Adrio JL, Demain AL: Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev. 2006, 30: 187-214. 10.1111/j.1574-6976.2005.00009.x
Article
CAS
PubMed
Google Scholar
Demain AL, Adrio JL: Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. Prog Drug Res. 2008, 65: 253-289.
Google Scholar
Demain AL, Adrio JL: Contributions of microorganisms to industrial biology. Mol Biotechnol. 2008, 38: 41-55. 10.1007/s12033-007-0035-z
Article
CAS
PubMed
Google Scholar
Alper H, Stephanopoulos G: Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?. Nat Rev Microbiol. 2009, 7: 715-723. 10.1038/nrmicro2186
Article
CAS
PubMed
Google Scholar
Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008, 451: 86-89. 10.1038/nature06450
Article
CAS
PubMed
Google Scholar
Atsumi S, Liao JC: Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol. 2008, 19: 414-419. 10.1016/j.copbio.2008.08.008
Article
PubMed Central
CAS
PubMed
Google Scholar
Connor MR, Liao JC: Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol. 2009, 20: 307-315. 10.1016/j.copbio.2009.04.002
Article
CAS
PubMed
Google Scholar
Keasling JD, Chou H: Metabolic engineering delivers next-generation biofuels. Nat Biotechnol. 2008, 26: 298-299. 10.1038/nbt0308-298
Article
CAS
PubMed
Google Scholar
Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE: How biotech can transform biofuels. Nat Biotechnol. 2008, 26: 169-172. 10.1038/nbt0208-169
Article
CAS
PubMed
Google Scholar
Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD: Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol. 2008, 19: 228-234. 10.1016/j.copbio.2008.05.003
Article
CAS
PubMed
Google Scholar
Savage DF, Way J, Silver PA: Defossiling fuel: how synthetic biology can transform biofuel production. ACS Chem Biol. 2008, 3: 13-16. 10.1021/cb700259j
Article
CAS
PubMed
Google Scholar
Stephanopoulos G: Challenges in engineering microbes for biofuels production. Science. 2007, 315: 801-804. 10.1126/science.1139612
Article
CAS
PubMed
Google Scholar
Wackett LP: Biomass to fuels via microbial transformations. Curr Opin Chem Biol. 2008, 12: 187-193. 10.1016/j.cbpa.2008.01.025
Article
CAS
PubMed
Google Scholar
Lu X, Vora H, Khosla C: Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng. 2008, 10: 333-339. 10.1016/j.ymben.2008.08.006
Article
CAS
PubMed
Google Scholar
Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJ: Energy biotechnology with cyanobacteria. Curr Opin Biotechnol. 2009, 20: 257-263. 10.1016/j.copbio.2009.05.011
Article
CAS
PubMed
Google Scholar
Park JH, Lee SY: Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol. 2008, 19: 454-460. 10.1016/j.copbio.2008.08.007
Article
CAS
PubMed
Google Scholar
Koffas M, Stephanopoulos G: Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr Opin Biotechnol. 2005, 16: 361-366. 10.1016/j.copbio.2005.04.010
Article
CAS
PubMed
Google Scholar
Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC: Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact. 2009, 8: 2- 10.1186/1475-2859-8-2
Article
PubMed Central
PubMed
Google Scholar
Lee KH, Park JH, Kim TY, Kim HU, Lee SY: Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol. 2007, 3: 149- 10.1038/msb4100196
Article
PubMed Central
CAS
PubMed
Google Scholar
Park SD, Lee JY, Sim SY, Kim Y, Lee HS: Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab Eng. 2007, 9: 327-336. 10.1016/j.ymben.2007.05.001
Article
CAS
PubMed
Google Scholar
Clardy J, Fischbach MA, Walsh CT: New antibiotics from bacterial natural products. Nat Biotechnol. 2006, 24: 1541-1550. 10.1038/nbt1266
Article
CAS
PubMed
Google Scholar
Cragg GM, Newman DJ, Snader KM: Natural products in drug discovery and development. J Nat Prod. 1997, 60: 52-60. 10.1021/np9604893
Article
CAS
PubMed
Google Scholar
Demain AL: From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol. 2006, 33: 486-495. 10.1007/s10295-005-0076-x
Article
CAS
PubMed
Google Scholar
Demain AL: Antibiotics: Natural products essential to human health. Med Res Rev. 2009, 29: 821-842. 10.1002/med.20154
Article
CAS
PubMed
Google Scholar
Paterson I, Anderson EA: Chemistry. The renaissance of natural products as drug candidates. Science. 2005, 310: 451-453. 10.1126/science.1116364
Article
PubMed
Google Scholar
Demain AL, Vaishnav P: Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009, 27: 297-306. 10.1016/j.biotechadv.2009.01.008
Article
CAS
PubMed
Google Scholar
Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO: Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng. 2008, 101: 881-893. 10.1002/bit.22005
Article
CAS
PubMed
Google Scholar
Alper H, Stephanopoulos G: Global transcription machinery engineering: A new approach for improving cellular phenotype. Metab Eng. 2007, 9: 258-267. 10.1016/j.ymben.2006.12.002
Article
CAS
PubMed
Google Scholar
Varma A, Boesch BW, Palsson BO: Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol. 1993, 59: 2465-2473.
PubMed Central
CAS
PubMed
Google Scholar
Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994, 60: 3724-3731.
PubMed Central
CAS
PubMed
Google Scholar
Varma A, Palsson BO: Predictions for oxygen supply control to enhance population stability of engineered production strains. Biotechnol Bioeng. 1994, 43: 275-285. 10.1002/bit.260430403
Article
CAS
PubMed
Google Scholar
Stephanopoulos G: Metabolic fluxes and metabolic engineering. Metab Eng. 1999, 1: 1-11. 10.1006/mben.1998.0101
Article
CAS
PubMed
Google Scholar
Fell DA: Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992, 286 (Pt 2): 313-330.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schuster S, Fell DA, Dandekar T: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 2000, 18: 326-332. 10.1038/73786
Article
CAS
PubMed
Google Scholar
Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO: Comparison of network-based pathway analysis methods. Trends Biotechnol. 2004, 22: 400-405. 10.1016/j.tibtech.2004.06.010
Article
CAS
PubMed
Google Scholar
Varner J, Ramkrishna D: Metabolic engineering from a cybernetic perspective. 2. Qualitative investigation of nodal architechtures and their response to genetic perturbation. Biotechnol Prog. 1999, 15: 426-438. 10.1021/bp990018h
Article
CAS
PubMed
Google Scholar
Varner J, Ramkrishna D: Metabolic engineering from a cybernetic perspective. 1. Theoretical preliminaries. Biotechnol Prog. 1999, 15: 407-425. 10.1021/bp990017p
Article
CAS
PubMed
Google Scholar
Savageau MA: Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J Theor Biol. 1970, 26: 215-226. 10.1016/S0022-5193(70)80013-3
Article
CAS
PubMed
Google Scholar
Savageau MA: Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol. 1969, 25: 365-369. 10.1016/S0022-5193(69)80026-3
Article
CAS
PubMed
Google Scholar
Savageau MA: Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol. 1969, 25: 370-379. 10.1016/S0022-5193(69)80027-5
Article
CAS
PubMed
Google Scholar
Segre D, Vitkup D, Church GM: Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA. 2002, 99: 15112-15117. 10.1073/pnas.232349399
Article
PubMed Central
CAS
PubMed
Google Scholar
Shlomi T, Berkman O, Ruppin E: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA. 2005, 102: 7695-7700. 10.1073/pnas.0406346102
Article
PubMed Central
CAS
PubMed
Google Scholar
Burgard AP, Pharkya P, Maranas CD: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003, 84: 647-657. 10.1002/bit.10803
Article
CAS
PubMed
Google Scholar
Pharkya P, Burgard AP, Maranas CD: OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 2004, 14: 2367-2376. 10.1101/gr.2872004
Article
PubMed Central
CAS
PubMed
Google Scholar
Pharkya P, Maranas CD: An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng. 2006, 8: 1-13. 10.1016/j.ymben.2005.08.003
Article
CAS
PubMed
Google Scholar
Patil KR, Rocha I, Forster J, Nielsen J: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics. 2005, 6: 308- 10.1186/1471-2105-6-308
Article
PubMed Central
PubMed
Google Scholar
Edwards JS, Ibarra RU, Palsson BO: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001, 19: 125-130. 10.1038/84379
Article
CAS
PubMed
Google Scholar
Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007, 3: 119- 10.1038/msb4100162
Article
PubMed Central
PubMed
Google Scholar
Trinh CT, Carlson R, Wlaschin A, Srienc F: Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metab Eng. 2006, 8: 628-638. 10.1016/j.ymben.2006.07.006
Article
CAS
PubMed
Google Scholar
Trinh CT, Unrean P, Srienc F: Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol. 2008, 74: 3634-3643. 10.1128/AEM.02708-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Gayen K, Venkatesh KV: Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum. BMC Bioinformatics. 2006, 7: 445- 10.1186/1471-2105-7-445
Article
PubMed Central
PubMed
Google Scholar
Gayen K, Gupta M, Venkatesh KV: Elementary mode analysis to study the preculturing effect on the metabolic state of Lactobacillus rhamnosus during growth on mixed substrates. In Silico Biol. 2007, 7: 123-139.
CAS
PubMed
Google Scholar
Wlaschin AP, Trinh CT, Carlson R, Srienc F: The fractional contributions of elementary modes to the metabolism of Escherichia coli and their estimation from reaction entropies. Metab Eng. 2006, 8: 338-352. 10.1016/j.ymben.2006.01.007
Article
CAS
PubMed
Google Scholar
Oh YG, Lee DY, Lee SY, Park S: Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotechnol Prog. 2009, 25: 999-1008. 10.1002/btpr.193
Article
CAS
PubMed
Google Scholar
Mavrovouniotis ML: Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem. 1991, 266: 14440-14445.
CAS
PubMed
Google Scholar
Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V: Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J. 2008, 95: 1487-1499. 10.1529/biophysj.107.124784
Article
PubMed Central
CAS
PubMed
Google Scholar
Nolan RP, Fenley AP, Lee K: Identification of distributed metabolic objectives in the hypermetabolic liver by flux and energy balance analysis. Metab Eng. 2006, 8: 30-45. 10.1016/j.ymben.2005.08.004
Article
CAS
PubMed
Google Scholar
Beard DA, Liang SD, Qian H: Energy balance for analysis of complex metabolic networks. Biophys J. 2002, 83: 79-86. 10.1016/S0006-3495(02)75150-3
Article
PubMed Central
CAS
PubMed
Google Scholar
Spiro S, Roberts RE, Guest JR: FNR-dependent repression of the ndh gene of Escherichia coli and metal ion requirement for FNR-regulated gene expression. Mol Microbiol. 1989, 3: 601-608. 10.1111/j.1365-2958.1989.tb00207.x
Article
CAS
PubMed
Google Scholar
Yang YT, Bennett GN, San KY: Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol Bioeng. 1999, 65: 291-297. 10.1002/(SICI)1097-0290(19991105)65:3<291::AID-BIT6>3.0.CO;2-F
Article
CAS
PubMed
Google Scholar
Lee S, Phalakornkule C, Domach MM, Grossmann IE: Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Computers & Chemical Engineering. 2000, 24: 711-716.
Article
CAS
Google Scholar
Reed JL, Palsson BO: Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 2004, 14: 1797-1805. 10.1101/gr.2546004
Article
PubMed Central
CAS
PubMed
Google Scholar
Alper H, Miyaoku K, Stephanopoulos G: Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol. 2005, 23: 612-616. 10.1038/nbt1083
Article
CAS
PubMed
Google Scholar
Alper H, Jin YS, Moxley JF, Stephanopoulos G: Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng. 2005, 7: 155-164. 10.1016/j.ymben.2004.12.003
Article
CAS
PubMed
Google Scholar
Alper H, Fischer C, Nevoigt E, Stephanopoulos G: Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA. 2005, 102: 12678-12683. 10.1073/pnas.0504604102
Article
PubMed Central
CAS
PubMed
Google Scholar
Alper H, Miyaoku K, Stephanopoulos G: Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl Microbiol Biotechnol. 2006, 72: 968-974. 10.1007/s00253-006-0357-y
Article
CAS
PubMed
Google Scholar
Yoon SH, Kim JE, Lee SH, Park HM, Choi MS, Kim JY, Lee SH, Shin YC, Keasling JD, Kim SW: Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol. 2007, 74: 131-139. 10.1007/s00253-006-0623-z
Article
CAS
PubMed
Google Scholar
Jin YS, Stephanopoulos G: Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli. Metab Eng. 2007, 9: 337-347. 10.1016/j.ymben.2007.03.003
Article
CAS
PubMed
Google Scholar
Farmer WR, Liao JC: Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog. 2001, 17: 57-61. 10.1021/bp000137t
Article
CAS
PubMed
Google Scholar
Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G: Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol. 2007, 25: 417-424. 10.1016/j.tibtech.2007.07.006
Article
CAS
PubMed
Google Scholar
Alper H, Stephanopoulos G: Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl Microbiol Biotechnol. 2008, 78: 801-810. 10.1007/s00253-008-1373-x
Article
CAS
PubMed
Google Scholar
Yoon KW, Doo EH, Kim SW, Park JB: In situ recovery of lycopene during biosynthesis with recombinant Escherichia coli. J Biotechnol. 2008, 135: 291-294. 10.1016/j.jbiotec.2008.04.001
Article
CAS
PubMed
Google Scholar
Lee FC, Rangaiah GP, Ray AK: Multi-objective optimization of an industrial penicillin V bioreactor train using non-dominated sorting genetic algorithm. Biotechnol Bioeng. 2007, 98: 586-598. 10.1002/bit.21443
Article
CAS
PubMed
Google Scholar
Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol. 2009, 7: 129-143.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cho BK, Charusanti P, Herrgard MJ, Palsson BO: Microbial regulatory and metabolic networks. Curr Opin Biotechnol. 2007, 18: 360-364. 10.1016/j.copbio.2007.07.002
Article
CAS
PubMed
Google Scholar
Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO: Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004, 429: 92-96. 10.1038/nature02456
Article
CAS
PubMed
Google Scholar
Covert MW, Xiao N, Chen TJ, Karr JR: Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics. 2008, 24: 2044-2050. 10.1093/bioinformatics/btn352
Article
CAS
PubMed
Google Scholar
Covert MW, Schilling CH, Palsson B: Regulation of gene expression in flux balance models of metabolism. J Theor Biol. 2001, 213: 73-88. 10.1006/jtbi.2001.2405
Article
CAS
PubMed
Google Scholar
Cox SJ, Shalel Levanon S, Bennett GN, San KY: Genetically constrained metabolic flux analysis. Metab Eng. 2005, 7: 445-456. 10.1016/j.ymben.2005.07.004
Article
CAS
PubMed
Google Scholar
Gagneur J, Klamt S: Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics. 2004, 5: 175- 10.1186/1471-2105-5-175
Article
PubMed Central
PubMed
Google Scholar
Kaleta C, de Figueiredo LF, Schuster S: Can the whole be less than the sum of its parts Pathway analysis in genome-scale metabolic networks using elementary ? Flux patterns. Genome Res. 2009, 19: 1872-1883. 10.1101/gr.090639.108
Article
PubMed Central
CAS
PubMed
Google Scholar
de Figueiredo LF, Podhorski A, Rubio A, Kaleta C, Beasley JE, Schuster S, Planes FJ: Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics. 2009, 25: 3158-3165. 10.1093/bioinformatics/btp564
Article
CAS
PubMed
Google Scholar
Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW: An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol. 2007, 77: 505-512. 10.1007/s00253-007-1206-3
Article
CAS
PubMed
Google Scholar
Yuan LZ, Rouviere PE, Larossa RA, Suh W: Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng. 2006, 8: 79-90. 10.1016/j.ymben.2005.08.005
Article
CAS
PubMed
Google Scholar
Terzer M, Stelling J: Large scale computation of elementary flux modes with bit pattern trees. Bioinformatics. 2008, 24: 2229-2235. 10.1093/bioinformatics/btn401
Article
CAS
PubMed
Google Scholar
von Kamp A, Schuster S: Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics. 2006, 22: 1930-1931. 10.1093/bioinformatics/btl267
Article
CAS
PubMed
Google Scholar
Urbanczik R, Wagner C: An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics. 2005, 21: 1203-1210. 10.1093/bioinformatics/bti127
Article
CAS
PubMed
Google Scholar
Haus UU, Klamt S, Stephen T: Computing knock-out strategies in metabolic networks. J Comput Biol. 2008, 15: 259-268. 10.1089/cmb.2007.0229
Article
CAS
PubMed
Google Scholar
Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al.: The complete genome sequence of Escherichia coli K-12. Science. 1997, 277: 1453-1474. 10.1126/science.277.5331.1453
Article
CAS
PubMed
Google Scholar
Durfee T, Nelson R, Baldwin S, Plunkett G, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, et al.: The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol. 2008, 190: 2597-2606. 10.1128/JB.01695-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006, 2: 2006 0007- 10.1038/msb4100049
Article
PubMed Central
PubMed
Google Scholar
Edwards JS, Covert M, Palsson B: Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol. 2002, 4: 133-140. 10.1046/j.1462-2920.2002.00282.x
Article
PubMed
Google Scholar