Skip to main content

Table 5 Reaction rules for the considered example of EGFR dimerization.

From: Exact model reduction of combinatorial reaction networks

R(0, *) + EGF R(EGF, *) k1, k-1
R(0, *).R(0, *) + EGF R(EGF, *).R(0, *) 2k2, k-2
R(EGF, *).R(0, *) + EGF R(EGF, *).R(EGF, *) k2, 2k-2
R(0, X1) + R(0, X1) R(0, X1).R(0, X1) k3, k-3
R(0, X1) + R(0, X2) R(0, X1).R(0, X2) 2k3, k-3
R(EGF, X1) + R(0, X1) R(EGF, X1).R(0, X1) k4, k-4
R(EGF, X1) + R(0, X2) R(EGF, X1).R(0, X2) 2k4, k-4
R(EGF, X1) + R(EGF, X1) R(EGF, X1).R(EGF, X1) k5, k-5
R(EGF, X1) + R(EGF, X2) R(EGF, X1).R(EGF, X2) 2k5, k-5
R(*, 0)    R(*, P) k6, k-6
R(*, 0).R(*, 0)    R(*, P).R(*, 0) 2k7, k-7
R(*, P).R(*, 0)    R(*, P).R(*, P) k7, 2k-7
  1. Herein the identifiers X n also indicate that the related domains can be in various states as the identifier * does. However, all domains with the identifier X n within one rule have to be in the same state. If two different identifiers X i and X j occur within one rule the respective domains are not allowed to be in the same state.