Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell. 2006, 124 (4): 783-801. 10.1016/j.cell.2006.02.015
CAS
PubMed
Google Scholar
Pulendran B, Ahmed R: Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006, 124 (4): 849-63. 10.1016/j.cell.2006.02.019
CAS
PubMed
Google Scholar
Takeda K, Kaisho T, Akira S: Toll-like receptors. Annu Rev Immunol. 2003, 21: 335-76. 10.1146/annurev.immunol.21.120601.141126
CAS
PubMed
Google Scholar
Germain RN: An innately interesting decade of research in immunology. Nat Med. 2004, 10 (12): 1307-20. 10.1038/nm1159
CAS
PubMed
Google Scholar
Beutler B: Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004, 430 (6996): 257-63. 10.1038/nature02761
CAS
PubMed
Google Scholar
Janeway CA, Medzhitov R: Innate immune recognition. Annu Rev Immunol. 2002, 20: 197-216. 10.1146/annurev.immunol.20.083001.084359
CAS
PubMed
Google Scholar
Shimazu R, Akashi S, Ogata H, et al.: MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999, 189 (11): 1777-82. 10.1084/jem.189.11.1777
PubMed Central
CAS
PubMed
Google Scholar
Poltorak A, He X, Smirnova I, et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998, 282 (5396): 2085-8.
CAS
PubMed
Google Scholar
Alexopoulou L, Thomas V, Schnare M, et al.: Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med. 2002, 8 (8): 878-84.
CAS
PubMed
Google Scholar
Ozinsky A, Underhill DM, Fontenot JD, et al.: The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA. 2000, 97 (25): 13766-71. 10.1073/pnas.250476497
PubMed Central
CAS
PubMed
Google Scholar
Takeuchi O, Kawai T, Muhlradt PF, et al.: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 2001, 13 (7): 933-40. 10.1093/intimm/13.7.933
CAS
PubMed
Google Scholar
Takeuchi O, Sato S, Horiuchi T, et al.: Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol. 2002, 169 (1): 10-4.
CAS
PubMed
Google Scholar
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001, 413 (6857): 732-8. 10.1038/35099560
CAS
PubMed
Google Scholar
Hemmi H, Kaisho T, Takeuchi O, et al.: Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002, 3 (2): 196-200. 10.1038/ni758
CAS
PubMed
Google Scholar
Heil F, Hemmi H, Hochrein H, et al.: Species-specific recognition of single-stranded RNA via toll- like receptor 7 and 8. Science. 2004, 303: 1526-9. 10.1126/science.1093620
CAS
PubMed
Google Scholar
Diebold SS, Kaisho T, Hemmi H, Akira S, Reis eSC: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004, 303: 1529-31. 10.1126/science.1093616
CAS
PubMed
Google Scholar
Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H: Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol. 2002, 32 (7): 1958-68. 10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U
CAS
PubMed
Google Scholar
Latz E, Schoenemeyer A, Visintin A, et al.: TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004, 5 (2): 190-8. 10.1038/ni1028
CAS
PubMed
Google Scholar
Hayashi F, Smith KD, Ozinsky A, et al.: The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001, 410 (6832): 1099-103. 10.1038/35074106
CAS
PubMed
Google Scholar
den Dunnen J, Gringhuis SI, Geijtenbeek TB: Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother. 2009, 58 (7): 1149-57. 10.1007/s00262-008-0615-1
CAS
PubMed
Google Scholar
Geijtenbeek TB, van Vliet SJ, Engering A, 't Hart BA, van Kooyk Y: Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol. 2004, 22: 33-54. 10.1146/annurev.immunol.22.012703.104558
CAS
PubMed
Google Scholar
McDonald C, Nunez G: NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem. 2005, 74: 355-83. 10.1146/annurev.biochem.74.082803.133347
PubMed
Google Scholar
Takeda K, Akira S: Toll-like receptors. Curr Protoc Immunol. 2007, Chapter 14:
Google Scholar
Villadangos JA, Young L: Antigen-presentation properties of plasmacytoid dendritic cells. Immunity. 2008, 29 (3): 352-61. 10.1016/j.immuni.2008.09.002
CAS
PubMed
Google Scholar
Alvarez D, Vollmann EH, von Andrian UH: Mechanisms and consequences of dendritic cell migration. Immunity. 2008, 29 (3): 325-42. 10.1016/j.immuni.2008.08.006
PubMed Central
CAS
PubMed
Google Scholar
Pasare C, Medzhitov R: Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol. 2005, 560: 11-8. 10.1007/0-387-24180-9_2
CAS
PubMed
Google Scholar
von Andrian UH, Mempel TR: Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003, 3 (11): 867-78. 10.1038/nri1222
CAS
PubMed
Google Scholar
McGuirk P, Mills KH: Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends Immunol. 2002, 23 (9): 450-5. 10.1016/S1471-4906(02)02288-3
CAS
PubMed
Google Scholar
Moser M, Murphy KM: Dendritic cell regulation of TH1-TH2 development. Nat Immunol. 2000, 1 (3): 199-205.
CAS
PubMed
Google Scholar
O'Garra A, Vieira P: Regulatory T cells and mechanisms of immune system control. Nat Med. 2004, 10 (8): 801-5. 10.1038/nm0804-801
PubMed
Google Scholar
O'Garra A, Robinson D: Development and function of T helper 1 cells. Adv Immunol. 2004, 83: 133-62.
PubMed
Google Scholar
Mowen KA, Glimcher LH: Signaling pathways in Th2 development. Immunol Rev. 2004, 202: 203-22. 10.1111/j.0105-2896.2004.00209.x
CAS
PubMed
Google Scholar
Groux H, O'Garra A, Bigler M, et al.: A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997, 389 (6652): 737-42. 10.1038/39614
CAS
PubMed
Google Scholar
Kaech SM, Wherry EJ, Ahmed R: Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol. 2002, 2 (4): 251-62. 10.1038/nri778
CAS
PubMed
Google Scholar
Tsuji S, Matsumoto M, Takeuchi O, et al.: Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun. 2000, 68 (12): 6883-90. 10.1128/IAI.68.12.6883-6890.2000
PubMed Central
CAS
PubMed
Google Scholar
Uehori J, Matsumoto M, Tsuji S, et al.: Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guerin peptidoglycan. Infect Immun. 2003, 71 (8): 4238-49. 10.1128/IAI.71.8.4238-4249.2003
PubMed Central
CAS
PubMed
Google Scholar
Latz E, Franko J, Golenbock DT, Schreiber JR: Haemophilus influenzae type b-outer membrane protein complex glycoconjugate vaccine induces cytokine production by engaging human toll-like receptor 2 (TLR2) and requires the presence of TLR2 for optimal immunogenicity. J Immunol. 2004, 172 (4): 2431-8.
CAS
PubMed
Google Scholar
Querec T, Bennouna S, Alkan S, et al.: Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med. 2006, 203 (2): 413-24. 10.1084/jem.20051720
PubMed Central
PubMed
Google Scholar
Casella CR, Mitchell TC: Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 2008, 65 (20): 3231-40. 10.1007/s00018-008-8228-6
PubMed Central
CAS
PubMed
Google Scholar
Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC: The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science. 2007, 316 (5831): 1628-32. 10.1126/science.1138963
CAS
PubMed
Google Scholar
Lahiri A, Das P, Chakravortty D: Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond. Vaccine. 2008, 26 (52): 6777-83. 10.1016/j.vaccine.2008.09.045
CAS
PubMed
Google Scholar
Kang SM, Compans RW: Host responses from innate to adaptive immunity after vaccination: molecular and cellular events. Mol Cells. 2009, 27 (1): 5-14. 10.1007/s10059-009-0015-1
CAS
PubMed
Google Scholar
Reed SG, Bertholet S, Coler RN, Friede M: New horizons in adjuvants for vaccine development. Trends Immunol. 2009, 30 (1): 23-32. 10.1016/j.it.2008.09.006
CAS
PubMed
Google Scholar
Kwissa M, Kasturi SP, Pulendran B: The science of adjuvants. Expert Rev Vaccines. 2007, 6 (5): 673-84. 10.1586/14760584.6.5.673
CAS
PubMed
Google Scholar
Fraser CK, Diener KR, Brown MP, Hayball JD: Improving vaccines by incorporating immunological coadjuvants. Expert Rev Vaccines. 2007, 6 (4): 559-78. 10.1586/14760584.6.4.559
CAS
PubMed
Google Scholar
Coffman RL, Sher A, Seder RA: Vaccine adjuvants: putting innate immunity to work. Immunity. 2010, 33 (4): 492-503. 10.1016/j.immuni.2010.10.002
PubMed Central
CAS
PubMed
Google Scholar
Castiello L, Sabatino M, Jin P, et al.: Monocyte-derived DC maturation strategies and related pathways: a transcriptional view. Cancer Immunol Immunother. 2011, 60 (4): 457-66. 10.1007/s00262-010-0954-6
PubMed Central
CAS
PubMed
Google Scholar
Bachmann MF, Zinkernagel RM, Oxenius A: Immune responses in the absence of costimulation: viruses know the trick. J Immunol. 1998, 161 (11): 5791-4.
CAS
PubMed
Google Scholar
Zepp F: Principles of vaccine design-Lessons from nature. Vaccine. 2010, 28 (Suppl 3): C14-C24.
CAS
PubMed
Google Scholar
Pashine A, Valiante NM, Ulmer JB: Targeting the innate immune response with improved vaccine adjuvants. Nat Med. 2005, 11 (4 Suppl): S63-S68.
CAS
PubMed
Google Scholar
Wang E, Worschech A, Marincola FM: The immunologic constant of rejection. Trends Immunol. 2008, 29 (6): 256-62. 10.1016/j.it.2008.03.002
PubMed
Google Scholar
Wang E, Marincola FM: Immune-mediated tumor rejection. Immunological signatures of rejection. Edited by: Marincola FM, Wang E. 2011, 281-304. Springer,
Google Scholar
Plotkin SA: Vaccines: the fourth century. Clin Vaccine Immunol. 2009, 16 (12): 1709-19. 10.1128/CVI.00290-09
PubMed Central
CAS
PubMed
Google Scholar
Houghton M, Abrignani S: Prospects for a vaccine against the hepatitis C virus. Nature. 2005, 436 (7053): 961-6. 10.1038/nature04081
CAS
PubMed
Google Scholar
Sallberg M, Frelin L, Weiland O: DNA vaccine therapy for chronic hepatitis C virus (HCV) infection: immune control of a moving target. Expert Opin Biol Ther. 2009, 9 (7): 805-15. 10.1517/14712590902988444
PubMed
Google Scholar
Korber BT, Letvin NL, Haynes BF: T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J Virol. 2009, 83 (17): 8300-14. 10.1128/JVI.00114-09
PubMed Central
CAS
PubMed
Google Scholar
Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al.: Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. N Engl J Med. 2009 Dec 3, 361 (23): 2209-20.
CAS
PubMed
Google Scholar
Draper SJ, Heeney JL: Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol. 2010, 8 (1): 62-73. 10.1038/nrmicro2240
CAS
PubMed
Google Scholar
Banchereau J, Klechevsky E, Schmitt N, Morita R, Palucka K, Ueno H: Harnessing human dendritic cell subsets to design novel vaccines. Ann N Y Acad Sci. 2009, 1174: 24-32. 10.1111/j.1749-6632.2009.04999.x
PubMed Central
CAS
PubMed
Google Scholar
Sioud M: Does our current understanding of immune tolerance, autoimmunity, and immunosuppressive mechanisms facilitate the design of efficient cancer vaccines?. Scand J Immunol. 2009, 70 (6): 516-25. 10.1111/j.1365-3083.2009.02326.x
CAS
PubMed
Google Scholar
Plotkin SA: Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010, 17 (7): 1055-65. 10.1128/CVI.00131-10
PubMed Central
CAS
PubMed
Google Scholar
Franco MA, Angel J, Greenberg HB: Immunity and correlates of protection for rotavirus vaccines. Vaccine. 2006, 24 (15): 2718-31. 10.1016/j.vaccine.2005.12.048
CAS
PubMed
Google Scholar
Weinberg A, Zhang JH, Oxman MN, et al.: Varicella-zoster virus-specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. J Infect Dis. 2009, 200 (7): 1068-77. 10.1086/605611
PubMed Central
CAS
PubMed
Google Scholar
Akondy RS, Monson ND, Miller JD, et al.: The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol. 2009, 183 (12): 7919-30. 10.4049/jimmunol.0803903
PubMed Central
CAS
PubMed
Google Scholar
Miller JD, van der Most RG, Akondy RS, et al.: Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity. 2008, 28 (5): 710-22. 10.1016/j.immuni.2008.02.020
CAS
PubMed
Google Scholar
Migueles SA, Osborne CM, Royce C, et al.: Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity. 2008, 29 (6): 1009-21. 10.1016/j.immuni.2008.10.010
PubMed Central
CAS
PubMed
Google Scholar
Hersperger AR, Pereyra F, Nason M, et al.: Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 2010, 6 (5): e1000917- 10.1371/journal.ppat.1000917
PubMed Central
PubMed
Google Scholar
Makedonas G, Hutnick N, Haney D, et al.: Perforin and IL-2 upregulation define qualitative differences among highly functional virus-specific human CD8 T cells. PLoS Pathog. 2010, 6 (3): e1000798- 10.1371/journal.ppat.1000798
PubMed Central
PubMed
Google Scholar
Khader SA, Bell GK, Pearl JE, et al.: IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007, 8 (4): 369-77. 10.1038/ni1449
CAS
PubMed
Google Scholar
Yuan L, Wen K, Azevedo MS, Gonzalez AM, Zhang W, Saif LJ: Virus-specific intestinal IFN-gamma producing T cell responses induced by human rotavirus infection and vaccines are correlated with protection against rotavirus diarrhea in gnotobiotic pigs. Vaccine. 2008, 26 (26): 3322-31. 10.1016/j.vaccine.2008.03.085
PubMed Central
CAS
PubMed
Google Scholar
Dieu-Nosjean MC, Antoine M, Danel C, et al.: Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008, 26 (27): 4410-7. 10.1200/JCO.2007.15.0284
CAS
PubMed
Google Scholar
Wang E, Marincola FM: Bottom up: a modular view of immunology. Immunity. 2008, 29 (1): 9-11. 10.1016/j.immuni.2008.07.002
PubMed Central
PubMed
Google Scholar
Potti A, Dressman HK, Bild A, et al.: Genomic signatures to guide the use of chemotherapeutics. Nat Med. 2006, 12 (11): 1294-300. 10.1038/nm1491
CAS
PubMed
Google Scholar
Alizadeh AA, Staudt LM: Genomic-scale gene expression profiling of normal and malignant immune cells. Curr Opin Immunol. 2000, 12 (2): 219-25. 10.1016/S0952-7915(99)00078-3
CAS
PubMed
Google Scholar
Sorlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98 (19): 10869-74. 10.1073/pnas.191367098
PubMed Central
CAS
PubMed
Google Scholar
Ramilo O, Allman W, Chung W, et al.: Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2007, 109 (5): 2066-77. 10.1182/blood-2006-02-002477
PubMed Central
CAS
PubMed
Google Scholar
Chaussabel D, Quinn C, Shen J, et al.: A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity. 2008, 29 (1): 150-64. 10.1016/j.immuni.2008.05.012
PubMed Central
CAS
PubMed
Google Scholar
Pulendran B, Li S, Nakaya HI: Systems vaccinology. Immunity. 2010, 33 (4): 516-29. 10.1016/j.immuni.2010.10.006
PubMed Central
CAS
PubMed
Google Scholar
Buonaguro L, Pulendran B: Immunogenomics and systems biology of vaccines. Immunol Rev. 2011, 239 (1): 197-208. 10.1111/j.1600-065X.2010.00971.x
PubMed Central
CAS
PubMed
Google Scholar
Buonaguro FM, Tornesello ML, Buonaguro L: Immune signatures and systems biology of vaccines. Immunological signatures of rejection. Edited by: Marincola FM, Wang E. 2011, 141-67. Springer,
Google Scholar
Ricciardi-Castagnoli P, Granucci F: Opinion: Interpretation of the complexity of innate immune responses by functional genomics. Nat Rev Immunol. 2002, 2 (11): 881-9. 10.1038/nri936
CAS
PubMed
Google Scholar
Elkon R, Linhart C, Halperin Y, Shiloh Y, Shamir R: Functional genomic delineation of TLR-induced transcriptional networks. BMC Genomics. 2007, 8: 394- 10.1186/1471-2164-8-394
PubMed Central
PubMed
Google Scholar
Jenner RG, Young RA: Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol. 2005, 3 (4): 281-94. 10.1038/nrmicro1126
CAS
PubMed
Google Scholar
McCaffrey RL, Fawcett P, O'Riordan M, et al.: A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc Natl Acad Sci USA. 2004, 101 (31): 11386-91. 10.1073/pnas.0403215101
PubMed Central
CAS
PubMed
Google Scholar
Leber JH, Crimmins GT, Raghavan S, Meyer-Morse NP, Cox JS, Portnoy DA: Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen. PLoS Pathog. 2008, 4 (1): e6- 10.1371/journal.ppat.0040006
PubMed Central
PubMed
Google Scholar
Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009, 10 (1): 57-63. 10.1038/nrg2484
PubMed Central
CAS
PubMed
Google Scholar
Costa V, Angelini C, De F, Ciccodicola A: Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol. 2010, 2010: 853916-
PubMed Central
PubMed
Google Scholar
Querec TD, Akondy RS, Lee EK, et al.: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009, 10 (1): 116-25. 10.1038/ni.1688
PubMed Central
CAS
PubMed
Google Scholar
Gaucher D, Therrien R, Kettaf N, et al.: Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med. 2008, 205 (13): 3119-31. 10.1084/jem.20082292
PubMed Central
CAS
PubMed
Google Scholar
Aricò E, Wang E, Tornesello ML, et al.: Immature monocyte derived dendritic cells gene expression profile in response to Virus-Like Particles stimulation. J Transl Med. 2005, 3: 45- 10.1186/1479-5876-3-45
PubMed Central
PubMed
Google Scholar
Buonaguro L, Tornesello ML, Tagliamonte M, et al.: Baculovirus-derived human immunodeficiency virus type 1 virus-like particles activate dendritic cells and induce ex vivo T-cell responses. J Virol. 2006, 80 (18): 9134-43. 10.1128/JVI.00050-06
PubMed Central
CAS
PubMed
Google Scholar
Buonaguro L, Tornesello ML, Gallo RC, Marincola FM, Lewis GK, Buonaguro FM: Th2 Polarization in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus (HIV)-Infected Subjects, as Activated by HIV Virus-Like Particles. J Virol. 2009, 83 (1): 304-13. 10.1128/JVI.01606-08
PubMed Central
CAS
PubMed
Google Scholar
Monaco A, Marincola FM, Sabatino M, et al.: Molecular immune signatures of HIV-1 vaccines in human PBMCs. FEBS Lett. 2009, 583 (18): 3004-8. 10.1016/j.febslet.2009.07.060
CAS
PubMed
Google Scholar
Richter JD, Sonenberg N: Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005, 433 (7025): 477-80. 10.1038/nature03205
CAS
PubMed
Google Scholar
Ron D, Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007, 8 (7): 519-29. 10.1038/nrm2199
CAS
PubMed
Google Scholar
Hoek KL, Carlesso G, Clark ES, Khan WN: Absence of mature peripheral B cell populations in mice with concomitant defects in B cell receptor and BAFF-R signaling. J Immunol. 2009, 183 (9): 5630-43. 10.4049/jimmunol.0901100
CAS
PubMed
Google Scholar
Khan WN: B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J Immunol. 2009, 183 (6): 3561-7. 10.4049/jimmunol.0800933
CAS
PubMed
Google Scholar
Buonaguro L, Buonaguro FM, Tornesello ML, et al.: High efficient production of Pr55gag Virus-like Particles expressing multiple HIV-1 epitopes, including a gp120 protein derived from an Ugandan HIV-1 isolate of subtype A. Antiviral Research. 2001, 49 (1): 35-47. 10.1016/S0166-3542(00)00136-4
CAS
PubMed
Google Scholar
Buonaguro L, Monaco A, Arico E, et al.: Gene expression profile of peripheral blood mononuclear cells in response to HIV-VLPs stimulation. BMC Bioinformatics. 2008, 9 (Suppl 2): S5- 10.1186/1471-2105-9-S2-S5
PubMed Central
PubMed
Google Scholar
Magistrelli G, Jeannin P, Elson G, et al.: Identification of three alternatively spliced variants of human CD28 mRNA. Biochem Biophys Res Commun. 1999, 259 (1): 34-7. 10.1006/bbrc.1999.0725
CAS
PubMed
Google Scholar
Andres PG, Howland KC, Nirula A, et al.: Distinct regions in the CD28 cytoplasmic domain are required for T helper type 2 differentiation. Nat Immunol. 2004, 5 (4): 435-42. 10.1038/ni1044
CAS
PubMed
Google Scholar
Kozlow EJ, Wilson GL, Fox CH, Kehrl JH: Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood. 1993, 81 (2): 454-61.
CAS
PubMed
Google Scholar
Beltinger CP, White PS, Maris JM, et al.: Physical mapping and genomic structure of the human TNFR2 gene. Genomics. 1996, 35 (1): 94-100. 10.1006/geno.1996.0327
CAS
PubMed
Google Scholar
Pitti RM, Marsters SA, Lawrence DA, et al.: Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature. 1998, 396 (6712): 699-703. 10.1038/25387
CAS
PubMed
Google Scholar
Alderson MR, Smith CA, Tough TW, et al.: Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol. 1994, 24 (9): 2219-27. 10.1002/eji.1830240943
CAS
PubMed
Google Scholar
Stephan MT, Ponomarev V, Brentjens RJ, et al.: T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat Med. 2007, 13 (12): 1440-9. 10.1038/nm1676
CAS
PubMed
Google Scholar
Kawabe T, Naka T, Yoshida K, et al.: The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1994, 1 (3): 167-78. 10.1016/1074-7613(94)90095-7
CAS
PubMed
Google Scholar
Schonbeck U, Libby P: The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci. 2001, 58 (1): 4-43. 10.1007/PL00000776
CAS
PubMed
Google Scholar
Dabney AR: Classification of microarrays to nearest centroids. Bioinformatics. 2005, 21 (22): 4148-54. 10.1093/bioinformatics/bti681
CAS
PubMed
Google Scholar
Lee EK: Large-scale optimization-based classification models in medicine and biology. Ann Biomed Eng. 2007, 35 (6): 1095-109. 10.1007/s10439-007-9317-7
PubMed
Google Scholar
Gallagher RJ, Lee EK: Mixed integer programming optimization models for brachytherapy treatment planning. Proc AMIA Annu Fall Symp. 1997, 278-82.
Google Scholar
Harlin H, Meng Y, Peterson AC, et al.: Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 2009, 69 (7): 3077-85. 10.1158/0008-5472.CAN-08-2281
CAS
PubMed
Google Scholar
Louahed J, Gruselle O, Gaulis S, et al.: Expression of defined genes identified by pre-treatment tumor profiling: association with clinical responses to the GSK MAGE-A3 immunotherapeutic in metastatic melanoma patients. J Clin Oncol 26S. 2008,
Google Scholar
Vansteenkiste JF, Zielinski M, Dahabreh IJ, et al.: Association of gene expression signature and clinical efficacy of MAGE-A3 antigen-specific cancer immunotherapeutic (ASCI) as adjuvant therapy in resected stage IB/II non-small cell lung cancer (NSCLC). J Clin Oncol 15S. 2008,
Google Scholar
Georgel P, Macquin C, Bahram S: The heterogeneous allelic repertoire of human toll-like receptor (TLR) genes. PLoS One. 2009, 4 (11): e7803- 10.1371/journal.pone.0007803
PubMed Central
PubMed
Google Scholar
Bochud PY, Bochud M, Telenti A, Calandra T: Innate immunogenetics: a tool for exploring new frontiers of host defence. Lancet Infect Dis. 2007, 7 (8): 531-42. 10.1016/S1473-3099(07)70185-8
CAS
PubMed
Google Scholar
Misch EA, Hawn TR: Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond). 2008, 114 (5): 347-60. 10.1042/CS20070214.
Google Scholar
Dickinson AM, Holler E: Polymorphisms of cytokine and innate immunity genes and GVHD. Best Pract Res Clin Haematol. 2008, 21 (2): 149-64. 10.1016/j.beha.2008.03.004
CAS
PubMed
Google Scholar
Poland GA, Ovsyannikova IG, Jacobson RM: Application of pharmacogenomics to vaccines. Pharmacogenomics. 2009, 10 (5): 837-52. 10.2217/pgs.09.25
PubMed Central
CAS
PubMed
Google Scholar
Dhiman N, Ovsyannikova IG, Vierkant RA, et al.: Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: preliminary results. Vaccine. 2008, 26 (14): 1731-6. 10.1016/j.vaccine.2008.01.017
PubMed Central
CAS
PubMed
Google Scholar
Schroder NW, Schumann RR: Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis. 2005, 5 (3): 156-64.
PubMed
Google Scholar
Ovsyannikova IG, Haralambieva IH, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA: The role of polymorphisms in Toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity. Hum Genet. 2011,
Google Scholar
Ovsyannikova IG, Dhiman N, Haralambieva IH, et al.: Rubella vaccine-induced cellular immunity: evidence of associations with polymorphisms in the Toll-like, vitamin A and D receptors, and innate immune response genes. Hum Genet. 2010, 127 (2): 207-21. 10.1007/s00439-009-0763-1
PubMed Central
CAS
PubMed
Google Scholar
de la Torre MS, Torres C, Nieto G, et al.: Vitamin D receptor gene haplotypes and susceptibility to HIV-1 infection in injection drug users. J Infect Dis. 2008, 197 (3): 405-10. 10.1086/525043
PubMed
Google Scholar
van Manen D, Rits MA, Beugeling C, van DK, Schuitemaker H, Kootstra NA: The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection. PLoS Pathog. 2008, 4 (2): e18- 10.1371/journal.ppat.0040018
PubMed Central
PubMed
Google Scholar
Banus S, Bottema RW, Siezen CL, et al.: Toll-like receptor 4 polymorphism associated with the response to whole-cell pertussis vaccination in children from the KOALA study. Clin Vaccine Immunol. 2007, 14 (10): 1377-80. 10.1128/CVI.00175-07
PubMed Central
CAS
PubMed
Google Scholar
Kimman TG, Banus S, Reijmerink N, et al.: Association of interacting genes in the toll-like receptor signaling pathway and the antibody response to pertussis vaccination. PLoS One. 2008, 3 (11): e3665- 10.1371/journal.pone.0003665
PubMed Central
PubMed
Google Scholar
Didierlaurent A, Brissoni B, Velin D, et al.: Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol Cell Biol. 2006, 26 (3): 735-42. 10.1128/MCB.26.3.735-742.2006
PubMed Central
CAS
PubMed
Google Scholar
Bulut Y, Faure E, Thomas L, Equils O, Arditi M: Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol. 2001, 167 (2): 987-94.
CAS
PubMed
Google Scholar
Poland GA, Ovsyannikova IG, Jacobson RM: Immunogenetics of seasonal influenza vaccine response. Vaccine. 2008, 26 (Suppl 4): D35-D40.
PubMed Central
CAS
PubMed
Google Scholar
Gelder CM, Lambkin R, Hart KW, et al.: Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine. J Infect Dis. 2002, 185 (1): 114-7. 10.1086/338014
CAS
PubMed
Google Scholar
Myers CL, Chiriac C, Troyanskaya OG: Discovering biological networks from diverse functional genomic data. Methods Mol Biol. 2009, 563: 157-75. 10.1007/978-1-60761-175-2_9
PubMed
Google Scholar
Joyce AR, Palsson BO: The model organism as a system: integrating 'omics' data sets. Nat Rev Mol Cell Biol. 2006, 7 (3): 198-210. 10.1038/nrm1857
CAS
PubMed
Google Scholar
Moore JH, Asselbergs FW, Williams SM: Bioinformatics challenges for genome-wide association studies. Bioinformatics. 2010, 26 (4): 445-55. 10.1093/bioinformatics/btp713
PubMed Central
CAS
PubMed
Google Scholar
Hijikata A, Kitamura H, Kimura Y, et al.: Construction of an open-access database that integrates cross-reference information from the transcriptome and proteome of immune cells. Bioinformatics. 2007, 23 (21): 2934-41. 10.1093/bioinformatics/btm430
CAS
PubMed
Google Scholar
Abbas AR, Baldwin D, Ma Y, et al.: Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 2005, 6 (4): 319-31. 10.1038/sj.gene.6364173
CAS
PubMed
Google Scholar
Korb M, Rust AG, Thorsson V, et al.: The Innate Immune Database (IIDB). BMC Immunol. 2008, 9: 7- 10.1186/1471-2172-9-7
PubMed Central
PubMed
Google Scholar
Gardy JL, Lynn DJ, Brinkman FS, Hancock RE: Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol. 2009, 30 (6): 249-62. 10.1016/j.it.2009.03.009
CAS
PubMed
Google Scholar
Heng TS, Painter MW: The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008, 9 (10): 1091-4. 10.1038/ni1008-1091
CAS
PubMed
Google Scholar
Reif DM, Motsinger-Reif AA, McKinney BA, Rock MT, Crowe JE, Moore JH: Integrated analysis of genetic and proteomic data identifies biomarkers associated with adverse events following smallpox vaccination. Genes Immun. 2009, 10 (2): 112-9. 10.1038/gene.2008.80
PubMed Central
CAS
PubMed
Google Scholar
Bansal M, Belcastro V, mbesi-Impiombato A, di BD: How to infer gene networks from expression profiles. Mol Syst Biol. 2007, 3: 78-
PubMed Central
PubMed
Google Scholar
Liu W, Li D, Liu Q, Zhu Y, He F: A novel parametric approach to mine gene regulatory relationship from microarray datasets. BMC Bioinformatics. 2010, 11 (Suppl 11): S15- 10.1186/1471-2105-11-S11-S15
PubMed Central
PubMed
Google Scholar