Vale W, Rivier C, Brown MR, Spiess J, Koob G, Swanson L, Bilezikjian L, Bloom F, Rivier J: Chemical and biological characterization of corticotropin releasing factor. Recent Prog Horm Res. 1983, 39: 245-270.
CAS
PubMed
Google Scholar
De Souza EB: Corticotropin-releasing factor receptors: Physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology. 1995, 20 (8): 789-819. 10.1016/0306-4530(95)00011-9
Article
CAS
PubMed
Google Scholar
Holsboer F: The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res. 1999, 33 (3): 181-214. 10.1016/S0022-3956(98)90056-5
Article
CAS
PubMed
Google Scholar
Holsboer F: The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000, 23 (5): 477-501. 10.1016/S0893-133X(00)00159-7
Article
CAS
PubMed
Google Scholar
de Kloet ER, Joels M, Holsboer F: Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005, 6 (6): 463-475. 10.1038/nrn1683
Article
CAS
PubMed
Google Scholar
Deussing JM, Wurst W: Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour. C R Biol. 2005, 328 (2): 199-212. 10.1016/j.crvi.2005.01.001
Article
CAS
PubMed
Google Scholar
Lu A, Steiner MA, Whittle N, Vogl AM, Walser SM, Ableitner M, Refojo D, Ekker M, Rubenstein JL, Stalla GK, et al.: Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol Psychiatry. 2008, 13 (11): 1028-1042. 10.1038/mp.2008.51
Article
CAS
PubMed
Google Scholar
Müller MB, Holsboer F: Mice with mutations in the HPA-system as models for symptoms of depression. Biol Psychiatry. 2006, 59 (12): 1104-1115. 10.1016/j.biopsych.2006.02.008
Article
PubMed
Google Scholar
Olianas MC, Lampis G, Onali P: Coupling of corticotropin-releasing hormone receptors to adenylyl cyclase in human Y-79 retinoblastoma cells. J Neurochem. 1995, 64 (1): 394-401. 10.1046/j.1471-4159.1995.64010394.x
Article
CAS
PubMed
Google Scholar
Aguilera G, Harwood JP, Wilson JX, Morell J, Brown JH, Catt KJ: Mechanisms of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells. J Biol Chem. 1983, 258 (13): 8039-8045.
CAS
PubMed
Google Scholar
Hauger RL, Risbrough V, Brauns O, Dautzenberg FM: Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets. 2006, 5 (4): 453-479. 10.2174/187152706777950684
Article
PubMed Central
CAS
PubMed
Google Scholar
Kovalovsky D, Refojo D, Liberman AC, Hochbaum D, Pereda MP, Coso OA, Stalla GK, Holsboer F, Arzt E: Activation and Induction of NUR77/NURR1 in Corticotrophs by CRH/cAMP: Involvement of Calcium, Protein Kinase A, and MAPK Pathways. Mol Endocrinol. 2002, 16 (7): 1638-1651. 10.1210/me.16.7.1638
Article
CAS
PubMed
Google Scholar
Refojo D, Echenique C, Müller MB, Reul JM, Deussing JM, Wurst W, Sillaber I, Paez-Pereda M, Holsboer F, Arzt E: Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas. Proc Natl Acad Sci USA. 2005, 102 (17): 6183-6188. 10.1073/pnas.0502070102
Article
PubMed Central
CAS
PubMed
Google Scholar
Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F: Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res. 2000, 34 (3): 171-181. 10.1016/S0022-3956(00)00016-9
Article
CAS
PubMed
Google Scholar
Ising M, Holsboer F: Genetics of stress response and stress-related disorders. Dialogues Clin Neurosci. 2006, 8 (4): 433-444.
PubMed Central
PubMed
Google Scholar
Holsboer F, Ising M: Central CRH system in depression and anxiety -- Evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol. 2008, 583 (2-3): 350-357. 10.1016/j.ejphar.2007.12.032
Article
CAS
PubMed
Google Scholar
Ising M, Zimmermann US, Künzel HE, Uhr M, Foster AC, Learned-Coughlin SM, Holsboer F, Grigoriadis DE: High-Affinity CRF1 Receptor Antagonist NBI-34041: Preclinical and Clinical Data Suggest Safety and Efficacy in Attenuating Elevated Stress Response. Neuropsychopharmacology. 2007, 32 (9): 1941-1949. 10.1038/sj.npp.1301328
Article
CAS
PubMed
Google Scholar
Arzt E, Holsboer F: CRF signaling: molecular specificity for drug targeting in the CNS. Trends Pharmacol Sci. 2006, 27 (10): 531-538. 10.1016/j.tips.2006.08.007
Article
CAS
PubMed
Google Scholar
Kronsbein HC, Jastorff AM, Maccarrone G, Stalla G, Wurst W, Holsboer F, Turck CW, Deussing JM: CRHR1-dependent effects on protein expression and posttranslational modification in AtT-20 cells. Mol Cell Endocrinol. 2008, 292 (1-2): 1-10. 10.1016/j.mce.2008.05.017
Article
CAS
PubMed
Google Scholar
Peeters PJ, Gohlmann HW, Van den Wyngaert I, Swagemakers SM, Bijnens L, Kass SU, Steckler T: Transcriptional Response to Corticotropin-Releasing Factor in AtT-20 Cells. Mol Pharmacol. 2004, 66 (5): 1083-1092. 10.1124/mol.104.000950
Article
CAS
PubMed
Google Scholar
Deussing JM, Kühne C, Pütz B, Panhuysen M, Breu J, Stenzel-Poore MP, Holsboer F, Wurst W: Expression profiling identifies the CRH//CRH-R1 system as a modulator of neurovascular gene activity. J Cereb Blood Flow Metab. 2007, 27 (8): 1476-1495. 10.1038/sj.jcbfm.9600451
Article
CAS
PubMed
Google Scholar
Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3 (1): Article 3-
Google Scholar
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001, 98 (9): 5116-5121. 10.1073/pnas.091062498
Article
PubMed Central
CAS
PubMed
Google Scholar
Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE: Rosetta error model for gene expression analysis. Bioinformatics. 2006, 22 (9): 1111-1121. 10.1093/bioinformatics/btl045
Article
CAS
PubMed
Google Scholar
Trevino V, Falciani F: GALGO: an R package for multivariate variable selection using genetic algorithms. Bioinformatics. 2006, 22 (9): 1154-1156. 10.1093/bioinformatics/btl074
Article
CAS
PubMed
Google Scholar
Ooi CH, Tan P: Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics. 2003, 19 (1): 37-44. 10.1093/bioinformatics/19.1.37
Article
CAS
PubMed
Google Scholar
Li L, Weinberg CR, Darden TA, Pedersen LG: Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics. 2001, 17 (12): 1131-1142. 10.1093/bioinformatics/17.12.1131
Article
CAS
PubMed
Google Scholar
Filippone M, Masulli F, Rovetta S: A wrapper approach to supervised input selection using simulated annealing. Technical Report DISI-TR-06-10: 12th. 2006, June ; Department of Computer and Information Science at the University of Genova, Italy
Google Scholar
Filippone M, Masulli F, Rovetta S: Supervised classification and gene selection using simulated annealing. IJCNN: 2006 IEEE. 2006, 3566-3571.
Google Scholar
Wang J, Do KA, Wen S, Tsavachidis S, McDonnell TJ, Logothetis CJ, Coombes KR: Merging microarray data, robust feature selection, and predicting prognosis in prostate cancer. Cancer Informatics. 2006, 2: 87-97.
PubMed Central
Google Scholar
Schäfer J, Strimmer K: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics. 2005, 21 (6): 754-764. 10.1093/bioinformatics/bti062
Article
PubMed
Google Scholar
Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res. 2002, 30 (1): 207-210. 10.1093/nar/30.1.207
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucl Acids Res. 2002, 30 (4): e15- 10.1093/nar/30.4.e15
Article
PubMed Central
PubMed
Google Scholar
Kerr MK, Churchill GA: Experimental design for gene expression microarrays. Biostat. 2001, 2 (2): 183-201. 10.1093/biostatistics/2.2.183.
Article
Google Scholar
Dettling M, Bühlmann P: Boosting for tumor classification with gene expression data. Bioinformatics. 2003, 19 (9): 1061-1069. 10.1093/bioinformatics/btf867
Article
CAS
PubMed
Google Scholar
Tan Y, Shi L, Hussain SM, Xu J, Tong W, Frazier JM, Wang C: Integrating time-course microarray gene expression profiles with cytotoxicity for identification of biomarkers in primary rat hepatocytes exposed to cadmium. Bioinformatics. 2006, 22 (1): 77-87. 10.1093/bioinformatics/bti737
Article
CAS
PubMed
Google Scholar
Karlovich C, Duchateau-Nguyen G, Johnson A, McLoughlin P, Navarro M, Fleurbaey C, Steiner L, Tessier M, Nguyen T, Wilhelm-Seiler M, et al.: A longitudinal study of gene expression in healthy individuals. BMC Medical Genomics. 2009, 2: 33- 10.1186/1755-8794-2-33
Article
PubMed Central
PubMed
Google Scholar
Zou W, Tolstikov V: Pattern Recognition and Pathway Analysis with Genetic Algorithms in Mass Spectrometry Based Metabolomics. Algorithms. 2009, 2 (2): 638-666. 10.3390/a2020638.
Article
CAS
Google Scholar
Hair J, Tatham AR, Black W: Multivariate data analysis. 1998, New Jersey: Prentice-Hall International, 5
Google Scholar
Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to Algorithms. 2001, MIT Press
Google Scholar
Albrecht A, Vinterbo SA, Ohno-Machado L: An Epicurean learning approach to gene-expression data classification. Artificial Intelligence in Medicine. 2003, 28 (1): 75-87. 10.1016/S0933-3657(03)00036-8
Article
PubMed
Google Scholar
Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Mach Learn. 2002, 46: 389-422. 10.1023/A:1012487302797.
Article
Google Scholar
Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning-Data Mining, Inference, and Prediction. Heidelberg: Springer-Verlag. 2001
Google Scholar
Breiman L: Bagging predictors. Machine Learning. 1996, 24: 123-140.
Google Scholar
Diaz-Uriarte R, Alvarez de Andres S: Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006, 7 (1): 3- 10.1186/1471-2105-7-3
Article
PubMed Central
PubMed
Google Scholar
Treeratpituk P, Giles CL: Disambiguating Authors in Academic Publications using Random Forests. Proceedings of the 9th ACM/IEEECS Joint Conference on Digital Libraries: 2009; Austin, TX, USA. 2009, 39-48.
Chapter
Google Scholar
Leech NL, Barrett KC, Morgan GA: SPSS for intermediate statistics, use and interpretation. 2004, Mahway, New Jersey: Lawrence Erlbaum Assoc Inc
Google Scholar
Meyers LS, Gamst G, Guarino AJ: Applied Multivariate Research: Design and Interpretation. 2005, Thousand Oaks, California: Sage Publications Inc
Google Scholar
Schäfer J, Opgen-Rhein R, Strimmer K: Reverse engineering genetic networks using the GeneNet package. R News. 2006, 6: 50-53.
Google Scholar
Schäfer J, Strimmer K: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol. 2005, 4 (1): Article:32-
Google Scholar
Slominski A, Zbytek B, Pisarchik A, Slominski R, Zmijewski M, Wortsman J: CRH functions as a growth factor/cytokine in the skin. J Cell Physiol. 2006, 206 (3): 780-791. 10.1002/jcp.20530
Article
PubMed Central
CAS
PubMed
Google Scholar
Graziani G, Tentori L, Muzi A, Vergati M, Tringali G, Pozzoli G, Navarra P: Evidence that corticotropin-releasing hormone inhibits cell growth of human breast cancer cells via the activation of CRH-R1 receptor subtype. Mol Cell Endocrinol. 2007, 264 (1-2): 44-49. 10.1016/j.mce.2006.10.006
Article
CAS
PubMed
Google Scholar
Karalis K, Muglia L, Bae D, Hilderbrand H, Majzoub J: CRH and the immune system. J Neuroimmunol. 1997, 72 (2): 131-136. 10.1016/S0165-5728(96)00178-6
Article
CAS
PubMed
Google Scholar
Lim JY, Kim H, Jeun S-S, Kang S-G, Lee K-J: Merlin inhibits growth hormone-regulated Raf-ERKs pathways by binding to Grb2 protein. Biochemical and Biophysical Research Communications. 2006, 340 (4): 1151-1157. 10.1016/j.bbrc.2005.12.122
Article
CAS
PubMed
Google Scholar
Wong ML, Dong C, Maestre-Mesa J, Licinio J: Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry. 2008, 13 (8): 800-812. 10.1038/mp.2008.59
Article
PubMed Central
CAS
PubMed
Google Scholar
Delibrias CC, Floettmann JE, Rowe M, Fearon DT: Downregulated Expression of SHP-1 in Burkitt Lymphomas and Germinal Center B Lymphocytes. J Exp Med. 1997, 186 (9): 1575-1583. 10.1084/jem.186.9.1575
Article
PubMed Central
CAS
PubMed
Google Scholar
Cuevas B, Lu Y, Watt S, Kumar R, Zhang J, Siminovitch KA, Mills GB: SHP-1 Regulates Lck-induced Phosphatidylinositol 3-Kinase Phosphorylation and Activity. J Biol Chem. 1999, 274 (39): 27583-27589. 10.1074/jbc.274.39.27583
Article
CAS
PubMed
Google Scholar
Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T: Merlin, the Product of the Nf2 Tumor Suppressor Gene, Is an Inhibitor of the p21-Activated Kinase, Pak1. Mol Cell. 2003, 12 (4): 841-849. 10.1016/S1097-2765(03)00382-4
Article
CAS
PubMed
Google Scholar
Chadee DN, Xu D, Hung G, Andalibi A, Lim DJ, Luo Z, Gutmann DH, Kyriakis JM: Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA. 2006, 103 (12): 4463-4468. 10.1073/pnas.0510651103
Article
PubMed Central
CAS
PubMed
Google Scholar
Alfthan K, Heiska L, Gronholm M, Renkema GH, Carpen O: Cyclic AMP-dependent Protein Kinase Phosphorylates Merlin at Serine 518 Independently of p21-activated Kinase and Promotes Merlin-Ezrin Heterodimerization. J Biol Chem. 2004, 279 (18): 18559-18566. 10.1074/jbc.M313916200
Article
CAS
PubMed
Google Scholar
Hsu M-H, Savas U, Griffin KJ, Johnson EF: Identification of Peroxisome Proliferator-responsive Human Genes by Elevated Expression of the Peroxisome Proliferator-activated Receptor alpha in HepG2 Cells. J Biol Chem. 2001, 276 (30): 27950-27958. 10.1074/jbc.M100258200
Article
CAS
PubMed
Google Scholar
Hertz R, Berman I, Bar-Tana J: Transcriptional activation by amphipathic carboxylic peroxisomal proliferators is induced by the free acid rather than the acyl-CoA derivative. Eur J Biochem. 1994, 221 (1): 611-615. 10.1111/j.1432-1033.1994.tb18773.x
Article
CAS
PubMed
Google Scholar
Cornejo Maciel F, Maloberti P, Neuman I, Cano F, Castilla R, Castillo F, Paz C, Podesta EJ: An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones. J Mol Endocrinol. 2005, 34 (3): 655-666. 10.1677/jme.1.01691
Article
PubMed
Google Scholar
Lazennec G, Canaple L, Saugy D, Wahli W: Activation of Peroxisome Proliferator-Activated Receptors (PPARs) by Their Ligands and Protein Kinase A Activators. Mol Endocrinol. 2000, 14 (12): 1962-1975. 10.1210/me.14.12.1962
Article
PubMed Central
CAS
PubMed
Google Scholar
Newcomer J: Medical risk in patients with bipolar disorder and schizophrenia. J Clin Psychiatry. 2006, 67 (11): e16- 10.4088/JCP.1106e16
Article
PubMed
Google Scholar
Taylor V, MacQueen G: Cognitive dysfunction associated with metabolic syndrome. Obes Rev. 2007, 8 (5): 409-418. 10.1111/j.1467-789X.2007.00401.x
Article
CAS
PubMed
Google Scholar
Ferno J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ, Breilid H, Lovlie R, Berge RK, Stansberg C, et al.: Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action?. Pharmacogenomics J. 2005, 5 (5): 298-304. 10.1038/sj.tpj.6500323
Article
CAS
PubMed
Google Scholar
Lamas M, Sassone-Corsi P: The Dynamics of the Transcriptional Response to Cyclic Adenosine 3', 5'-Monophosphate: Recurrent Inducibility and Refractory Phase. Mol Endocrinol. 1997, 11 (10): 1415-1424. 10.1210/me.11.10.1415
CAS
PubMed
Google Scholar
Liu Y, Kalintchenko N, Sassone-Corsi P, Aguilera G: Inhibition of corticotrophin-releasing hormone transcription by inducible cAMP-early repressor in the hypothalamic cell line, 4B. JNeuroendocrinol. 2006, 18 (1): 42-49. 10.1111/j.1365-2826.2005.01383.x.
Article
CAS
Google Scholar
Becquet D, Guillaumond F, Bosler O, Francois-Bellan AM: Long-term variations of AP-1 composition after CRH stimulation: consequence on POMC gene regulation. Mol Cell Endocrinol. 2001, 175 (1-2): 93-100. 10.1016/S0303-7207(01)00393-8
Article
CAS
PubMed
Google Scholar
Spessert R, Rapp M, Jastrow H, Karabul N, Blum F, Vollrath L: A differential role of CREB phosphorylation in cAMP-inducible gene expression in the rat pineal. Brain Res. 2000, 864 (2): 270-280. 10.1016/S0006-8993(00)02185-5
Article
CAS
PubMed
Google Scholar
Schwenger GTF, Kok CC, Arthaningtyas E, Thomas MA, Sanderson CJ, Mordvinov VA: Specific Activation of Human Interleukin-5 Depends on de Novo Synthesis of an AP-1 Complex. J Biol Chem. 2002, 277 (49): 47022-47027. 10.1074/jbc.M207414200
Article
CAS
PubMed
Google Scholar
Therrien M, Drouin J: Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements. Mol Cell Biol. 1991, 11 (7): 3492-3503.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boutillier AL, Gaiddon C, Lorang D, Roberts JL, Loeffler JP: Transcriptional Activation of the Proopiomelanocortin Gene by Cyclic AMP-responsive Element Binding Protein. Pituitary. 1998, 1 (1): 33-43. 10.1023/A:1009966808106
Article
CAS
PubMed
Google Scholar
Bousquet C ZM, Melmed S: Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immuno-neuroendocrine interfacing. J Clin Invest. 2000, 106 (11): 1417-1425. 10.1172/JCI11182
Article
PubMed Central
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262
Article
CAS
PubMed
Google Scholar
The R Project for Statistical Computing. http://www.r-project.org/
Benjamini Y, Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B. 1995, 57 (1): 289-300.
Google Scholar
GALGO: An R Package For Multivariate Variable Selection Using Genetic Algorithms. http://biptemp.bham.ac.uk/vivo/galgo/AppNotesPaper.htm
Mardia KV, Kent JT, Bibby JM: Multivariate Analysis. 1979, New York, London: Academic Press
Google Scholar
Belisle CJP: Convergence theorems for a class of simulated annealing algorithms on Rd. J Applied Probability. 1992, 29: 885-895. 10.2307/3214721.
Article
Google Scholar
Press WH, Flannery BP, Teukolsky SA, Vetterling WT: Numerical Recipes in C-The Art of Scientific Computing. 1992, Cambridge University Press, 2
Google Scholar
Breiman L: Random Forests. Machine Learning. 2001, 45 (1): 5-32. 10.1023/A:1010933404324.
Article
Google Scholar
Liaw A, Wiener M: Classification and Regression by randomForest. R News. 2002, 2: 18-22.
Google Scholar
Gabriel KR: The biplot graphic display of matrices with application to principal component analysis. Biometrica. 1971, 58: 453-467. 10.1093/biomet/58.3.453.
Article
Google Scholar
Gower JC, Hand DJ: Biplots. 1996, London: Chapman and Hall
Google Scholar