From: Exact model reduction of combinatorial reaction networks
R(0, *) | + | EGF | ⇋ | R(EGF, *) | k_{1}, k_{-1} |
R(0, *).R(0, *) | + | EGF | ⇋ | R(EGF, *).R(0, *) | 2k_{2}, k_{-2} |
R(EGF, *).R(0, *) | + | EGF | ⇋ | R(EGF, *).R(EGF, *) | k_{2}, 2k_{-2} |
R(0, X_{1}) | + | R(0, X_{1}) | ⇋ | R(0, X_{1}).R(0, X_{1}) | k_{3}, k_{-3} |
R(0, X_{1}) | + | R(0, X_{2}) | ⇋ | R(0, X_{1}).R(0, X_{2}) | 2k_{3}, k_{-3} |
R(EGF, X_{1}) | + | R(0, X_{1}) | ⇋ | R(EGF, X_{1}).R(0, X_{1}) | k_{4}, k_{-4} |
R(EGF, X_{1}) | + | R(0, X_{2}) | ⇋ | R(EGF, X_{1}).R(0, X_{2}) | 2k_{4}, k_{-4} |
R(EGF, X_{1}) | + | R(EGF, X_{1}) | ⇋ | R(EGF, X_{1}).R(EGF, X_{1}) | k_{5}, k_{-5} |
R(EGF, X_{1}) | + | R(EGF, X_{2}) | ⇋ | R(EGF, X_{1}).R(EGF, X_{2}) | 2k_{5}, k_{-5} |
R(*, 0) | ⇋ | R(*, P) | k_{6}, k_{-6} | ||
R(*, 0).R(*, 0) | ⇋ | R(*, P).R(*, 0) | 2k_{7}, k_{-7} | ||
R(*, P).R(*, 0) | ⇋ | R(*, P).R(*, P) | k_{7}, 2k_{-7} |