Skip to main content

Table 2 Control nodes for the reduced T-LGL network

From: Identification of control targets in Boolean molecular network models via computational algebra

Solution Control targets Attractor Basin size
\(u^{+}_{8}=1\) Ceramide=ON 0000000100000001 100 %
\(u^{+}_{9}=1\) DISC=ON 0000000010000001 100 %
\(u^{+}_{10}=1\) Caspase=ON 0000000001000001 100 %
\(u^{+}_{12}=1\) BID=ON 0000000000010001 100 %
\(u^{-}_{14}=1\) MCL1=OFF 0000000000000001 100 %
\(u^{-}_{15}=1\) S1P=OFF 0000000000000001 100 %
\(u^{+}_{6}=1\) Fas=ON 0000010000000001 100 %
\(u^{-}_{11}=1\) FLIP=OFF   
\(u^{-}_{7}=1\) sFas=OFF 0000000000000001 100 %
\(u^{-}_{11}=1\) FLIP=OFF   
  1. The last two rows represent combinatorial actions of two nodes. All attractors are steady states, and the basin sizes include the steady states themselves. Notice that node x 16=Apoptosis is a conceptual node in this model, thus it is not a relevant solution for network control