N° | PL equations for the TOL model | Description |
---|---|---|
1 | dupper/dt = k 0 upper * s + (XylR, θ XylR ) * s + (m xyl , θ mxyl ) - g upper * upper | Upper pathway expression |
2 | dXylS/dt = k 0 XylS + k 1 XylS * s + (XylR, θ XylR ) * s + (m xyl , θ mxyl ) - g XylS * XylS | XylS expression |
3 |
dmeta/dt = k
0
meta
* s
+
(XylS, θ
2
XylSh
) + k
1
meta
* s
+
(XylS, θ
1
XylSi
) * s
+
(upper, θ
upper
) * s
+
(m
xyl
, θ
mxyl
)
- g meta * meta | Meta pathway expression |
4 | dXylR/dt = k 0 XylR - g XylR * XylR | XylR expression |
Parameter inequalities | ||
zero upper <θ upper < k 0 upper /g upper < max upper | Parameter inequalities for equation 1 | |
zero XylS < θ 1 XylSi < k 0 XylS /g XylS < θ 2 XylSh < (k 0 XylS + k 1 XylS )/g XylS < max XylS | Parameter inequalities for equation 2 | |
zero meta < θ meta < k 0 meta /g meta < k 1 meta /g meta < (k 0 meta + k 1 meta )/g meta < max meta | Parameter inequalities for equation 3 | |
zero XylR <θ XylR < k 0 XylR /g XylR < max XylR | Parameter inequalities for equation 4 | |
Alternative parameter inequalities | ||
zero XylS < θ 1 XylSi < k 0 XylS /g XylS < (k 0 XylS + k 1 XylS )/g XylS < θ 2 XylSh < max XylS | No XylS hyper-expression condition (for eq. 2) | |
zero upper < k 0 upper /g upper <θ upper < max upper | No XylSa condition (for eq.1) |