Swain PS, Elowitz ME, Siggia ED: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci. 2002, 99: 12795-12800. 10.1073/pnas.162041399

Article
PubMed Central
CAS
PubMed
Google Scholar

Elowitz ME, Levine AJ, Siggia ED, Swain PS: Stochastic gene expression in a single cell. Science. 2002, 297: 1183-1186. 10.1126/science.1070919

Article
CAS
PubMed
Google Scholar

Raser JM, O'Shea EK: Control of stochasticity in eukaryotic gene expression. Science. 2004, 304: 1811-1814. 10.1126/science.1098641

Article
PubMed Central
CAS
PubMed
Google Scholar

Kaern M, Elston TC, Blake WJ, Collins JC: Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genetics. 2005, 6: 451-464. 10.1038/nrg1615.

Article
CAS
PubMed
Google Scholar

Gillespie DT: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comp Phys. 1976, 22: 403-434. 10.1016/0021-9991(76)90041-3.

Article
CAS
Google Scholar

Gillespie DT: The chemical Langevin equation. J Chem Phys. 2000, 113: 297-306. 10.1063/1.481811.

Article
CAS
Google Scholar

Gillespie DT: Stochastic simulation of chemical kinetics. Ann Rev Phys Chem. 2007, 58: 35-55. 10.1146/annurev.physchem.58.032806.104637.

Article
CAS
Google Scholar

Rathinam M, Petzold LR, Cao Y, Gillespie DT: Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. J Chem Phys. 2003, 119: 12784-12794. 10.1063/1.1627296.

Article
CAS
Google Scholar

Samant A, Vlachos DG: Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm. J Chem Phys. 2005, 123: 144114- 10.1063/1.2046628

Article
CAS
PubMed
Google Scholar

Chatterjee A, Vlachos DG, Katsoulakis MA: Binomial distribution based τ-leap accelerated stochastic simulation. J Chem Phys. 2005, 122: 024112- 10.1063/1.1833357

Article
PubMed
Google Scholar

Rathinam M, Petzold LR, Cao Y, Gillespie DT: Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Modeling Sim. 2005, 4 (3): 867-895. 10.1137/040603206.

Article
Google Scholar

Chatterjee A, Mayawala K, Edwards J, Vlachos DG: Time accelerated Monte Carlo simulations of biological networks using the binomial τ-leap method. Bioinformatics. 2005, 21 (9): 2136-2137. 10.1093/bioinformatics/bti308

Article
CAS
PubMed
Google Scholar

Chatterjee A, Vlachos DG: Multiscale spatial Monte Carlo simulations: Multigriding, computational singular perturbation, and hierarchical stochastic closures. J Chem Phys. 2006, 124: 064110-10.1063/1.2166380.

Article
Google Scholar

Santillan M, Mackey MC: Dynamic regulation of the tryptophan operon: A modeling study and comparison with experimental data. Proc Natl Acad Sci. 2001, 98: 1364-1369. 10.1073/pnas.98.4.1364

Article
PubMed Central
CAS
PubMed
Google Scholar

Griggs DW, Johnston M: Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc Natl Acad Sci. 1991, 88: 8597-8601. 10.1073/pnas.88.19.8597

Article
PubMed Central
CAS
PubMed
Google Scholar

Venkatesh KV, Bhat PJ, Kumar RA, Doshi P: Quantitative model for Gal4p-mediated expression of the galactose/melibiose regulon in *Saccharomyces cerevisiae*. Biotechnol Prog. 1999, 15: 51-57. 10.1021/bp9801042

Article
CAS
PubMed
Google Scholar

Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng R, Bumgarner JK, Goodlett DR, Aebersold R, Hood L: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001, 292: 929-934. 10.1126/science.292.5518.929

Article
CAS
PubMed
Google Scholar

Carey M, Kakidani H, Leatherwood J, Mostashari F, Ptashne M: An amino-terminal fragment of GAL4 binds DNA as a dimer. J Mol Biol. 1989, 209: 423-432. 10.1016/0022-2836(89)90007-7

Article
CAS
PubMed
Google Scholar

Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannet N, Kanin E, Volkert L, Wilson CJ, Bell SP, Young RA: Genome-wide location and function of DNA binding proteins. Science. 2000, 290: 2306-2309. 10.1126/science.290.5500.2306

Article
CAS
PubMed
Google Scholar

Johnston M, Carlson M: Regulation of carbon and phosphate utilization. The Molecular and Cellular Biology of the yeast Saccharomyces. Edited by: Johnes EW, Pringle JR, Broach JR. 1992, 2: 193-281. Cold Spring Harbor Laboratory Press, NY

Google Scholar

Peng G, Hopper JE: Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc Natl Acad Sci. 2002, 99: 8548-8553. 10.1073/pnas.142100099

Article
PubMed Central
CAS
PubMed
Google Scholar

Verma M, Bhat PJ, Venkatesh KV: Expression of GAL genes in a mutant strain of *Saccharomyces cerevisiae* lacking *GAL80* : quantitative model and experimental verification". Biotechnol Appl Biochem. 2004, 39: 89-97. 10.1042/BA20030119

Article
CAS
PubMed
Google Scholar

de Atauri P, Orrell D, Ramsey S, Bolouri H: Is the regulation of galactose 1-phosphate tuned against gene expression noise?. Biochem J. 2005, 387: 77-84. 10.1042/BJ20041001

Article
PubMed Central
CAS
PubMed
Google Scholar

de Atauri P, Orrell D, Ramsey S, Bolouri H: Evolution of 'design' principles in biochemical networks. IET Sys Bio. 2004, 1 (1): 28-40. 10.1049/sb:20045013.

Article
CAS
Google Scholar

Ramsey SA, Smith JJ, Orrell D, Marelli M, Petersen TW, de Atauri P, Bolouri H, Aitchison JD: Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nature Genetics. 2006, 38 (9): 1082-1087. 10.1038/ng1869

Article
CAS
PubMed
Google Scholar

Orrell D, Ramsey S, Marelli M, Smith JJ, Petersen TW, de Atauri P, Aitchison JD, Bolouri H: Feedback control of stochastic noise in the yeast galactose utilization pathway. Physica D. 2006, 217: 64-76. 10.1016/j.physd.2006.03.010.

Article
CAS
Google Scholar

Demir O, Kurnaz IA: An integrated model of glucose and galactose metabolism regulated by the *GAL* genetic switch. Comp Biol Chem. 2006, 30: 179-192. 10.1016/j.compbiolchem.2006.02.004.

Article
CAS
Google Scholar

Verma M, Bhat PJ, Venkatesh KV: Quantitative analysis of GAL genetic switch of *Saccharomyces cerevisiae* reveals that nucleocytoplasmic shuttling of Gal80p results in a highly sensitive response to galactose. J Biol Chem. 2003, 278 (49): 48764-48769. 10.1074/jbc.M303526200

Article
CAS
PubMed
Google Scholar

Ruhela A, Verma M, Edwards J, Bhat P, Bhartiya S, Venkatesh KV: Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in *Saccharomyces cerevisiae*. FEBS Letters. 2004, 576 (1–2): 119-126. 10.1016/j.febslet.2004.09.001

Article
CAS
PubMed
Google Scholar

Verma M, Bhat PJ, Venkatesh KV: Steady state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in *Saccharomyces cerevisiae*. Biochem J. 2005, 388 (3): 843-849. 10.1042/BJ20041883

Article
PubMed Central
CAS
PubMed
Google Scholar

Hofmeyr J-HS, Cornish-Bowden A, Rowher JM: Taking enzyme kinetics out of control; putting control into regulation. Eur J Biochem. 1993, 212: 833-837. 10.1111/j.1432-1033.1993.tb17725.x

Article
CAS
PubMed
Google Scholar

Fell DA: Beyond genomics. Trends Genet. 2001, 17: 680-682. 10.1016/S0168-9525(01)02521-5

Article
CAS
PubMed
Google Scholar

Haseltine EL, Patience DB, Rawlings JB: On the stochastic simulation of particulate systems. Chem Eng Sci. 2005, 60: 2627-2641. 10.1016/j.ces.2004.05.038.

Article
CAS
Google Scholar

Torchia TE, Hamilton RW, Cano CL, Hopper JE: Disruption of regulatory gene GAL80 in *Saccharomyces cerevisiae* : Effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol Cell Biol. 1984, 4: 1521-1527.

Article
PubMed Central
CAS
PubMed
Google Scholar

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA: Transcriptional Regulatory Networks in *Saccharomyces cerevisiae*. Science. 2002, 298: 799-804. 10.1126/science.1075090

Article
CAS
PubMed
Google Scholar

Hanes SD, Bostian KA: Control of cell growth and division in *Saccharomyces cerevisiae*. CRC Crit Rev Biochem. 1986, 21: 153-223. 10.3109/10409238609113611

Article
CAS
PubMed
Google Scholar

Johnston M: A model fungal gene regulatory mechanism: the *GAL* genes of *Saccharomyces cerevisiae*. Microbiol Rev. 1987, 51: 458-476.

PubMed Central
CAS
PubMed
Google Scholar

Gancedo JM: Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998, 62: 334-361.

PubMed Central
CAS
PubMed
Google Scholar

Braun E, Brenner B: Transient responses and adaptation to steady state in a eukaryotic gene regulation system. Phys Biol. 2004, 1: 67-76. 10.1088/1478-3967/1/2/003

Article
CAS
PubMed
Google Scholar