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Abstract

Background: Major alteration in lifestyle of human population has promoted Type 2 diabetes mellitus (T2DM) to the
level of an epidemic. This metabolic disorder is characterized by insulin resistance and pancreatic β-cell dysfunction
and apoptosis, triggered by endoplasmic reticulum (ER) stress, oxidative stress and cytokines. Computational modeling
is necessary to consolidate information from various sources in order to obtain a comprehensive understanding of
the pathogenesis of T2DM and to investigate possible interventions by performing in silico simulations.

Results: In this paper, we propose a Boolean network model integrating the insulin resistance pathway with
pancreatic β-cell apoptosis pathway which are responsible for T2DM. The model has five input signals, i.e. ER stress,
oxidative stress, tumor necrosis factor α (TNFα), Fas ligand (FasL), and interleukin-6 (IL-6). We performed dynamical
simulations using random order asynchronous update and with different combinations of the input signals. From the
results, we observed that the proposed model made predictions that closely resemble the expression levels of genes
in T2DM as reported in the literature.

Conclusion: The proposed model can make predictions about expression levels of genes in T2DM that are in
concordance with literature. Although experimental validation of the model is beyond the scope of this study, the
model can be useful for understanding the aetiology of T2DM and discovery of therapeutic intervention for this
prevalent complex disease. The files of our model and results are available at https://github.com/JieZheng-
ShanghaiTech/boolean-t2dm.
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Background
Type 2 diabetes mellitus (T2DM) is characterized by
insulin resistance at its onset. Persistence of insulin
resistance leads to pancreatic β-cell dysfunction and in
extreme cases to β-cell apoptosis [1–3]. Insulin resistance
increases the load on β-cells to produce more insulin in
order to maintain blood glucose at normal levels. This
homeostasis is maintained as long as β-cells can meet
the increased insulin demand. However, persistence of
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excessive nutrients could lead to hyperglycemia, elevated
free fatty acids (FFA), and inflammation, which severely
impair β-cell functions, leading to insulin resistance and
β-cell apoptosis.

The ER in the β-cells is responsible for the production
and secretion of insulin. The increased demand for insulin
synthesis in the presence of high glucose and FFA lev-
els triggers the accumulation of misfolded proteins in the
ER, causing ER stress and the consequent activation of the
unfolded protein response (UPR). UPR initially attempts
to mitigate ER stress by degrading misfolded proteins and
preventing their further accumulation. However, when ER
stress is not mitigated, UPR activates the apoptosis signals
[4–6]. 78 kDa glucose regulated protein (GRP78) serves
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as a sensor of protein misfolding [7]. Under non-stressed
conditions, GRP78 binds to three UPR initiator pro-
teins, i.e. inositol requiring 1 (IRE1), PKR-like ER kinase
(PERK), and activating transcription factor 6 (ATF6), and
maintains them in the inactive state [8]. Under stressed
conditions, GRP78 dissociates from these three proteins,
causing their activation and initiation of UPR.

When ER stress can be resolved, the UPR assists β

cells in their survival. However, when ER stress cannot be
resolved the UPR activates the pro-apoptotic signals [9].
Hyperglycemia causes oxidative stress through the gener-
ation of reactive oxygen species (ROS) [10]. In the absence
of an appropriate antioxidant response, the system expe-
riences redox imbalance, leading to the activation of
oxidative stress-sensitive signaling pathways. Cytokines,
including FasL, TNFα, and IL-6, play important roles in
the induction of β-cell apoptosis [11–15] as well as insulin
resistance [16, 17]. Caspases serve as the final mediators
of apoptosis. The upstream apoptosis initiator caspases
8 and 9 are activated on receiving death signal from the
death-inducing signaling complex (DISC) and apopto-
some respectively, which in turn activate the downstream
apoptosis effector caspases 3, 6 and 7, which ultimately
execute apoptosis [18].

Computational modeling is necessary to consolidate
information from various sources, such as listed above,
in order to obtain a comprehensive understanding of the
pathogenesis of T2DM and investigate possible interven-
tions by performing in silico simulations. A few dynamic
models of insulin resistance in T2DM have been proposed
recently. For instance, Brannmark et al. [19] proposed an
ordinary differential equation (ODE) model of insulin sig-
naling in T2DM. Rajan et al. proposed an ODE model
to study the contribution of Forkhead box protein O1
(FOXO1) to insulin resistance in T2DM [20]. Another
paper [21] presented an ODE model to simulate the devel-
opment of insulin resistance by hyperglycemia, FFA, ROS,
and inhibition of glucose transporter type 1 (GLUT-1)
and glucose transporter type 4 (GLUT-4). However, there
exists no model of β-cell apoptosis occurring in the T2DM
condition. Also, there is no existing work that attempts to
integrate the insulin resistance and β-cell apoptosis path-
ways in order to obtain a comprehensive understanding
of the molecular mechanisms underlying T2DM. To dis-
cover potential therapeutic interventions for T2DM, it is
essential to have a more comprehensive model for the
mechanisms causing T2DM pathogenesis.

Therefore, we propose a Boolean network model inte-
grating the insulin resistance pathway and β-cell apoptosis
pathway for the purpose of obtaining deeper insights
into the mechanisms of development and progression
of T2DM. The aforementioned existing models are
ODE models, whereas we constructed a Boolean net-
work model. The reason behind this selection is that

ODE models require detailed kinetic knowledge and
time-series data for accurate parameter estimation. How-
ever, the size of our proposed network is relatively big
(consisting of 72 nodes) and hence obtaining time-series
expression data for all the genes would be expensive as
well as time-consuming. Also, estimating the parameters
of the ODE model with the time-series expression data
of only a small subset of genes would result in erroneous
parameter values. Furthermore, in a Boolean network

Table 1 The gene interactions incorporated into the model with
reference to the existing literature

Gene interations Reference

IRE1 ↑ → XBP1 ↑ → β-cell dysfunction [26]

(IRE1 + TRAF2 + ASK1) ↑ → JNK ↑ → BCL2
(anti-apoptotic gene)↓

[28–30]

BCL2 ↓ → (BAX + BAK) (pro-apoptotic) ↑ [50, 51]

PERK ↑ → EIF2S1 ↓ → ATF4 ↑ → CHOP (pro-
apoptotic) ↑

[27]

ATF6 ↑ → CHOP (pro-apoptotic) ↑ → BCL2
(anti-apoptotic gene)↓

[51, 52]

Oxidative stress ↑ → ASK1 ↑, JNK ↑, p38 ↑ [31–33]

p38 ↑ → CHOP (pro-apoptotic) ↑ [34]

FasL ↑ → (FasR + FADD + pro-caspase-8) ↑
→ caspase-8 ↑ → caspase-3 ↑ → apoptosis

[53]

TNFα ↑ → (TNFR1 + TRADD) ↑ → RIPK1 ↑,
FADD ↑, TRAF2 ↑

[54]

FADD ↑ → caspase-8 ↑ [54]

RIPK1 ↑ → RAIDD ↑ → caspase-8 ↑ [54]

TNFα ↑ → TNFR2 TNFα ↑ → TRAF2 ↑ →
... → JNK ↑, NF-kB ↑

[55–57]

(BAX + BAK) (pro-apoptotic) ↑ →
Cytochrome c ↑ → (APAF1 + caspase-9) ↑
→ caspase-3 ↑

[6, 58]

XIAP ↑ → caspase-3 ↓, caspase-7 ↓, caspase-
9 ↓

[35, 36]

DIABLO ↑, HtrA2 ↑ → XIAP ↓ [37]

INSR ↑ → IRS ↑ → PI3K ↑ → ...→ AKT ↑ →
FOXO1 ↓, GSK3β ↓, GLUT4 ↑

[59–61]

GSK3β ↑ → GS ↓ → glycogen synthesis ↓ [42, 43]

FOXO1 ↑ → PEPCK ↑, G6PC ↑ → glucose
synthesis ↑

[47, 47–49]

(mTORC1 + S6K) ↑ → IRS ↓ [44–46]

IKKβ ↑ → TSC1/2 ↓ → mTORC1 ↑ [62]

ER stress ↑ → ...→ IRE1 ↑ → ...→ JNK ↑ →
IRS ↓

[38, 39, 63]

ER stress ↑ → ...→ IRE1 ↑ → XBP1 ↑ →
FOXO1 ↓

[64]

PERK ↑ → FOXO1 ↑ [65]

ER stress ↑ → ...→ ATF4 ↑ → CHOP ↑ →
TRB3↑ → AKT ↓

[40, 41]

IL-6 ↑ → JAK ↑ → STAT3 ↑ → SOCS3 ↑ →
IRS ↓

[66–68]
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model, gene expression is represented by either TRUE (1)
or FALSE (0). By simplifying the gene expression levels
into binary states, Boolean networks are feasible for sim-
ulating the behaviour of large regulatory networks in a
qualitative way.

In a Boolean network model the state of each gene is
represented by either 1 (TRUE), indicating the gene is
highly expressed, or 0 (FALSE) when the gene is lowly
expressed. An edge in a Boolean network can be either
activating or inhibiting [22]. In this paper, we have used
random asynchronous Boolean simulation [23, 24], which
updates genes in a random order in each iteration. This
random asynchronous update method is inspired by the
stochastic nature of gene regulatory networks, where gene
expression alteration occurs in a random order rather than
simultaneously [24].

Due to the lack of experimental gene expression data,
we validate our simulation results by comparing pre-
dicted patterns of gene expression levels with experimen-
tal observations reported in the literature. We also analyze
the dynamical behaviors of the model by visualizing the
state transition graphs under different combinations of
input signals. Our results show that the simple Boolean
network model can capture some qualitative trends of the
genetic circuits regulating the cell fate decision of β-cells,
and shed light on the causes and processes of dysfunc-
tional insulin metabolism and loss of β-cell homeostasis
that occur in T2DM.

Methods
In this paper, we propose a Boolean network model of
β-cell fate in T2DM. The model was constructed by
extracting information from the KEGG pathways [25] and
literature. The gene interactions incorporated into the
model with reference to the existing literature are listed
in Table 1. In this model, we integrated the β-cell apopto-
sis pathway with the insulin resistance pathway, as shown
in Fig. 1. The apoptosis pathway consists of the signaling
pathways triggered by ER stress (UPR pathway), oxida-
tive stress, and 3 cytokines, i.e. FasL, TNFα, and IL-6.
The insulin resistance pathways consist of phosphatidyli-
nositide 3-kinase (PI3K)-protein kinase B (PKB or AKT)
(KEGG ID: hsa04151), mammalian target of rapamycin
(mTOR) (KEGG ID: hsa04150), janus kinase (JAK)- signal
transducer and activator of transcription (STAT) (KEGG
ID: hsa04630), and insulin (KEGG ID: hsa04910) signaling
pathways. T2DM first causes insulin resistance, i.e. insulin
fails to bind to insulin receptors in cells, thereby block-
ing the uptake of blood glucose by cells. Sustained insulin
resistance finally leads to β-cell failure and apoptosis.

The Boolean update functions, listed in Table 2, for
the target genes in the model are defined by combining
activating input genes using OR functions and inhibiting
input genes using AND functions. The reason behind this
combination strategy is that a target gene will be expressed
when at least one of its activating genes is expressed and
all of its inhibiting genes are absent.

Fig. 1 Gene Regulatory Network. Insulin resistance and β-cell apoptosis pathways involved in the pathogenesis of Type 2 diabetes mellitus. The red
nodes denote the five input signals and the purple node represents β-cell apoptosis. A → B indicates activation of gene B by gene A, and A −| B
indicates inhibition of gene B by gene A
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Table 2 Boolean functions for the Boolean model

Node Boolean function Node Boolean function

ER ER OS OS

FasL FasL TNFα TNFα or NFKB

IL-6 IL-6 or NFKB

GRP78 ATF6 or XBP1 or ATF4
and (not ER)

ATF6 GRP78

PERK GRP78 and (not
DNAJC3)

IRE1 BAX or BAK or GRP78

EIF2S1 GADD34 and (not
PERK)

DNAJC3 ATF6 or XBP1

ATF4 EIF2S1 CHOP ATF6 or ATF4

XBP1 IRE1 GADD34 CHOP

TNFR1 TNFα TNFR2 TNFα

TRAF2 IRE1 or TNFR2 or
TRADD

ASK1 OS or TRAF2 or DAXX

JNK OS or ASK1 or
GADD45

p38 OS or ASK1

BCL2 (not JNK) and (not
CHOP) and (not P53)
and (not BAD)

BID CASP8 and (not BCL2)

BAX JNK or P53 and (not
BCL2)

BAK BAX and (not BCL2)

DIABLO BAX or BAK or BID HtrA2 BAX or BAK or BID

FasR FasL TRADD TNFR1

DAXX FasR RIPK1 FasR or TRADD

RAIDD RIPK1 FADD FasR or TRADD

CASP8 RAIDD or FADD or
CASP3 or CASP6

CASP9 RAIDD or CASP8 or
CASP3 or APAF1 or
CASP12 and (not
XIAP) and (not AKT)

CASP3 CASP9 or CASP8 and
(not XIAP)

CASP7 CASP9 or CASP8 or
CASP3 or CASP6 and
(not XIAP)

CASP6 CASP7 or CASP3

XIAP (not DIABLO) and (not
HtrA2) (not CASP3)

CytochromeC BAX or BAK or BID

APAF1 CytochromeC or P53 Apoptosis CASP3 or CASP6 or
CASP7

INS INS INSR INS

IRS INSR and (not SOCS3)
and (not JNK) (not
IKKβ) and (not S6K)

PI3K IRS or JAK

PIP3 PI3K PDK1 PIP3

AKT PDK1 or mTORC2 and
(not TRB3)

AS160 AKT

PKCα PDK1 GLUT4 AKT or AS160 or PKCα

GSK3β not AKT GS not GSK3β

FOXO1 PERK and (not AKT)
and (not XBP1)

PGC1α FOXO1

PEPCK FOXO1 G6PC FOXO1

PPARα PGC1α TRB3 PPARα or CHOP
TSC1/2 (not AKT) and (not

IKKβ)
Rheb not TSC1/2

mTORC1 Rheb S6K mTORC1
mTORC2 not S6K BAD JNK and (not AKT)
JAK IL-6 and (not SOCS3) STAT3 JAK
SOCS3 STAT3 IKKβ TRAF2
NFκB not IKBα IKBα not IKKβ

The proposed Boolean network consists of 72 nodes, of
which five are input signals, one node represents Apop-
tosis, and the remaining 66 nodes represent genes. We
employ the random asynchronous Boolean update [23, 24]
method to perform the simulations. The random asyn-
chronous Boolean method first generates a random per-
mutation of the nodes at each time step and updates
the states of the nodes in the order specified by the
permutation. This allows us to capture the stochastic
changes in gene expressions that occur in real gene reg-
ulatory networks. The random asynchronous Boolean
simulations were performed using the Python code pro-
vided in [23] which is available at https://gitlab.com/
stemcellbioengineering/garuda-boolean.

For example, suppose a gene regulatory network con-
sists of 3 genes, {g1, g2, g3}. The Boolean update functions
for the genes are as follows:

g1 = g3

g2 = g1 ∨ g3

g3 = g2

Suppose an iteration randomly generates a permuta-
tion of nodes as {3, 1, 2}. Then the asynchronous Boolean
updates will be carried out as follows:

g3(t + 1) = g2(t)

g1(t + 1) = g3(t + 1)

g2(t + 1) = g1(t + 1) ∨ g3(t + 1)

From the above equations, we see that the nodes are
updated in a randomly generated order as specified by the
permutation, rather than simultaneously.

After performing the simulations for a fixed number of
iterations, a directed graph of states is obtained, where
each state is a vector representing the expression lev-
els of all genes at a particular time step. The strategy of
strongly connected components (SCCs) is employed on
this directed graph to capture the dynamic nature of the
states [23]. An SCC of a directed graph is a sub-graph
that is strongly connected, i.e., each node is reachable
from every other node in the sub-graph. An illustration
of SCC is given in Fig. 2. Each node is a state with the
expression levels of all the genes in the network (for the
example we assume a network with five genes) and there
is a path between each pair of nodes in both directions.
Let us consider that an SCC consists of a set of N states
{S1, S2, ..., SN }. The probability of state Si being one of the
states of the SCC is given by:

P(Si) = number of occurrences of Si
∑N

j=1 number of occurrences of Sj
.

We calculate the gene expression level of each gene in a
particular SCC as the sum of probabilities of states where
the gene is in the ON state. Therefore, the expression level

https://gitlab.com/stemcellbioengineering/garuda-boolean
https://gitlab.com/stemcellbioengineering/garuda-boolean
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Fig. 2 Strongly Connected Component. An example of a strongly connected component (SCC). Suppose the network consists of five genes. Then
each node is a state which contains the expression levels of the five genes. An arrow from state S1 to state S2 indicates an update step. In an SCC all
states can be reached from every other state

of a gene, gi, with respect to an SCC is determined as
follows:

Exp(gi) =
∑

Sj∈OnSt(gi)

P(Sj)

where

OnSt(gi) = {Sj ∈ SCC | gi(Sj) = 1}.
It is easy to see that

N∑

j=1
P(Sj) = 1

We use ER stress, oxidative stress, TNFα, FasL, and IL-
6 as input signals. Also, based on the literature, some of
the nodes are assigned specific values (Table 3) and the
rest are set to random values as initial conditions. We per-
formed simulations using different combinations of the
input signals, as shown in Table 4. We carried out 1000
simulation runs and 1000 Boolean update steps per simu-
lation for each input signal. The results of the simulations
are presented and discussed in the following section.

Table 3 Initial conditions

Node Initial value Reason

Apoptosis False We set apoptosis to False to see
whether the input signals can
cause apoptosis

Caspases 3, 6, 7, 8, 9 False Caspases serve as the final
mediators of apoptosis. So, we set
them to False to see whether the
input signals can activate them

Due to the lack of experimental data, we validate our
proposed Boolean network model using relevant literature
(see Table 1). For each gene gi, we use the same symbol gi
to represent its binary expression level.

gi =
{

1 if gi is reported as expressed in the literature
0 if gi is reported as not expressed in the literature

In our model, we determine the expression level of each
gene with respect to a particular SCC. Thus the gene
expression levels are in the range [0, 1]. We assume that
if the expression value of a gene is greater than 0.50, then
the gene is expressed, otherwise, it is not expressed.

For the purpose of validating our proposed model, we
employ the performance metrics of precision, recall (sen-
sitivity), specificity, and F1 score. The simulation result
of our proposed model is verified against the literature as

Table 4 Different combinations for the input signal nodes

ER stress Oxidative stress TNFα FasL IL-6

Case 1 True False False False False

Case 2 False True False False False

Case 3 True True False False False

Case 4 False False True False False

Case 5 False False False True False

Case 6 False False False False True

Case 7 False False True True True

Case 8 True True True True True
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Table 5 Gene expressions of the significant genes in the model for input signal cases 1-5 and 7-8

Node Case 1 Case 2 Case 3 Case 4 Case 5 Case 7 Case 8

A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

Apoptosis 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AKT 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.49 0.49 0.50 0.50 0.49

APAF-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ASK1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ATF4 1 0 1 0 1 0 1 0 1 0 1 0 1 0

ATF6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BAK 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BAX 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BCL2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Caspase-3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Caspase-6 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Caspase-7 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Caspase-8 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Caspase-9 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CHOP 1 0 1 0 1 0 1 0 1 0 1 0 1 0

DIABLO 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EIF2S1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

FADD 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FASR 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FOXO1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G6PC 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GADD34 1 0 1 0 1 0 1 0 1 0 1 0 1 0

GLUT4 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

GRP78 1 1 1 1 1 1 1 1 1 1 1 1 1 1

GS 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.49

GSK3β 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.50

HtrA2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IKBα 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IKKβ 1 1 1 1 1 1 1 1 1 1 1 1 1 1

INS 1 1 1 1 1 1 1 1 1 1 1 1 1 1

INSR 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IRE1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IRS 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JAK 0.50 0.49 0.50 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50

JNK 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NFKB 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PEPCK 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PERK 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PI3K 0.50 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.50 0.50 0.49

RAIDD 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RIPK1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S6K 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SOCS3 0.49 0.49 0.50 0.49 0.50 0.50 0.49 0.49 0.50 0.50 0.49 0.49 0.49 0.50

STAT3 0.50 0.49 0.49 0.49 0.49 0.50 0.49 0.49 0.50 0.50 0.49 0.49 0.50 0.50

TNFR1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TNFR2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 5 Gene expressions of the significant genes in the model for input signal cases 1-5 and 7-8 (Continued)

Node Case 1 Case 2 Case 3 Case 4 Case 5 Case 7 Case 8

A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

TRADD 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TRAF2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TRB3 1 0 1 0 1 0 1 0 1 0 1 0 1 0

TSC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

XBP1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

XIAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mTORC1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

p38 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Here A1 and A2 denotes SCC1 and SCC2

follows. For each gene gi,

gi ∈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

True positive, if gi = 1 (simulation result) and gi = 1 (literature)

True negative, if gi = 0 (simulation result) and gi = 0 (literature)

False positive, if gi = 1 (simulation result) and gi = 0 (literature)

False negative, if gi = 0 (simulation result) and gi = 1 (literature)

The four evaluation metrics are calculated using the
following formulae:

Precision = True positive
True positive + False positive

Recallorsensitivity = True positive
True positive + False negative

Specificity = True negative
True negative + False positive

F1 score = 2 × precision × recall
precision + recall

Results
Comparison with the literature
The expression levels of genes in the SCCs obtained by
performing simulations with our proposed Boolean model
are listed in Tables 5 and 6. Simulations performed using
input signal cases 1, 2, 3, 4, 5, 7, and 8 (Table 4) result
in two attractors (SCCs). Apoptosis is ON in both of the
attractors. Simulations performed using input signal case
6 (Table 4) result in six attractors (SCCs). Apoptosis is ON
in four attractors and OFF in the remaining two attrac-
tors. These observations are consistent with the literature
where ER stress, oxidative stress, and cytokines have been
shown to cause apoptosis of β-cells individually as well as
together [4–6].

From our simulation results, we observe that Caspases
3, 6, 7, 8, and 9, which serve as the final mediators of
apoptosis [18] are TRUE in the attractors, even though
in the initial condition they were set to FALSE. The

ER stress sensor IRE1 and its downstream gene X-box
protein binding 1 (XBP1) are TRUE in some attrac-
tors, and FALSE in others [26]. Another ER stress sen-
sor, PERK is observed to be FALSE in all the attrac-
tors. Also, eukaryotic translation initiation factor 2 sub-
unit 1 (EIF2S1), activating transcription factor 4 (ATF4),
and C/EBP homologous protein (CHOP) are TRUE in
some attractors and FALSE in the others. PERK phos-
phorylates and inactivates EIF2S1, which inhibits protein
synthesis. Phosphorylated EIF2S1 increases the transla-
tion of ATF4 [8], which in turn activates pro-apoptotic
CHOP, causing β-cell dysfunction and death [27]. The
attractors where IRE1, XBP1, EIF2S1, ATF4, and CHOP
have expression levels of 0 may denote the transi-
tion states when these genes are not contributing to
apoptosis.

While associating with TNF-receptor-associated fac-
tor 2 (TRAF2) and apoptosis signal-regulating kinase 1
(ASK1), IRE1 activates jun N-terminal kinase (JNK) [28,
29], which in turn inhibits the anti-apoptotic protein B-
cell lymphoma 2 (BCL2) [30]. Oxidative stress activates
ASK1 [31, 32], JNK and p38 [33]. Activated p38 phos-
phorylates and elevates the expression of pro-apoptotic
CHOP [34]. From the simulation results, we observe that
the pro-apoptotic genes, TRAF2, ASK1, JNK, p38, BAX,
and BAK are TRUE and the anti-apoptotic gene BCL2
is FALSE in one attractor, while the reverse states are
observed in the other. X-linked inhibitor of apoptosis pro-
tein (XIAP), which inhibits Caspases 3, 7, and 9 [35, 36],
has an expression level of 0, whereas direct IAP-binding
protein with low pI (DIABLO) and high temperature
requirement protein A2 (HtrA2), which inhibit XIAP [37],
have expression levels of 1.

JNK phosphorylates and inhibits insulin receptor sub-
strate (IRS) [38, 39]. IRS gene is FALSE in both of the
attractors. PI3K has an expression level of around 0.50 in
all the attractors. Tribbles homolog 3 (TRB3) is induced by
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Table 6 Gene expressions of the significant genes in the model
for input signal case 6. Here A1-A6 denotes SCC1-SCC6

Node Case 6

A1 A2 A3 A4 A5 A6

Apoptosis 1 1 1 1 0 0

AKT 0.49 0.49 0.63 0.55 0.65 0.56

APAF-1 1 1 0 1 0 0

ASK1 1 1 0 0 0 0

ATF4 1 0 0 1 0 1

ATF6 0 0 0 0 0 0

BAK 1 1 0 0 0 0

BAX 1 1 0 0 0 0

BCL2 0 0 1 0 1 0

Caspase-3 1 1 1 1 0 0

Caspase-6 1 1 1 1 0 0

Caspase-7 1 1 1 1 0 0

Caspase-8 1 1 1 1 0 0

Caspase-9 1 1 1 1 0 0

CHOP 1 0 0 1 0 1

DIABLO 1 1 0 1 0 0

EIF2S1 1 0 0 1 0 1

FADD 1 1 0 0 0 0

FASR 0 0 0 0 0 0

FOXO1 0 0 0 0 0 0

G6PC 0 0 0 0 0 0

GADD34 1 0 0 1 0 1

GLUT4 0.65 0.65 0.75 0.70 0.78 0.71

GRP78 1 1 0 1 0 1

GS 0.49 0.49 0.62 0.54 0.65 0.55

GSK3β 0.50 0.50 0.38 0.45 0.36 0.45

HtrA2 1 1 0 1 0 0

IKBα 0 0 1 1 1 1

IKKβ 1 1 0 0 0 0

INS 1 1 1 1 1 1

INSR 1 1 1 1 1 1

IRE1 1 1 0 0 0 0

IRS 0 0 0.19 0.22 0.18 0.22

JAK 0.49 0.49 0.49 0.49 0.49 0.50

JNK 1 1 0 0 0 0

NFKB 1 1 0 0 0 0

PEPCK 0 0 0 0 0 0

PERK 0 0 0 0 0 0

PI3K 0.49 0.49 0.54 0.55 0.54 0.56

RAIDD 1 1 0 0 0 0

RIPK1 1 1 0 0 0 0

S6K 1 1 0.62 0.55 0.62 0.56

SOCS3 0.49 0.50 0.50 0.49 0.49 0.49

STAT3 0.49 0.49 0.49 0.49 0.49 0.50

TNFR1 1 1 0 0 0 0

TNFR2 1 1 0 0 0 0

TRADD 1 1 0 0 0 0

Table 6 Gene expressions of the significant genes in the model
for input signal case 6. Here A1-A6 denotes SCC1-SCC6
(Continued)

Node Case 6

A1 A2 A3 A4 A5 A6

TRAF2 1 1 0 0 0 0

TRB3 1 0 0 1 0 1

TSC2 0 0 0.37 0.45 0.36 0.44

XBP1 1 1 0 0 0 0

XIAP 0 0 0 0 1 1

mTORC1 1 1 0.63 0.55 0.63 0.57

p38 1 1 0 0 0 0

ER stress through the ATF4-CHOP pathway [40]. Over-
expression of TRB3 inhibits AKT and decreases glucose
uptake [41]. TRB3 is TRUE in one attractor and FALSE
in the other. AKT has an expression level of 0.50 in both
of the attractors. Thus, from the results, we observe that
ER stress inhibits the PI3K-AKT signaling pathway and
promotes insulin resistance.

Insulin promotes conversion of glucose to glycogen by
inhibiting glycogen synthase kinase-3β (GSK3β) through
the PI3K-AKT signaling pathway, which leads to the acti-
vation of glycogen synthase (GS) [42]. From the simulation
results, we observe that the expression level of GSK3β ,
which inhibits glycogen synthesis through inhibition of
GS [42, 43] is approximately 0.49 and that of GS is approx-
imately 0.50. From these simulation results, we can infer
that glycogen synthesis is reduced which contributes to
insulin resistance.

In T2DM, the mammalian target of rapamycin com-
plex 1 (mTORC1)/ S6 kinase (S6K) signaling is activated
[44] leading to the inhibition of IRS [45, 46]. We observe
from the simulation results that mTORC1 and S6K have
expression levels of 1 thus inhibiting IRS which has an
expression of 0. These events cause PI3K and AKT to have
low expression levels of approximately 0.50, which in turn
reduces glucose uptake through GLUT4 whose expression
level is around 0.65.

FOXO1 increases the expression of phosphoenolpyru-
vate carboxykinase (PEPCK) and glucose-6-phosphatase
(G6PC) and thus promotes glucose synthesis [47]. Insulin
inhibits the expression of FOXO1 through the activa-
tion of the PI3K/AKT signaling pathway, which in turn
suppresses PEPCK and G6PC, and thereby reduces glu-
cose synthesis [47–49]. From our simulation results, we
observe that FOXO1, PEPCK, and G6PC are FALSE. This
could be due to the fact that PI3K and AKT are not com-
pletely inactive, though they may have low expression
levels, and hence is still able to inhibit the expressions of
FOXO1, PEPCK, and G6PC.

In Case 6 where only signal IL6 is active, we observe
six attractors (Table 6), of which four indicate apoptosis
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and two do not. For the attractors where apoptosis is
observed, the expression levels of the genes are similar to
those mentioned above for the other input signal cases.
When apoptosis is not observed, i.e. in the two remaining
attractors, the caspases, JNK, BAX, and BAK are FALSE.
In one of these two attractors, BCL2 is FALSE and CHOP
is TRUE. In the other attractor we observe the reverse
expression pattern. Thus, in the presence of only IL-6,
apoptosis may or may not be activated.

We further assessed the performance of our proposed
Boolean network model by comparing model predictions
of gene expressions against the literature. Considering
the simulation results obtained using the 8 input signals
listed in Table 4, the average precision, recall (sensitiv-
ity), specificity, and F1 score obtained for our model are
0.9524, 0.8, 0.875, and 0.8696, respectively. We observe
that the validation scores for our model are not very high,
maybe because our model is sensitive to some missing
interactions.

State transition graphs
Figure 3 shows the state transition graph of the state space
generated by simulations conducted using input signal
combination given in case 8 (Table 4). The two dense red
regions represent the two SCCs where apoptosis is ON.
The blue nodes represent states where apoptosis is OFF.
Thus from the state transition graph, we observe that, in
the presence of all input signals, apoptosis is eventually
activated, even though in the initial condition it is set to
FALSE.

Figure 4 shows the state transition graph of the state
space generated by simulations conducted using input
signal combination given in case 6 (Table 4). The four
dense red regions represent the four SCCs where apopto-
sis is ON. The two dense blue regions represent the two
SCCs where apoptosis is OFF. Thus from the state transi-
tion graph, we observe that, in the presence of only IL-6,
apoptosis may or may not be activated.

Comparison with random Boolean networks
We also compared our Boolean network model with ran-
dom Boolean network models using the 8 input signal
combinations given in Table 4. For cases 1, 2, 3, 4, 5, 7,
and 8 we found that the number of attractors obtained
by simulating the random Boolean networks ranges from
28 to 177, whereas for our Boolean network model the
number of attractors is 2. Similarly, for case 6, the number
of attractors obtained by simulating the random Boolean
networks ranges from 25 to 180, whereas for our Boolean
network model the number of attractors is 6. Thus, from
the results we observe that the random Boolean networks
typically have large numbers of attractors.

Conclusion
In this paper, we proposed a Boolean network model
of the integrated insulin resistance and β-cell apoptosis
pathways. Such a model, which explores the combined
mechanism and interplay between insulin resistance and
β-cell apoptosis in the pathogenesis of T2DM, has not
been proposed before. We used the model to simulate the

Fig. 3 State Transition Graph 1. State transition graph obtained by simulating our proposed Boolean network model using input signal condition
given in Case 8 of Table 4. Simulations generate 2 attractors, both having the Apoptosis node activated. Apoptosis is ON in the red coloured states
and OFF in the blue colored states
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Fig. 4 State Transition Graph 2. State transition graph obtained by simulating our proposed Boolean network model using input signal condition
given in Case 6 of Table 4. Simulations generate 6 attractors. In four of the attractors Apoptosis is ON, denoted by red colour, and in the remaining
two attractors Apoptosis is OFF, denoted by blue colour

dynamics of gene expression induced by different com-
binations of the five input signals, i.e. ER stress, oxidativ
e stress, and cytokines (TNFα, FasL, IL-6), which serve as
triggers for insulin resistance and β-cell apoptosis.

The random order asynchronous update method was
employed to perform the simulations, i.e. all nodes were
updated in a random order at each update step. We
assessed the performance of our model using the met-
rics of precision, recall (sensitivity), specificity, and F1
score, when validating our model against the literature.
The precision score obtained is high, but sensitivity, speci-
ficity, and F1 scores are not so. One possible reason may
be that some missing interactions affect the predictions of
our model. We also compared our Boolean network model
with random Boolean network models and observed that
random Boolean networks typically have large numbers
of attractors ranging from around 25 to 180, whereas our
model shows small numbers of attractors ranging from
2 to 6.

As a future step, we can use this model to perform vir-
tual gene knockout experiments to determine genes that

play pivotal roles in insulin resistance and/or β-cell apop-
tosis, and these genes could be further investigated for
possible disease interventions.
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