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Abstract

Background: Pathway analysis of large-scale omics data assists us with the examination of the cumulative effects
of multiple functionally related genes, which are difficult to detect using the traditional single gene/marker analysis.
So far, most of the genomic studies have been conducted in a single domain, e.g., by genome-wide association
studies (GWAS) or microarray gene expression investigation. A combined analysis of disease susceptibility genes
across multiple platforms at the pathway level is an urgent need because it can reveal more reliable and more
biologically important information.

Results: We performed an integrative pathway analysis of a GWAS dataset and a microarray gene expression
dataset in prostate cancer. We obtained a comprehensive pathway annotation set from knowledge-based public
resources, including KEGG pathways and the prostate cancer candidate gene set, and gene sets specifically defined
based on cross-platform information. By leveraging on this pathway collection, we first searched for significant
pathways in the GWAS dataset using four methods, which represent two broad groups of pathway analysis
approaches. The significant pathways identified by each method varied greatly, but the results were more
consistent within each method group than between groups. Next, we conducted a gene set enrichment analysis
of the microarray gene expression data and found 13 pathways with cross-platform evidence, including “Fc gamma
R-mediated phagocytosis” (PGWAS = 0.003, Pexpr < 0.001, and Pcombined = 6.18 × 10-8), “regulation of actin
cytoskeleton” (PGWAS = 0.003, Pexpr = 0.009, and Pcombined = 3.34 × 10-4), and “Jak-STAT signaling pathway” (PGWAS =
0.001, Pexpr = 0.084, and Pcombined = 8.79 × 10-4).

Conclusions: Our results provide evidence at both the genetic variation and expression levels that several key
pathways might have been involved in the pathological development of prostate cancer. Our framework that
employs gene expression data to facilitate pathway analysis of GWAS data is not only feasible but also much
needed in studying complex disease.

Background
Prostate cancer is the most common cancer diagnosed in
men in the USA [1]. During the past decades, tremendous
efforts have been made to understand the underlying
molecular mechanisms of prostate cancer in both genetic
components and at the transcriptional level. As of 3/15/

2012, a total of 18 genome-wide association (GWA) stu-
dies (17 for prostate cancer and 1 for prostate cancer mor-
tality) have been reported and deposited in the NHGRI
GWAS Catalog database [2]. These studies revealed more
than 70 single nucleotide polymorphisms (SNPs) linked to
prostate cancer. Additionally, gene expression studies aug-
mented by microarray technologies have been conducted
to identify disease candidate genes; such efforts were made
before the adoption of popular GWA studies and continue
to accumulate comprehensive gene expression profiles for
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prostate cancer. The well-designed genomics projects in
each domain have helped investigators to generate massive
amount of genetic data, presenting new opportunities to
interrogate the information revealed in each single domain
and to explore combined analyses across platforms.
Recently, mapping genetic architecture using both gen-
ome-wide association studies and microarray gene expres-
sion data has become a promising approach, especially for
the detection of expression quantitative trait loci (eQTLs)
[3-5]. Alternatively, a systems biology approach that inte-
grates genetic evidence from multiple domains has its
advantages in the detection of combined genetic signals at
the pathway or network level. Such an approach is
urgently needed because results among different genomic
studies of complex diseases are often inconsistent and
numerous genomic datasets for each complex disease have
already made available to investigators.
We designed this project to analyze GWAS and micro-

array gene expression data in prostate cancer at the gene
set level, aiming to reveal gene sets that are aberrant in
both the genetic association and gene expression studies.
Gene set (e.g., biological pathway) analysis of large scale
omics data has recently been proposed as a complemen-
tary approach to single marker or single gene based ana-
lyses [6-8]. It builds on the assumption that a complex
disease might be caused by changes in the activities of
functional pathways or functional modules, in which many
genes could be coordinated, yet each individual gene
might play only a weak or modest role on its own. Accord-
ing to this assumption, investigation of a group of func-
tionally related genes, such as those in the same biological
pathway, has the potential to improve power. Pathway
analysis may also provide further insights into the
mechanisms of disease because they highlight underlying
biological relevance.
Over the past several years, a series of methods have

been published for gene set analysis. These methods can
be broadly categorized into two groups based on their test-
ing hypotheses [7-9]: 1) the competitive null hypothesis
(Q1), which tests whether the genes in a gene set show
similar association patterns with the disease compared to
genes in the rest of the genome; and 2) the self-contained
null hypothesis (Q2), which tests whether the genes in a
gene set are associated with the disease. Currently, specific
methods were developed to investigate either the GWAS
data [10-12] or microarray gene expression [13,14] indivi-
dually, while other methods were created that are applic-
able to both platforms with slight adaptations [13,15,16].
For example, the Gene Set Enrichment Analysis (GSEA)
method from the Q1 group was initially developed for
gene expression data [13] and has recently been adapted
to GWAS [16], followed by its various extensions (e.g.,
GSEA-SNP [17] and i-GSEA4GWAS [18]). Unlike gene
expression data for which both the technologies and

methods have matured, GWAS data analysis presents
numerous challenges, including testing millions of SNPs
per sample and subsequent multiple test corrections, com-
plex local linkage disequilibrium (LD) structures, and
heavy computational duties due to thousands of samples,
especially in permutation analysis. Several methods were
specifically designed for GWAS data by taking these fea-
tures into account, such as the Association List Go Anno-
TatOR (ALIGATOR) [10] in the Q1 group, and the
Adaptive rank truncated product statistic (ARTP) [12], the
SNP Ratio Test (SRT) [19], and the t-statistic in mixed
model [20] in the Q2 group. Aside from the essential dif-
ferences in hypothesis testing, each of these methods has
its own strengths and weaknesses in dealing with complex
genetic and phenotype data for disease association, requir-
ing careful design in practice.
In this study, we conducted a comprehensive pathway

analysis of a prostate cancer GWAS dataset utilizing four
representative methods from the two hypothesis testing
schemes. We further analyzed the pathways (or gene
sets) enriched in a public microarray gene expression
dataset using the GSEA method. Both platforms (GWAS
and gene expression) were leveraged on the pathway col-
lection annotated by the KEGG database as well as sev-
eral specially designed gene sets. Our comparison within
the GWAS platform showed that the significant pathways
detected by each method varied substantially, but the
consistency within the same hypothesis method group
was greater than those between method groups. Further-
more, we combined the pathway results in GWAS and
microarray gene expression data using the Fisher’s
method. A total of 13 KEGG pathways were found as sig-
nificant in the combined analysis, confirming our hypoth-
esis that changing activities in pathways indeed show
cross-platform consistency. The results in this combined
analysis might be more reliable; thus, they warrant
further experimental investigation.

Materials and methods
Datasets
The GWAS prostate cancer data used in this study is part
of the Cancer Genetic Markers Susceptibility (CGEMS)
study [21]. We downloaded the data from the National
Center for Biotechnology Information (NCBI) dbGaP [22]
through approved access. Approximately 550,000 SNPs
were genotyped using two types of chips: Illumina Human-
Hap300 (Phase 1A) and Illumina HumanHap240 (Phase
1B). The data included 1172 prostate cancer patients and
1157 controls of European ancestry from the Prostate,
Lung, Colon and Ovarian (PLCO) Cancer Screening Trial
[23]. We filtered SNPs based on the following quality
check criteria: locus call rates (< 90%), minor allele fre-
quency (MAF < 0.05), and monomorphic status across
array types [24]. Samples that were genotyped by both
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HumanHap300 and HumanHap240 were selected, and
those with missing genotype data > 0.1 were excluded. The
cleaned data included a total of 506,216 SNPs and 2243
samples (Table 1). We used the basic allelic test for asso-
ciation test of SNPs with prostate cancer. The genomic
inflation factor was 1.03. Throughout this study, wherever
applicable, we mapped a SNP to a gene if it was located
within the gene or 20 kb from the boundary of the gene
[6].
For gene expression data, we selected a public micro-

array dataset from the NCBI Gene Expression Omnibus
(GEO) database with a similar phenotype and appropri-
ate sample size (GDS2547) [25,26]. A total of 64 primary
prostate tumor samples and 75 controls (17 normal
prostate tissue samples and 58 normal prostate samples
adjacent to tumor) were included as our working dataset
[26]. A standard processing procedure was implemented,
including quantile normalization of the samples, t-test
for differential expression, and multiple testing correc-
tion. For genes with multiple probe sets, we computed
the median value to represent the gene. A summary of
the above two datasets is available in Table 1.

Gene set selection
The Molecular Signatures Database (MSigDB) [13] is a
database that collects gene sets from various sources,
including online pathway databases, publications in
PubMed, and the knowledge of domain experts. Among
these collections, we chose to use the pathways from the
KEGG database [27] in the C2 category. To avoid too
many or too few genes to be considered in each pathway
analysis, we only included the pathways whose sizes were
between 5 and 250 genes in our following analysis. This
process resulted in a total of 181 qualified pathways.
In addition to the publicly available pathways, we

defined several knowledge-based gene sets for our analy-
sis. First, we manually collected a list of candidate genes
for prostate cancer downloaded from the Human Pros-
tate Gene Database (PGDB) [28], a well-curated and
integrated database for prostate and prostatic diseases.
We retrieved 129 genes and denoted them as one gene
set, namely the PGDB gene set.

Second, for pathway analysis of the GWAS data, we
defined 3 additional gene sets from the microarray gene
expression data in order to perform cross-platform eva-
luation. Genes that were differentially expressed with
FDR < 0.05 in t-test and with log2 ratio (LR) under three
different thresholds (i.e., 1, 1.5, and 2) between case and
control samples were extracted to form three expression-
based external gene sets (Table 2). They were named
DEG_LR_1 (LR > 1 or LR < -1), DEG_LR_1.5 (LR > 1.5
or LR < -1.5), and DEG_LR_2 (LR > 2 or LR < -2); here,
DEG denotes differentially expressed genes. These gene
sets were defined based on gene expression information
and were included only in the pathway analysis of the
GWAS data (Figure 1). In summary, for the pathway ana-
lysis of the GWAS data, we had 185 gene sets: 181 KEGG
pathways, the PGDB gene set, and 3 gene sets derived
from gene expression.
Third, for pathway analysis of gene expression data,

aside from the KEGG pathways and the PGDB gene set,
we similarly defined additional gene sets from GWAS data
analysis results. The first one included the top 30 genes
ranked by their gene-wise P-values in association with
prostate cancer, while the second one included the genes
whose gene-wise P-values were < 10-4 (69 genes). We
defined these two sets as GWAS_Top30 and GWAS_-
TopP-4. As a result, for the pathway analysis of microarray
gene expression data, we had a total of 184 gene sets: 181
KEGG pathways, the PGDB gene set, the GWAS_Top30,
and the GWAS_TopP-4 (Table 2).

Pathway analysis methods for GWAS data
Previous studies have proposed many approaches for
gene set analysis of GWAS data [6-8]. However, so far,
no single method has been shown to outperform the
other methods in the analysis of different GWAS data
sets. To avoid the potentially biased application of any
one algorithm, we chose four representative methods to
perform a comprehensive analysis in this study. Two of
these methods belong to the Q1 group of competitive
hypothesis, namely, the GSEA method for GWAS data
implemented in the software GenGen [16,29] and the
method ALIGATOR [10]. The other two methods, the

Table 1 Summary of genotyping (GWAS) data and microarray gene expression data.

GWAS Microarray gene expression

Source CGEMS [24] GEO: GDS2547 [25,26]

# of features 506,216 SNPs 10,595 genes

# of samples Cases:1146
Controls: 1097

Cases: 64
Controls: 75

Phenotype Prostate cancer Subset 1 (17, normal prostate tissue)
Subset 2 (58, normal prostate adjacent to tumor)
Subset 3 (64, primary prostate tumor)

Platform Illumina HumanHap300 and HumanHap240 Affymetrix Human Genome U95C array

CGEMS: The Cancer Genetic Markers of Susceptibility (CGEMS) project. GEO: Gene Expression Omnibus.
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SRT and the Plink set-based test, are from the Q2 group
of self-contained hypothesis testing.
The GSEA algorithm was initially developed for gene

expression data analysis [13] and has been recently
extended to GWAS data [16,29]. The software GenGen

[30] is one of the toolkits that implement the GSEA
algorithm. In brief, the following steps are taken when
GenGen is applied. First, it defines gene-wise statistical
values. Given multiple SNPs mapped to a gene region, a
popularly adopted approach is to use the maximum

Table 2 Description of additional gene sets.

Gene set Size Description

PGDB 129 Genes extracted from the PGDB database [28]

GWAS_Top30 30 Top 30 genes with the smallest association P-values in GWAS.

GWAS_TopP-4 69 Top 69 genes with association P < 10-4 in GWAS

DEG_LR_1 165 DEGs in gene expression data with FDR < 0.05, and absolute log2 ratio (LR) > 1

DEG_LR_1.5 130 DEGs in gene expression data with FDR < 0.05, and absolute LR > 1.5

DEG_LR_2 13 DEGs in gene expression data with FDR < 0.05, and absolute LR > 2

DEG: differentially expressed gene (DEG). FDR value was based on t-test. More details of gene sets are provided in the text.

Figure 1 Workflow of the integrative pathway analysis. PGDB: Human Prostate Gene Database; DE: differentially expressed; ALIGATOR:
Association List Go AnnoTatOR; SRT: SNP Ratio Test; GSEA: Gene Set Enrichment Analysis.
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statistical value of all SNPs within or near the gene
region to represent its association significance. For
example, the SNP with the maximum c2 value is chosen
as the representative SNP, and the corresponding c2

value is assigned as the gene-wise statistical value for
the gene. Next, all genes are ranked according to their
c2 values. Third, for each pathway, an enrichment score
(ES) is calculated as the maximum departure of the
genes in the pathway from zero. Finally, the significance
of the ES for each pathway is estimated through the per-
mutation of sample labels. In GWAS, this is done by
swapping the case and control status to keep the LD
structure among SNPs/genes. The analysis is then exe-
cuted in each set of permutation data. A normalized ES
(NES) and an empirical P-value are typically calculated
for each pathway.
ALIGATOR [10] tests the overrepresentation of gene

sets within genes that contain significantly associated
SNPs from GWAS data. It takes the association P-values
of single SNPs as analysis units and preselects criterion
to define significant SNPs (e.g., P < 0.05). Genes that
contain significant SNPs are counted, but each gene is
only counted once regardless of how many significant
SNPs are involved in it. Instead of permuting pheno-
types, ALIGATOR permutes SNPs. In each permutation,
SNPs are randomly selected from the pool, and once a
new SNP is selected, the number of genes that contain
significant SNPs in the selected collection is counted
and compared with the corresponding number in the
real case. The random selection process continues until
the number of significant genes targeted by the selected
SNPs is the same as in the original study. Finally, an
empirical P-value is computed for each pathway based
on the permutation data.
The SNP Ratio Test (SRT) [19] builds on the ratio of

significant SNPs in a pathway and estimates the signifi-
cance of the ratio utilizing permutation data. Similar to
the process used by ALIGATOR, a cutoff value is prese-
lected to distinguish significant SNPs from non-significant
ones. In this study, we used 0.05. The significance of each
pathway is estimated by an empirical P-value through per-
mutation on phenotypes.
The Plink set-based test [31] provides an average statis-

tical test of sets of SNPs. Given a query pathway with the
SNPs mapped to the genes in this pathway, the set-based
test determines groups of SNPs based on their local LD
structure and selects the “current” best SNP in every
step. Briefly, it first selects the best SNP and removes the
other SNPs within the same LD, defined by r2 values
(e.g., r2 > 0.5). In the remained SNPs, the set-based test
again searches for the best SNP and removes highly
related SNPs. Then, the process is repeated until P-values
of the remaining SNPs are below a pre-defined cutoff.
The average of the statistical values of the selected SNPs

is obtained for each pathway and permutation of pheno-
type labels is performed to compute an empirical P-value
for each gene set.

Pathway analysis methods for microarray gene
expression
The GSEA algorithm in gene expression data analysis
was first introduced by Subramanian et al. [13,15] and
has become a popular tool for interpreting gene expres-
sion data at the pathway level. The underlying algorithm
for GSEA is essentially the same as described above for
GWAS data, except that the gene-wise statistical value
is a signal to noise ratio that is computed based on gene
expression data. A detailed description can be found in
the original publication [13]. In our application, we used
the software GSEA downloaded from reference [32].
Multiple testing correction using the false positive rate
(FDR) is incorporated to adjust gene set P-values.

Fisher’s method
Fisher’s method combines multiple probabilities from
independent tests of the same hypothesis and generates
one combined statistic (c2) using the following formula:

χ2 = −2
k∑

i=1

loge
(
pi

)

where pi is the P-value for the ith hypothesis test, and
k is the number of tests being combined [33]. Theoreti-
cally, c2 has a chi-square distribution with 2 k degree of
freedom when all pi values are independent.
In this study, we used the Fisher’s method to combine

individual nominal P-values obtained from GWAS and
microarray gene expression analyses for eligible path-
ways in both platforms. A combined P-value was then
computed for each pathway to show the consistency of
its association with prostate cancer from different types
of genomic data.

Results
Figure 1 illustrates the workflow. We applied four meth-
ods for the prostate cancer CGEMS GWAS data and one
method for the prostate cancer microarray gene expres-
sion data. Table 3 lists the parameters used for each
method. It also summarizes the significant pathways iden-
tified in each analysis scenario. Among the 4 methods
used for GWAS data, GenGen is threshold-free, while the
three other methods require a pre-defined cutoff value to
distinguish significant SNPs. In these cases, we used cutoff
value 0.05 (Table 3). We performed permutation 1000
times in each of the four cases (GenGen, SRT, Plink set-
based test, and GSEA) by swapping case/control labels.
For ALIGATOR, because the resampling unit is SNP
(~550,000 SNPs in our dataset), we permuted a larger
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number of times, i.e., 10,000 times (Table 3). Because the
signals from GWAS data could be weak and the coherence
across platforms are presumably also weak, we set up two
tiers of criteria to define significant pathways. The tier one
criterion is relatively loose and was based on nominal P-
values, i.e., pathways with nominal P < 0.01 were selected.
The tier two criterion was built on FDR, i.e., pathways
with FDR < 0.2 were selected (Table 3). Note that instead
of the traditional cutoff P-value 0.05, we used FDR < 0.2
such that marginally significant pathways would not be
overlooked and an appropriate number of pathways could
be derived.

Pathway analysis of CGEMS prostate cancer GWAS data
For GWAS data, the Plink set-based test generated the
largest number of significant pathways among the four
methods, regardless of tier one or tier two criterion. It
identified 15 significant pathways, including the PGDB
gene set; however, these significant pathways did not
include the three gene sets defined by expression data.
GenGen identified 4 pathways that were nominally asso-
ciated with prostate cancer, three of which were signifi-
cant at FDR < 0.2. However, none of the external gene
sets, including the PGDB gene set, were found by Gen-
Gen to be significant. SRT found 3 nominally significant
pathways using tier one criterion, but none passed the
multiple testing correction using tier two criterion
(Table 3). ALIGATOR essentially found no significant
pathway.
Among the 15 significant pathways identified by the

Plink set-based test (Table 4), seven belong to the
“Human Diseases ® Cancers” group in the KEGG maps.
These pathways are: “chronic myeloid leukemia
(hsa05220),” “small cell lung cancer (hsa05222),” “endo-
metrial cancer (hsa05213),” “thyroid cancer (hsa05216)”,
“bladder cancer (hsa05219),” “acute myeloid leukemia
(hsa05221),” and “colorectal cancer (hsa05210).” Notably,
the Plink set-based test is the only method that could
identify the PGDB gene set as significant. The PGDB
gene set was ranked as the 14th most significant gene set,
with a nominal P-value = 0.004 and FDR = 0.053.

Because the PGDB gene set contains prostate cancer can-
didate genes collected from various type of evidence,
especially functional gene studies [28], and GWA studies
are designed as essentially hypothesis-free (not specifi-
cally for a disease or a set of disease genes), the successful
identification of this gene set to be significantly enriched
within an independent GWAS dataset is promising, sug-
gesting an appropriate analysis might be able to unveil
genetic components in GWA studies.
The other significant pathways identified by the Plink

set-based test also showed strong relevance. Interestingly,
the most significant pathway, “Jak-STAT signaling path-
way (hsa04630),” is the underlying signaling mechanism
for a wide range of cytokines and growth factors. The
roles of JAK/STAT in prostate cancer have been well stu-
died in many reports [34-36]. Among the 155 genes
involved in this pathway, 67 had nominally significant
gene-wise P-values in the association test (P < 0.05), 6 of
which had gene-wise P-value < 1 × 10-3 (Table 5). This

Table 3 Parameters and summary of the significant pathways by each pathway analysis method.

Method Parameter(s) # pathways (P < 0.01) # pathways (FDR < 0.2) The PGDB gene set Other external gene sets

GenGen π = 1000 4 3 N N

ALIGATOR π = 10,000, P = 0.05 0 0 N N

SRT π = 1000, P = 0.05 3 0 N N

Plink set-based test π = 1000, r2 = 0.5,
P = 0.05, max = 5

15 15 Y N

GSEA π = 1000 5 7 N N

This table lists the parameters used in GenGen, ALIGATOR, SRT, the Plink set-based test, and the Gene Set Enrichment Analysis (GSEA). The third and forth
columns contain the number of pathways selected by tier one criterion (nominal P < 0.01) and tier two criterion (FDR < 0.2), respectively. The fifth and sixth
columns indicate whether the method could identify the PGDB gene set or other additional gene sets (more details available in main text).

π: number of permutations.

Table 4 Significant pathways (FDR < 0.01) detected by
the Plink set-based test.

Pathway (KEGG ID) P FDR

Jak-STAT signaling pathway (hsa04630)* 0.001 0.043

Chronic myeloid leukemia (hsa05220) 0.001 0.043

Small cell lung cancer (hsa05222) 0.001 0.043

TGF-beta signaling pathway (hsa04350) 0.002 0.043

Endometrial cancer (hsa05213) 0.002 0.043

Thyroid cancer (hsa05216)* 0.002 0.043

Bladder cancer (hsa05219) 0.002 0.043

Acute myeloid leukemia (hsa05221) 0.002 0.043

Cell cycle (hsa04110) 0.003 0.043

Wnt signaling pathway (hsa04310) 0.003 0.043

Fc gamma R-mediated phagocytosis (hsa04666) † 0.003 0.043

Regulation of actin cytoskeleton (hsa04810) † 0.003 0.043

Colorectal cancer (hsa05210) 0.003 0.043

The PGDB gene set 0.004 0.053

ErbB signaling pathway (hsa04012) 0.008 0.099

*Overlap with SRT.
†Overlap with GSEA.
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observation suggests the importance of this pathway
involved in the pathology of prostate cancer.

Pathway analysis of gene expression data
For gene expression data, a total of 184 gene sets were eli-
gible for analysis using the GSEA method with 1000 per-
mutations. Five pathways had nominal P-values less than
0.05, while seven pathways were identified by applying an
FDR cutoff 0.2. All seven pathways were from the KEGG
annotations. No external gene sets (GWAS-derived gene
sets) were found to be significant (Table 6).

Comparison among methods and platforms
To explore the overlap among the significant pathways
identified by each method, we compared four result sets
and drew a Venn diagram (Figure 2). These pathways
included: 1) 4 pathways by GenGen (GWAS); 2) 15 path-
ways by the Plink set-based test (GWAS); 3) 3 pathways
by the SRT (GWAS); and, 4) 7 pathways by GSEA (gene
expression). Note that for each method, we selected the
pathways passing either tier one or tier two criterion so
that all detected pathways were included. ALIGATOR
generated no significant pathway and, thus, was not
included in this comparison.
No pathways were identified by at least 3 methods.

Seven pathways were identified by at least two methods.
Among them, three pathways, i.e., “arrhythmogenic right
ventricular cardiomyopathy (ARVC) (hsa05412),” “hyper-
trophic cardiomyopathy (HCM) (hsa05410),” and “dilated

cardiomyopathy (hsa05414),” were detected by both Gen-
Gen (GWAS data) and GSEA (expression data). Two
pathways, “Jak-STAT signaling pathway (hsa04630)” and
“thyroid cancer (hsa05216),” were detected by the Plink
set-based test and SRT, both in the GWAS data. Another
two pathways, “Fc gamma R-mediated phagocytosis
(hsa04666)” and “regulation of actin cytoskeleton
(hsa04810),” were identified by both the Plink set-based
test in the GWAS data and GSEA in the gene expression
analysis.

Combined analysis of pathways
For the 148 common pathways that were eligible for both
the Plink set-based analysis of GWAS data and GSEA of
microarray gene expression data, we combined their
nominal P-values derived from each dataset based on the
Fisher’s method. Thirteen pathways were found to have
combined P-values < 0.01 (Table 7).
In general, the combined results of the Fisher’s method

highly ranked the pathways that were found to be consis-
tently significant across multiple studies. For example,
three of the top four pathways were nominally significant
in both GWAS and expression data: the pathways of “Fc
gamma R-mediated phagocytosis (hsa04666)” (PGWAS =
0.003, Pexpr < 0.001, and Pcombined = 6.18 × 10-8), “regula-
tion of actin cytoskeleton (hsa04810)” (PGWAS = 0.003,
Pexpr = 0.009, and Pcombined = 3.34 × 10-4) and “dilated car-
diomyopathy (hsa05414)” (PGWAS = 0.003, Pexpr = 0.024,
and Pcombined = 9.63 × 10-4). The pathway “Jak-STAT

Table 5 List of “Jak-STAT signaling pathway (hsa04630)” genes with gene-wise association P < 0.001 in CGEMS
prostate cancer GWAS data.

Gene symbol Most significant SNP Chr. Position (bp) Genomic region P

MYC rs7837688 8 128539360 Intron 4.96 × 10-7

CSF2RB rs909486 22 37323988 Intron 1.85 × 10-4

PIAS1 rs11071981 15 68416575 Intron 2.63 × 10-4

IL2RA rs3118470 10 6101713 Intron 3.29 × 10-4

SPRY2 rs1999494 13 81000505 Intron 4.01 × 10-4

LEP rs12538332 7 127839654 Intron 5.24 × 10-4

Chr.: chromosome. bp: base pair.

Table 6 Significant pathways in prostate cancer microarray gene expression data detected by the GSEA method.

Pathway (KEGG ID) ES NES P FDR

Fc gamma R-mediated phagocytosis (hsa04666)* 0.645 1.809 < 0.001 0.131

Focal adhesion (hsa04510) 0.482 1.658 0.004 0.176

Dilated cardiomyopathy (hsa05414) † 0.672 1.905 0.004 0.101

Hypertrophic cardiomyopathy (HCM) (hsa05410) † 0.619 1.740 0.009 0.122

Regulation of actin cytoskeleton (hsa04810)* 0.464 1.714 0.009 0.128

Leukocyte transendothelial migration (hsa04670) 0.594 1.760 0.011 0.163

Arrhythmogenic right ventricular cardiomyopathy (ARVC) (hsa05412) † 0.663 1.760 0.012 0.123

ES: enrichment score. NES: normalized enrichment score.

*Overlap with the Plink set-based results.
†Overlap with the GenGen results.
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signaling pathway (hsa05216),” which was the most signifi-
cant in GWAS data analysis but was not significant in
gene expression data (PGWAS = 0.001, Pexpr = 0.084, and
Pcombined = 8.79 × 10-4), was ranked third by the Fisher’s
method. These results further indicate that there are
indeed pathways that are disturbed at different levels, e.g.,
genetically (germline mutations) or by transcriptional
dosages. Therefore, these pathways are more likely to be
involved in the mechanisms of prostate cancer. Based on

this integrative pathway analysis, we defined these 13 path-
ways as candidate pathways for prostate cancer.
We further checked the genes in the candidate pathways

for their overlap with two well-curated candidate gene sets
for cancer: the gene list specifically collected for prostate
cancer and the general one for all cancer types from the
Cancer Gene Census (CGC) [37]. Note that the PGDB
gene set was not included in the candidate pathways. As
shown in Additional file 1, 30 genes from the prostate

Figure 2 Comparison of the significant pathways found in genome-wide association studies and microarray gene expression datasets
by different methods. This Venn diagram shows the comparison of significant pathways detected using the prostate cancer GWAS dataset
using three methods: GenGen, Plink set-based test (PlinkSet), and the SNP Ratio Test (SRT), and the significant pathways found in microarray
gene expression data by the Gene Set Enrichment Analysis (GSEA) method. Note that ALIGATOR identified no significant pathways and was not
included in the comparison.

Table 7 Significant pathways (P < 0.01) by a combined analysis using the Plink set-based test and GSEA.

Pathway (KEGG ID) GSEA Plink Pcombined FDR

Fc gamma R-mediated phagocytosis (hsa04666) < 0.001 0.003 6.18 × 10-8 9.15 × 10-6

Regulation of actin cytoskeleton (hsa04810) 0.009 0.003 3.34 × 10-4 2.47 × 10-2

Jak-STAT signaling pathway (hsa04630) 0.084 0.001 8.79 × 10-4 3.56 × 10-2

Dilated cardiomyopathy (hsa05414) 0.003 0.024 9.63 × 10-4 3.56 × 10-2

Small cell lung cancer (hsa05222) 0.266 0.001 2.45 × 10-3 7.27 × 10-2

Hypertrophic cardiomyopathy (HCM) (hsa05410) 0.009 0.051 4.20 × 10-3 9.62 × 10-2

Cell cycle (hsa04110) 0.251 0.003 6.16 × 10-3 9.62 × 10-2

Arrhythmogenic right ventricular cardiomyopathy (ARVC) (hsa05412) 0.012 0.068 6.46 × 10-3 9.62 × 10-2

Chronic myeloid leukemia (hsa05220) 0.843 0.001 6.80 × 10-3 9.62 × 10-2

Bladder cancer (hsa05219) 0.422 0.002 6.80 × 10-3 9.62 × 10-2

Wnt signaling pathway (hsa04310) 0.297 0.003 7.14 × 10-3 9.62 × 10-2

TGF-beta signaling pathway (hsa04350) 0.508 0.002 8.01 × 10-3 9.66 × 10-2

Axon guidance (hsa04360) 0.016 0.074 9.18 × 10-3 9.66 × 10-2
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cancer candidate pathways were also collected by the pros-
tate cancer database (PGDB), while 80 were collected by
CGC as known cancer genes. The results here indicate the
signals are enriched in these candidate pathways.

Discussion
In this study, we utilized four pathway analysis methods
to test the association of the KEGG pathways with pros-
tate cancer in the CGEMS GWAS dataset. The four
methods, namely GenGen, ALIGATOR, SRT and Plink
set-based test, represent two groups of hypothesis testing
methods for the pathway analysis of GWAS data, i.e., the
competitive and self-contained groups. In addition, we
incorporated a microarray gene expression dataset with
similar phenotypes for prostate cancer and performed
pathway analysis using GSEA. Genetic evidence from the
GWAS and expression data naturally formed an indepen-
dent validation of each other and at two different domain
levels (association signals and differential gene expres-
sion). Straightforward examination of the overlapping
pathways between the two dataset platforms, as well as a
combined analysis using the Fisher’s method, highlighted
several pathways that are significantly associated with
prostate cancer. These results supported the rationale of
our motivation to combine cross-platform information at
the gene set level, and they shed new light on the candi-
date pathways that are likely involved in prostate cancer.
In the pathway analysis of GWAS data, results varied

greatly among different methods. To generate an objec-
tive comparison, we defined a relatively loose criterion
based on nominal P-values, i.e., the tier one criterion
(nominal P-value < 0.01), and a more strict criterion
based on adjusted P-values after multiple testing correc-
tion, i.e., the tier two criterion (FDR < 0.2). In terms of
the number of significant pathways, the Plink set-based
test generated the most (15 significant pathways by both
tiers of criteria), followed by GenGen (4 by tier one and 3
by tier two), SRT (3 by tier one and none by tier two),
and ALIGATOR (none by either tier of criterion). For
the shared pathways, overlap is quite limited among the
different methods, with only two pathways shared by the
Plink set-based test and SRT (Figure 2). The results from
GenGen did not share any pathways with the other three
methods. This comparison reflects the current challenges
of the pathway analysis of GWAS. Furthermore, the lim-
ited overlap among the different methods is not surpris-
ing, as each method has its own evaluation focus of
disease associations. As we mentioned above, both Gen-
Gen and ALIGATOR belong to the “competitive”
method group, while the Plink set-based test and SRT
belong to the “self-contained” group [7,8]. Indeed, results
by the Plink set-based test and SRT shared two nominally
significant pathways, although no overlap with those by
either GenGen or ALIGATOR in the “competitive”

group. Nevertheless, different methods may have their
own advantages and disadvantages in determining differ-
ent types of pathways and specific phenotype data of the
GWA studies [38].
In this study, we uniquely recruited several special

gene sets in the pathway analysis. Among those six
external gene sets, except the PGDB gene set, none
were found to be significant in the cross-platform eva-
luation. That is, none of the three gene sets defined by
differentially expressed genes were identified to harbour
significant association information in GWAS data, and
none of the two gene sets consisting of top associated
genes in GWAS data were found to be significant in the
gene expression data. This observation suggests that a
straightforward selection of candidate gene sets primar-
ily based on one domain might be difficult to replicate
in another domain, even though in the same disease
phenotype. Rather, functional gene sets such as path-
ways are more likely to be found as significant at differ-
ent levels of the biological systems, such as from the
level of genetic components to transcriptional changes.
This point further supports our design of a comparative
analysis of pathways, which represent dynamic biological
processes that, if disturbed, may cause the disease.
Among the candidate pathways for prostate cancer,

the most promising one is “Jak-STAT signaling pathway
(hsa04630),” which mediates signaling that starts with
the cytokines, signals through Jak-STAT mediated activ-
ities, and finally regulates downstream gene expression
[39]. Mutations in JAKs and constitutive activation of
STAT have been observed in a variety of diseases,
including cancers [40]. Interestingly, we observed two
receptor genes that have low P-values in the CGEMS
GWAS data: CSF2RB (gene-wise P = 1.85 × 10-4) and
IL2RA (gene-wise P = 3.29 × 10-4). In the Jak-STAT sig-
naling pathway, cytokine receptors mediate signaling
from extracellular to intracellular upon the binding of
cytokines to their extracellular domains. This process
occurs at the most upstream of the overall signaling
transduction; therefore, cytokine receptors play impor-
tant roles in this pathway. Both CSF2RB and IL2RA
belong to the class I receptor family and are associated
with Jak docking [41]. In both of these genes, their most
significant SNPs are located in the intronic region rather
than within their amino acid coding regions. Since the
association signals indicate there are possible causal
mutations in the genomic region, future investigation of
the true causal functional SNPs that tag with these sig-
nificant SNPs, and their roles in prostate cancer, is war-
ranted. Moreover, we found several other genes with
small association P-values in this pathway: gene PIAS1
(P = 2.63 × 10-4), an inhibitor of STAT, and its two
downstream genes, MYC (P = 4.96 × 10-7) and SPRY2
(P = 4.01 × 10-4).
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Conclusions
In summary, we conducted an integrative pathway analysis
of GWAS data and microarray gene expression data aug-
mented by knowledge-based gene set annotations. We
explored four representative methods for the pathway ana-
lysis of GWAS data, among which the Plink set-based test
generated the most sensible set of significant pathways
both statistically and in biological interpretation. Together
with the results from gene expression data for the same
disease, we combined the results from different platforms
and identified 13 candidate pathways for prostate cancer.
This analysis framework confirmed the concept of a com-
bined pathway analysis utilizing information from different
genomics platforms, and it can be extended to the analysis
of genomics data in other complex disease.

Additional material

Additional file 1: Details of significant pathways by the Plink set-
based test, GSEA or the combined analysis (FDR < 0.2).
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