the output node. Ultimately, we obtain
tri-functional networks having four to six nodes.
The modified Michaelis-Menten equations for network

dynamics are integrated numerically. The code is written
in computer C language with Visual Studio 2008. The
ODE solver rkf45 of Runge-Kutta algorithm is chosen.
The scripts are available upon request. Rate constant
values ranging from 0.1 to 10 are considered. The
Michaelis-Menten constant changes in the range
10−3~10. In order to determine computationally whether
oscillations emerge out or not, the variance of network
output variable in a time window is monitored after the
transient behavior dies out. An apparently not zero vari-
ance indicates oscillations arise. The oscillations with
both amplitude and oscillation period larger than 0.1 are
considered in this study. To numerically determine
adaptation, the transient peak value Opeak and asymp-
totic end value Oend of the output variable are moni-
tored and calculate their differences from the initial
value Oini. The numerical criteria for adaptation are that
Opeak −Oini > 0.2 and ∣Oend −Oini ∣ < 0.1 are both satis-
fied. Sustained activation is determined by the criterion
Oend −Oini > 0.2.
In order to analyze topological properties of

three-node networks with oscillations and adaptation,
we perform clustering analyses for the functional net-
works as in [39]. In a three-node network, there are to-
tally nine possible links because there are at most three
links from each node to other nodes and to itself. Values
of 1, − 1, and 0 are assigned for links of activation, inhib-
ition, and no regulation, respectively. A network top-
ology can be therefore described with a digital number
of length nine. The topological difference between two
networks having three nodes can then be measured by
calculating the hamming pair-wise distance from the
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digital numbers. The clustering analyses of the func-
tional networks is performed by using clustergram in
Matlab. The clustering for bi-functional networks is
similarly analyzed.
The original c code files used in our computation for

enumeration of sub-functions (Additional file 2), and
merging of functional modules (Additional files 3, 4, 5)
as well as a model in SBML format (Additional file 6)
for the typical network (N5 in Fig. 4c) can be found in
Additional files.

Additional files

Additional file 1: The appendix for the equations and parameters used
in Fig.1(d-f), and module selection for the function of sustained
activation, as well as the analysis of bi-functional mechanism for the hy-
brid motif of a3 + b1. (DOCX 165 kb)

Additional file 2: The original codes used in our computation for
enumeration of sub-functions. (ZIP 2318 kb)

Additional file 3: The original codes used in our computation for one-
node merging of functional modules. (ZIP 1608 kb)

Additional file 4: The original codes used for two-node merging of
functional modules. (ZIP 1018 kb)

Additional file 5: The original codes used for three-node merging of
functional modules. (ZIP 1162 kb)

Additional file 6: The SBML format model for the network N5 in Fig. 4c.
(XML 9 kb)
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