Skip to main content

Table 3 Performances of GASA, TSNI, NCA, GAGA and GA-regular SA applied to data simulated from Eq. (2) with high level of noise, where the averaged results of five repeats are reported

From: Inferring genetic interactions via a nonlinear model and an optimization algorithm

   # inta # pcb TPRc TNRd FPRd mFPRe
GASA AIC/no power law    0.66 0.97 0.03 0.19
  BIC/power law    0.65 0.97 0.03 0.19
GA-regular SA AIC/no power law    0.5 0.95 0.05 0.30
  BIC/power law    0.47 0.96 0.04 0.31
NCA 100% true connectivity    0.58 0.94 0.06 0.31
  50% true connectivity    0.25 0.85 0.15 0.73
TSNI inputting prior knowledge: 26 true links 3 1 0.50 0.89 0.11 0.50
   3 2 0.50 0.89 0.11 0.50
   3 3 0.50 0.89 0.11 0.50
GA-GA AIC/no power law    0.31 0.83 0.17 0.71
  BIC/power law    0.31 0.90 0.10 0.60
  1. a '# int' denotes the number of interpolations.
  2. b '# PC' denotes the number of principal components
  3. c TPR is the percentage of correctly predicted links out of the total number of existing links in a simulated network. Note signs of interactions were not accounted toward TPR and other performance measure.
  4. d TNR (FPR) is the ratio of correctly predicted non-existing links (false positives) over the total true negatives.
  5. e mFPR is the ratio of incorrectly predicted links to the total predicted links.