Wang J, Li M, Wang H, Pan Y: Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2012, 9 (4): 1070-1080.
Article
PubMed
Google Scholar
Zhong J, Wang J, Peng W, Zhang Z, Pan Y: Prediction of essential proteins based on gene expression programming. BMC Genomics. 2013, 14 (4): 1-8.
Article
Google Scholar
Peng W, Wang J, Wang W, Liu Q, Wu FX, Pan Y: Iteration method for predicting essential proteins based on ontology and protein-protein interaction networks. BMC Systems Biology. 2012, 6 (1): 87-10.1186/1752-0509-6-87.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang J, Peng W, Wu FX: Computational approaches to predicting essential proteins: A survey. PROTEOMICS-Clinical Applications. 2013, 7 (1-2): 181-192. 10.1002/prca.201200068.
Article
CAS
PubMed
Google Scholar
Wang J, Li M, Deng Y, Pan Y: Recent advances in clustering methods for protein interaction networks. BMC Genomics. 2010, 11 (Suppl 3): S10-10.1186/1471-2164-11-S3-S10.
Article
CAS
Google Scholar
Li M, Chen JE, Wang JX, Hu B, Chen G: Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics. 2008, 9: 398-10.1186/1471-2105-9-398.
Article
PubMed Central
PubMed
Google Scholar
Ding X, Wang W, Peng X, Wang J: Miming protein complexes from PPI Networks using the minimum vertex cut. Tsinghua Science and Technology. 2012, 6: 674-681.
Article
Google Scholar
Wang J, Li M, Chen J, Pan Y: A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2011, 8 (3): 607-620.
Article
PubMed
Google Scholar
Barabási AL, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nature. 2011, 12: 56-68.
Google Scholar
Peng W, Wang J, Zhao B, Wang L: Identification of protein complexes using weighted PageRank-Nibble algorithm and core-attachment structure. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2014
Google Scholar
Zhao B, Wang J, Li M, Wu FX, Pan Y: Detecting Protein Complexes Based on Uncertain Graph Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2014, doi 10.1109/TCBB.2013.2297915
Google Scholar
Tang X, Feng Q, Wang J, He Y, Pan Y: Clustering based on multiple biological information: approach for predicting protein complexes. IET Systems Biology. 2013, 7 (5): 223-230. 10.1049/iet-syb.2012.0052.
Article
PubMed
Google Scholar
Goh K, Cusick M, Valle D, Childs B, Vidal M, lbert-La Szlo B: The human disease network. Proceedings of the National Academy of Sciences: May 2007. Edited by: H. Eugene Stanley. 2007, Boston University, 8685-8690. April
Google Scholar
Tian W, Zhang LV, Taan M, Gibbons FD, King OD, Park J, Wunderlich Z, Cherry JM, Roth FP: Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biology. 2008, 9 (Suppl1): S7-
Article
PubMed Central
PubMed
Google Scholar
Ulitsky I, Shamir R: Identification of functional modules using network topology and high throughput data. BMC systems biology. 2007, 1-8.
Google Scholar
Wu X, Jiang R, Zhang MQ, Li S: Network-based global inference of human disease genes. Molecular Systems Biology. 2008, 4: 189-
Article
PubMed Central
PubMed
Google Scholar
Kohler S, Bauer S, Horn D, Robinson PN: Walking the Interactome for Prioritization of Candidate Disease Genes. The American Journal of Human Genetics. 2008, 82 (4): 949-958. 10.1016/j.ajhg.2008.02.013.
Article
PubMed
Google Scholar
Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R: Associating genes and protein complexes with disease via network propagation. PLOS Computational Biology. 2010, 6: e1000641-10.1371/journal.pcbi.1000641.
Article
PubMed Central
PubMed
Google Scholar
Li Y, Patra JC: Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics. 2010, 26: 1219-1224. 10.1093/bioinformatics/btq108.
Article
CAS
PubMed
Google Scholar
Winter EE, Goodstadt L, Ponting CP: Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res. 2004, 14 (1): 4-61.
Google Scholar
Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, Handel MA, Bult CJ, Hibbs MA, Troyanskaya OG: Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes. PLOS Computational Biology. 2012, 9: e1002694-
Article
Google Scholar
Bossi A, Lehner B: Tissue specificity and the human protein interaction network. Molecular Systems Biology. 2009, 5: 260-
Article
PubMed Central
PubMed
Google Scholar
Emig D, Albrecht M: Tissue-specific proteins and functional implications. J Proteome Res. 2011, 10: 1893-1903. 10.1021/pr101132h.
Article
CAS
PubMed
Google Scholar
Wang J, Peng X, Peng W, Wu FX: Dynamic protein interaction network construction and applications. Proteomics. 2014, 14 (4-5): 338-352. 10.1002/pmic.201300257.
Article
CAS
PubMed
Google Scholar
Li M, Wu X, Wang J, Pan Y: Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics. 2012, 13-
Google Scholar
Wang J, Peng X, Li M, Pan Y: Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics. 2013, 13 (2): 301-312. 10.1002/pmic.201200277.
Article
CAS
PubMed
Google Scholar
Gene expression data set for GSE 7307: [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307]
Lagea K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, Donahoe PK, Szallasi Z, Jensen TS, Brunak S: A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proceedings of the National Academy of Sciences. 2008, 20871-20875. December 2008
Google Scholar
Li M, Zheng R, Zhang H, Wang J, Pan Y: Effective identification of essential proteins based on priori knowledge network topology and gene expressions. Methods. 2014, doi: 10.1016/j.ymeth.2014.02.016
Google Scholar
Tang X, Wang J, Zhong J, Pan Y: Predicting essential proteins based on weighted degree centrality. IEEE /ACM Transactions on Computational Biology and Bioinformatics. 2014
Google Scholar
Li M, Zhang H, Wang J, Pan Y: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Systems Biology. 2012, 6 (1): 15-10.1186/1752-0509-6-15.
Article
PubMed Central
CAS
PubMed
Google Scholar
van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JAM: A text-mining analysis of the human phenome. European Journal of Human Genetics. 2006, 14: 535-542. 10.1038/sj.ejhg.5201585.
Article
CAS
PubMed
Google Scholar
Ganegoda GU, Wang JX, Wu FX, Li M: Prioritization of Candidate Genes Based on Disease Similarity and Protein's Proximity in PPI Networks. IEEE International Conference on Bioinformatics and Biomedicine: 18-21 December 2013. 2013, 103-108.
Chapter
Google Scholar
Human Protein Reaction Database: [http://www.hprd.org]
Liben-Nowell D, Kleinberg J: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology. 2007, 58: 1019-1031. 10.1002/asi.20591.
Article
Google Scholar
Katz L: A new status index derived from sociometric analysis. Psychometrika. 1953, 18: 39-43. 10.1007/BF02289026.
Article
Google Scholar
Singh-Blom UM, Natarajan N, Tewari A, Woods JO, Dhillon IS, Marcotte EM: Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses. PLOS One. 2013, 8 (5): e58977-10.1371/journal.pone.0058977.
Article
PubMed Central
CAS
PubMed
Google Scholar
Magger O, Waldman YY, Ruppin E, Sharan R: Enhancing the Prioritization of Disease-Causing Genes through Tissue Specific Protein Interaction Networks. PLOS Computational Biology. 2012, 8 (9): e1002690-10.1371/journal.pcbi.1002690. September
Article
PubMed Central
CAS
PubMed
Google Scholar
Jiang BB, Wang JG, Xiao JF, Wang Y: Gene Prioritization for Type 2 Diabetes in Tissue-specific Protein Interaction Networks. The Third International Symposium on Optimization and Systems Biology: 20-22 September 2009. 2009, 319-328.
Google Scholar
Kohler S, Bauer S, Horn D, Robinson PN: Walking the Interactome for Prioritization of Candidate Disease Genes. The American Journal of Human Genetics. 2008, 82: 949-958. 10.1016/j.ajhg.2008.02.013.
Article
PubMed
Google Scholar
Qu S, Long J, Cai Q, Shu XO, Cai H, Gao YT, Zheng W: Genetic Polymorphisms of Metastasis Suppressor Gene NME1and Breast Cancer Survival. Clin Cancer Res. 2008, 14 (15): 4787-4793. 10.1158/1078-0432.CCR-08-0083.
Article
PubMed Central
CAS
PubMed
Google Scholar
Callans LS, Naama H, Khandelwal M, Plotkin R, Jardines L: Raf-1 protein expression in human breast cancer cells. Ann Surg Oncol. 1995, 2 (1): 38-42. 10.1007/BF02303700.
Article
CAS
PubMed
Google Scholar
Westenend PJ, Schutte R, Hoogmans MMCP, Wagner A, Dinjens WNM: Breast cancer in an MSH2 gene mutation carrier. Human Pathology. 2005, 36: 1322-1326. 10.1016/j.humpath.2005.08.025.
Article
CAS
PubMed
Google Scholar
Bélanger AS, Tojcic J, Harvey M, Guillemette C: Regulation of UGT1A1and HNF1transcription factor gene expression by DNA methylation in colon cancer cells. BMC Molecular Biology. 2010, 11: 9-10.1186/1471-2199-11-9.
Article
PubMed Central
PubMed
Google Scholar
Resta N, Simone C, Mareni C: STK11 Mutations in Peutz-Jeghers Syndrome and Sporadic Colon Cancer. Cancer Research. 1998, 58: 4799-4801.
CAS
PubMed
Google Scholar
Ma XR, Sim UHE, Pauline B, Patricia L, Rahman J: Overexpression of WNT2 and TSG101 genes in colorectal carcinoma. Tropical biomedicine. 2008, 25 (1): 46-57.
CAS
PubMed
Google Scholar
Bodhini D, Sandhiya M, Ghosh S, Majumder PP, Rao MR, Mohan V, Radha V: Association of His1085His INSR gene polymorphism with type 2 diabetes in South Indians. Diabetes Technol Ther. 2012, 14 (8): 696-700. 10.1089/dia.2012.0009. August
Article
CAS
PubMed
Google Scholar
Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA: Epigenetic Gene Promoter Methylation at Birth Is Associated With Child's Later Adiposity. diabetesjournals. 2011, 60: 1528-1534.
CAS
Google Scholar
Baliab J, Gheinania AH, Zurbriggena S, Rajendrana L: Role of genes linked to sporadic Alzheimer's disease risk in the production of β-amyloid peptides. Proceedings of National Academy of Science of the United States of America. Edited by: Simons K. 2012, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 15307-15311. 18 September 2012
Google Scholar
Mun˜oz-Nieto M, Ramonet N, Lo´ez-Gasto´n JI, Corrales NC, Calero O, Díaz-Hurtado M, Ipiens JR, Cajal SR, Pedro-Cuesta J, Calero M: A novel mutation I215V in the PRNP gene associated with Creutzfeldt-Jakob and Alzheimer's diseases in three patients with divergent clinical phenotypes. Journal Neurol. 2013, 260: 77-84. 10.1007/s00415-012-6588-1.
Article
Google Scholar
Forero DA, Arboleda G, Yunis JJ, Pardo R, Arboleda H: Association study of polymorphisms in LRP1, tau and 5-HTT genes and Alzheimer's disease in a sample of Colombian patients. Journal of Neural Transmission. 2006, 113 (9): 1253-1262. 10.1007/s00702-005-0388-z.
Article
CAS
PubMed
Google Scholar
Blanco R, Iwakawa R, Tang M, Kohno T, Angulo B, Pio R, Montuenga LM, Minna JS, Yokota J, Sanchez-Cespedes M: A Gene-Alteration Profile of Human Lung Cancer Cell Lines. Human Mutation. 2009, 30 (8): 1199-1206. 10.1002/humu.21028.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Z, Wang J, He J, Zheng Z, Zeng X, Zhang C, Ye J, Zhang Y, Zhong N, Lu W: Genetic Variants in MUC4 Gene Are Associated with Lung Cancer Risk in a Chinese Population. PLOS One. 2013, 8 (10): e77723-10.1371/journal.pone.0077723.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dai S, Mao C, Jiang L, Wang G, Cheng H: P53 polymorphism and lung cancer susceptibility: a pooled analysis of 32 case-control studies. Hum Genet. 2009, 125: 633-638. 10.1007/s00439-009-0664-3.
Article
CAS
PubMed
Google Scholar
Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, Day ML: Elevated E2F1 Inhibits Transcription of the Androgen Receptor in Metastatic Hormone-Resistant Prostate Cancer. American Association for Cancer Research. 2006, 66 (24): 11897-11906.
Article
CAS
Google Scholar
Parry M, Elliott G, Abo R, Camp NJ, Neal DE, Donovan JL, Hamdy FC, Cox A: Caspase-8 gene SNPs in prostate cancer susceptibility a replication study [abstract]. Journal of Medical Genetics. 2010, 70 (8): 2843-
Google Scholar
Ecke TH, Schlechte HH, Schiemenz K, Sachs MD, Lenk SV, Rudolph BD, Loening SA: TP53 gene mutations in prostate cancer progression. Anticancer Research. 2010, 30 (5): 1579-1586.
CAS
PubMed
Google Scholar
Lam S, Lodder K, Teunisse AFAS, Rabelink MJWE, Schutte M, Jochemsen AG: Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene. 2010, 29 (16): 2415-2426. 10.1038/onc.2009.522.
Article
CAS
PubMed
Google Scholar
Worku D, Jouhra F, Jiang GW, Patani N, Newbold RF, Mokbel K: Evidence of a Tumor Suppressive Function of E2F1Gene in Human Breast Cancer. Anticancer Research. 2008, 2135-2139. 28
Fukazawa T, Maeda Y, Matsuoka J, Tanaka N, Tanaka H, Durbin ML, Naomoto Y: Drug-regulatable cancer cell death induced by BID under control of the tissue-specific, lung cancer-targeted TTS promoter system. International Journal of Cancer. 2009, 125 (8): 1975-1984. 10.1002/ijc.24584.
Article
CAS
Google Scholar
Incoronato M, Garofalo M, Urso L, Romano G, Quintavalle C, Zanca C, Iaboni M, Nuovo G, Croce CM, Condorell G: miR-212 Increases Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Sensitivity in Non-Small Cell Lung Cancer by Targeting the Antiapoptotic Protein PED. American Association for Cancer Research. 2010, 70 (9): 3638-46.
Article
CAS
Google Scholar