Joyce AR, Palsson BO: The model organism as a system: integrating 'omics' data sets. Nat Rev Mol Cell Biol. 2006, 7: 198-210. 10.1038/nrm1857
Article
CAS
PubMed
Google Scholar
Ideker T, Bafna V, Lemberger T: Integrating scientific cultures. Mol Syst Biol. 2007, 3: 105- 10.1038/msb4100145
Article
PubMed Central
PubMed
Google Scholar
Chen HC, Lee HC, Lin TY, Li WH, Chen BS: Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics. 2004, 20: 1914-1927. 10.1093/bioinformatics/bth178
Article
CAS
PubMed
Google Scholar
Workman CT, Mak HC, McCuine S, Tagne JB, Agarwal M, Ozier O, Begley TJ, Samson LD, Ideker T: A systems approach to mapping DNA damage response pathways. Science. 2006, 312: 1054-1059. 10.1126/science.1122088
Article
PubMed Central
CAS
PubMed
Google Scholar
Xing B, Laan van der MJ: A causal inference approach for constructing transcriptional regulatory networks. Bioinformatics. 2005, 21: 4007-4013. 10.1093/bioinformatics/bti648
Article
CAS
PubMed
Google Scholar
Veber P, Guziolowski C, Le Borgne M, Radulescu O, Siegel A: Inferring the role of transcription factors in regulatory networks. BMC Bioinformatics. 2008, 9: 228- 10.1186/1471-2105-9-228
Article
PubMed Central
PubMed
Google Scholar
Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R: A systems biology approach for pathway level analysis. Genome Res. 2007, 17: 1537-1545. 10.1101/gr.6202607
Article
PubMed Central
CAS
PubMed
Google Scholar
Visvanathan M, Breit M, Pfeifer B, Baumgartner C, Modre-Osprian R, Tilg B: Systematic analysis of signaling pathways using an integrative environment. Methods Inf Med. 2007, 46: 386-391.
PubMed
Google Scholar
Kuepfer L, Peter M, Sauer U, Stelling J: Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol. 2007, 25: 1001-1006. 10.1038/nbt1330
Article
CAS
PubMed
Google Scholar
Yeger-Lotem E, Margalit H: Detection of regulatory circuits by integrating the cellular networks of protein-protein interactions and transcription regulation. Nucleic Acids Res. 2003, 31: 6053-6061. 10.1093/nar/gkg787
Article
PubMed Central
CAS
PubMed
Google Scholar
Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci USA. 2004, 101: 5934-5939. 10.1073/pnas.0306752101
Article
PubMed Central
CAS
PubMed
Google Scholar
Mazurie A, Bottani S, Vergassola M: An evolutionary and functional assessment of regulatory network motifs. Genome Biol. 2005, 6: R35- 10.1186/gb-2005-6-4-r35
Article
PubMed Central
PubMed
Google Scholar
Ourfali O, Shlomi T, Ideker T, Ruppin E, Sharan R: SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments. Bioinformatics. 2007, 23: i359-366. 10.1093/bioinformatics/btm170
Article
CAS
PubMed
Google Scholar
Sprinzak D, Elowitz MB: Reconstruction of genetic circuits. Nature. 2005, 438: 443-448. 10.1038/nature04335
Article
CAS
PubMed
Google Scholar
Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol. 2009, 7: 129-143.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang YH, Wang YC, Chen BS: Identification of transcription factor cooperativity via stochastic system model. Bioinformatics. 2006, 22: 2276-2282. 10.1093/bioinformatics/btl380
Article
CAS
PubMed
Google Scholar
Bansal M, Gatta GD, di Bernardo D: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics. 2006, 22: 815-822. 10.1093/bioinformatics/btl003
Article
CAS
PubMed
Google Scholar
Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How to infer gene networks from expression profiles. Mol Syst Biol. 2007, 3:
Google Scholar
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000, 11: 4241-4257.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, et al.: Transcriptional regulatory code of a eukaryotic genome. Nature. 2004, 431: 99-104. 10.1038/nature02800
Article
PubMed Central
CAS
PubMed
Google Scholar
Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, et al.: SGD: Saccharomyces Genome Database. Nucl Acids Res. 1998, 26: 73-79. 10.1093/nar/26.1.73
Article
PubMed Central
CAS
PubMed
Google Scholar
Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sa-Correia I: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 2006, 34: D446-451. 10.1093/nar/gkj013
Article
PubMed Central
CAS
PubMed
Google Scholar
Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucl Acids Res. 2006, 34: D535-539. 10.1093/nar/gkj109
Article
PubMed Central
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25: 25-29. 10.1038/75556
Article
PubMed Central
CAS
PubMed
Google Scholar
Akaike H: A new look at the statistical model identification. IEEE Transactions on Automatic Control. 1974, 19: 716-723. 10.1109/TAC.1974.1100705.
Article
Google Scholar
Johansson R: System modeling and identification. 1993, Englewood Cliffs, N.J.: Prentice Hall
Google Scholar
Mendenhall W, Sincich T: Statistics for engineering and the sciences. 1995, Englewood Cliffs, N.J.: Prentice-Hall, 4
Google Scholar
Hohmann S, Mager WH: Yeast stress responses. 2003, Berlin; New York: Springer
Book
Google Scholar
Wu WS, Li WH, Chen BS: Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics. 2007, 8: 188- 10.1186/1471-2105-8-188
Article
PubMed Central
PubMed
Google Scholar
Alon U: An introduction to systems biology: design principles of biological circuits. 2007, Boca Raton, FL: Chapman & Hall/CRC
Google Scholar
Chen KC, Wang TY, Tseng HH, Huang CY, Kao CY: A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics. 2005, 21: 2883-2890. 10.1093/bioinformatics/bti415
Article
CAS
PubMed
Google Scholar
Wu WS, Li WH, Chen BS: Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation. Gene Regulation and Systems Biology. 2008, 2: 53-62.
PubMed Central
CAS
PubMed
Google Scholar
de Jong H: Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002, 9: 67-103. 10.1089/10665270252833208
Article
CAS
PubMed
Google Scholar
Tegner J, Yeung MK, Hasty J, Collins JJ: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci USA. 2003, 100: 5944-5949. 10.1073/pnas.0933416100
Article
PubMed Central
CAS
PubMed
Google Scholar
Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, et al.: Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science. 2000, 287: 873-880. 10.1126/science.287.5454.873
Article
CAS
PubMed
Google Scholar
Steffen M, Petti A, Aach J, D'Haeseleer P, Church G: Automated modelling of signal transduction networks. BMC Bioinformatics. 2002, 3: 34- 10.1186/1471-2105-3-34
Article
PubMed Central
PubMed
Google Scholar
Hersen P, McClean MN, Mahadevan L, Ramanathan S: Signal processing by the HOG MAP kinase pathway. Proc Natl Acad Sci USA. 2008, 105: 7165-7170. 10.1073/pnas.0710770105
Article
PubMed Central
CAS
PubMed
Google Scholar
Maeda T, Takekawa M, Saito H: Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science. 1995, 269: 554-558. 10.1126/science.7624781
Article
CAS
PubMed
Google Scholar
Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H: Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell. 1996, 86: 865-875. 10.1016/S0092-8674(00)80162-2
Article
CAS
PubMed
Google Scholar
Posas F, Saito H: Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 1998, 17: 1385-1394. 10.1093/emboj/17.5.1385
Article
PubMed Central
CAS
PubMed
Google Scholar
Maeda T, Wurgler-Murphy SM, Saito H: A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994, 369: 242-245. 10.1038/369242a0
Article
CAS
PubMed
Google Scholar
Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC: An osmosensing signal transduction pathway in yeast. Science. 1993, 259: 1760-1763. 10.1126/science.7681220
Article
CAS
PubMed
Google Scholar
Reiser V, Salah SM, Ammerer G: Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol. 2000, 2: 620-627. 10.1038/35023568
Article
CAS
PubMed
Google Scholar
Raitt DC, Posas F, Saito H: Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J. 2000, 19: 4623-4631. 10.1093/emboj/19.17.4623
Article
PubMed Central
CAS
PubMed
Google Scholar
Posas F, Witten EA, Saito H: Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol Cell Biol. 1998, 18: 5788-5796.
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Rourke SM, Herskowitz I: A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. Mol Cell Biol. 2002, 22: 4739-4749. 10.1128/MCB.22.13.4739-4749.2002
Article
PubMed Central
PubMed
Google Scholar
Tatebayashi K, Tanaka K, Yang HY, Yamamoto K, Matsushita Y, Tomida T, Imai M, Saito H: Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO J. 2007, 26: 3521-3533. 10.1038/sj.emboj.7601796
Article
PubMed Central
CAS
PubMed
Google Scholar
Reiser V, Ruis H, Ammerer G: Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell. 1999, 10: 1147-1161.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferrigno P, Posas F, Koepp D, Saito H, Silver PA: Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J. 1998, 17: 5606-5614. 10.1093/emboj/17.19.5606
Article
PubMed Central
CAS
PubMed
Google Scholar
Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G: Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci USA. 2001, 98: 5625-5630. 10.1073/pnas.091610798
Article
PubMed Central
CAS
PubMed
Google Scholar
Mattison CP, Ota IM: Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev. 2000, 14: 1229-1235.
PubMed Central
CAS
PubMed
Google Scholar
Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, et al.: Global analysis of protein phosphorylation in yeast. Nature. 2005, 438: 679-684. 10.1038/nature04187
Article
CAS
PubMed
Google Scholar
Young C, Mapes J, Hanneman J, Al-Zarban S, Ota I: Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation. Eukaryot Cell. 2002, 1: 1032-1040. 10.1128/EC.1.6.1032-1040.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Warmka J, Hanneman J, Lee J, Amin D, Ota I: Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol Cell Biol. 2001, 21: 51-60. 10.1128/MCB.21.1.51-60.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004, 5: 101-113. 10.1038/nrg1272
Article
CAS
PubMed
Google Scholar
Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. Nature. 2001, 411: 41-42. 10.1038/35075138
Article
CAS
PubMed
Google Scholar
Chen BS, Yang SK, Lan CY, Chuang YJ: A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining. BMC Med Genomics. 2008, 1: 46- 10.1186/1755-8794-1-46
Article
PubMed Central
PubMed
Google Scholar
Yang XX, Maurer KC, Molanus M, Mager WH, Siderius M, Vies van der SM: The molecular chaperone Hsp90 is required for high osmotic stress response in Saccharomyces cerevisiae. FEMS Yeast Res. 2006, 6: 195-204. 10.1111/j.1567-1364.2006.00026.x
Article
CAS
PubMed
Google Scholar
Pearl LH: Hsp90 and Cdc37 -- a chaperone cancer conspiracy. Curr Opin Genet Dev. 2005, 15: 55-61. 10.1016/j.gde.2004.12.011
Article
CAS
PubMed
Google Scholar
Varela J, Praekelt U, Meacock P, Planta R, Mager W: The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol. 1995, 15: 6232-6245.
Article
PubMed Central
CAS
PubMed
Google Scholar
Karreman RJ, Dague E, Gaboriaud F, Quiles F, Duval JF, Lindsey GG: The stress response protein Hsp12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall. Biochim Biophys Acta. 2007, 1774: 131-137.
Article
CAS
PubMed
Google Scholar
Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H: The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 1994, 13: 4382-4389.
PubMed Central
CAS
PubMed
Google Scholar
Marchler G, Schuller C, Adam G, Ruis H: A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 1993, 12: 1997-2003.
PubMed Central
CAS
PubMed
Google Scholar
Chen BS, Li CW: Analysing microarray data in drug discovery using systems biology. Expert Opinion on Drug Discovery. 2007, 2: 755-768. 10.1517/17460441.2.5.755.
Article
CAS
PubMed
Google Scholar
Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K: Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast. 2001, 18: 1515-1524. 10.1002/yea.779
Article
CAS
PubMed
Google Scholar
Verwaal R, Paalman JW, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J: HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast. 2002, 19: 1029-1038. 10.1002/yea.895
Article
CAS
PubMed
Google Scholar
Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S: hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol. 1989, 9: 3919-3930.
Article
PubMed Central
CAS
PubMed
Google Scholar
Picard D: Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci. 2002, 59: 1640-1648. 10.1007/PL00012491
Article
CAS
PubMed
Google Scholar
Csete M, Doyle J: Bow ties, metabolism and disease. Trends Biotechnol. 2004, 22: 446-450. 10.1016/j.tibtech.2004.07.007
Article
CAS
PubMed
Google Scholar
Li R, Brawley S: Improved survival under heat stress in intertidal embryos (Fucus spp.) simultaneously exposed to hypersalinity and the effect of parental thermal history. Marine Biology. 2004, 144: 205-213. 10.1007/s00227-003-1190-9.
Article
Google Scholar
Xiong L, Ishitani M, Zhu JK: Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol. 1999, 119: 205-212. 10.1104/pp.119.1.205
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang S, Jin G, Zhang XS, Chen L: Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics. 2007, 7: 2856-2869. 10.1002/pmic.200700095
Article
CAS
PubMed
Google Scholar
Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. NatGenet. 2003, 34: 166-176.
CAS
Google Scholar
Cuccato G, Della Gatta G, di Bernardo D: Systems and Synthetic biology: tackling genetic networks and complex diseases. Heredity. 2009, 102: 527-532. 10.1038/hdy.2009.18
Article
CAS
PubMed
Google Scholar
Chechik G, Oh E, Rando O, Weissman J, Regev A, Koller D: Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nat Biotechnol. 2008, 26: 1251-1259. 10.1038/nbt.1499
Article
PubMed Central
CAS
PubMed
Google Scholar
Walhout AJ: Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping. Genome Res. 2006, 16: 1445-1454. 10.1101/gr.5321506
Article
CAS
PubMed
Google Scholar
Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE, Schadt EE: Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet. 2008, 40: 854-861. 10.1038/ng.167
Article
PubMed Central
CAS
PubMed
Google Scholar
Bar-Joseph Z, Gerber G, Gifford DK, Jaakkola TS, Simon I: A new approach to analyzing gene expression time series data. Proceedings of the sixth annual international conference on Computational biology. 2002, Washington, DC, USA: ACM
Google Scholar
Faires JD, Burden RL: Numerical methods. 1998, Pacific Grove, CA: Brooks/Cole Pub. Co., 2
Google Scholar
de Boor C: A practical guide to splines Rev edn. 2001, New York: Springer
Google Scholar
Coleman TF, Hulbert LA: A direct active set algorithm for large sparse quadratic programs with simple bounds. Mathematical Programming. 1989, 45: 373-406. 10.1007/BF01589112.
Article
Google Scholar
Gill PE, Murray W, Wright MH: Practical optimization. 1981, London; New York: Academic Press
Google Scholar
Lu P, Vogel C, Wang R, Yao X, Marcotte EM: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol. 2007, 25: 117-124. 10.1038/nbt1270
Article
CAS
PubMed
Google Scholar
Hocking RR: A Biometrics invited paper. The analysis and selection of variables in linear regression. Biometrics. 1976, 32: 1-49. 10.2307/2529336.
Article
Google Scholar
Seber GAF, Lee AJ: Linear regression analysis. 2003, Hoboken, N.J.: Wiley-Interscience, 2
Book
Google Scholar
Barsky A, Gardy JL, Hancock RE, Munzner T: Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics. 2007, 23: 1040-1042. 10.1093/bioinformatics/btm057
Article
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13: 2498-2504. 10.1101/gr.1239303
Article
PubMed Central
CAS
PubMed
Google Scholar