Neupert W, Hermann JM: Translocation of proteins in mitochondria. Annu Rev Biochem. 2007, 76: 723-749. 10.1146/annurev.biochem.76.052705.163409.
Article
CAS
PubMed
Google Scholar
Naithani S, Sarocco SA, Butler CA, Fox TD: Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cel. 2003, 14: 324-333. 10.1091/mbc.E02-08-0490.
Article
CAS
Google Scholar
Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S, Lemoine S, Tanty V, Devaux F, Jacq C: Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS One. 2008, 3: e2293-10.1371/journal.pone.0002293.
Article
PubMed Central
PubMed
Google Scholar
Barrientos A, Zambrano A, Tzagoloff A: Mss51p and Cox14p jointly regulate mitochondrial Cox1 expression in Saccharomyces cerevisiae. EMBO J. 2004, 23: 3472-3482. 10.1038/sj.emboj.7600358.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fontanesi F, Soto IC, Horn D, Barrientos A: Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am J Physiol Cell Physiol. 2006, 291: C1129-1147. 10.1152/ajpcell.00233.2006.
Article
CAS
PubMed
Google Scholar
Schägger H, Pfeiffer K: Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000, 19: 1777-1783. 10.1093/emboj/19.8.1777.
Article
PubMed Central
PubMed
Google Scholar
Cruciat CM, Brunner S, Baumann F, Neupert W, Stuart RA: The cytochrome bc1 and cytochrome c oxidase complexes associate to form a single supracomplex In yeast mitochondria. J Biol Chem. 2000, 275: 18093-18098. 10.1074/jbc.M001901200.
Article
CAS
PubMed
Google Scholar
van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N: A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr Biol. 2006, 16: 2271-2276. 10.1016/j.cub.2006.10.025.
Article
CAS
PubMed
Google Scholar
Saddar S, Dienhart MK, Stuart RA: The F1F0-ATP synthase complex influences the assembly state of the cytochrome bc1-cytochrome oxidase supercomplex and its association with the TIM23 machinery. J Biol Chem. 2008, 283: 6677-6686. 10.1074/jbc.M708440200.
Article
CAS
PubMed
Google Scholar
Dienhart MK, Stuart R: The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol Biol Cell. 2008, 19: 3934-3943. 10.1091/mbc.E08-04-0402.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J: Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science. 1997, 277: 60-66. 10.1126/science.277.5322.60.
Article
CAS
PubMed
Google Scholar
Zhang Z, Huang L, Shulmeister VM, Chi YI, Kim KK, Hung LW, Crofts AR, Berry EA, Kim SH: Electron transfer by domain movement in cytochrome bc1. Nature. 1998, 392: 677-684. 10.1038/33612.
Article
CAS
PubMed
Google Scholar
Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S, Jap BK: Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science. 1998, 281: 64-71.
Article
CAS
PubMed
Google Scholar
Hunte C, Koepke J, Lange C, Rossmanith T, Michel H: Structure at 2.3 A resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure. 2000, 8: 669-684. 10.1016/S0969-2126(00)00152-0.
Article
CAS
PubMed
Google Scholar
Zara V, Conte L, Trumpower BL: Biogenesis of the yeast cytochrome bc1 complex. Biochim Biophys Acta. 2009, 1793: 89-96. 10.1016/j.bbamcr.2008.04.011.
Article
CAS
PubMed
Google Scholar
Cruciat CM, Hell K, Fölsch H, Neupert W, Stuart RA: Bcs1p, an AAA-family member, is a chaperone for the assembly of the cytochrome bc(1) complex. EMBO J. 1999, 18: 5226-5233. 10.1093/emboj/18.19.5226.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kronekova Z, Rodel G: Organization of assembly factors Cbp3p and Cbp4p and their effect on bc(1) complex assembly in Saccharomyces cerevisiae. Curr Genet. 2005, 47: 203-212. 10.1007/s00294-005-0561-9.
Article
CAS
PubMed
Google Scholar
Atkinson A, Khalimonchuck O, Smith P, Sabic H, Eide D, Winge DR: Mzm1 influences a labile pool of mitochondrial zinc important for respiratory function. J Biol Chem. 2010, 285: 19450-19459. 10.1074/jbc.M110.109793.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mathieu L, Marsy S, Saint-Georges Y, Jacq C, Dujardin G: A transcriptome screen in yeast identifies a novel assembly factor for the mitochondrial complex III. Mitochondrion. 2011, 11: 391-396. 10.1016/j.mito.2010.12.002.
Article
CAS
PubMed
Google Scholar
Stark C, Breitkreutz B, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006, 34: D535-9. 10.1093/nar/gkj109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fromont-Racine M, Rain JC, Legrain P: Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet. 1997, 16: 277-282. 10.1038/ng0797-277.
Article
CAS
PubMed
Google Scholar
Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000, 403: 623-627. 10.1038/35001009.
Article
CAS
PubMed
Google Scholar
Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA. 2001, 98: 4569-4574. 10.1073/pnas.061034498.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, de Smet AS, Motyl A, Hudson ME, Park J, Xin X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabási AL, Tavernier J, Hill DE, Vidal M: High-quality binary protein interaction map of the yeast interactome network. Science. 2008, 322: 104-110. 10.1126/science.1158684.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G: Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006, 440: 631-636. 10.1038/nature04532.
Article
CAS
PubMed
Google Scholar
Hazbun TR, Malmström L, Anderson S, Graczyk BJ, Fox B, Riffle M, Sundin BA, Aranda JD, McDonald WH, Chiu CH, Snydsman BE, Bradley P, Muller EG, Fields S, Baker D, Yates JR, Davis TN: Assigning function to yeast proteins by integration of technologies. Mol Cell. 2003, 12: 1353-1365. 10.1016/S1097-2765(03)00476-3.
Article
CAS
PubMed
Google Scholar
Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ: Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics. 2007, 6 (3): 439-450.
Article
CAS
PubMed
Google Scholar
Brohée S, van Helden J: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics. 2006, 7: 488-10.1186/1471-2105-7-488.
Article
PubMed Central
PubMed
Google Scholar
Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes HW, Ruepp A, Frishman D: The MIPS mammalian protein-protein interaction database. Bioinformatics. 2004, 21: 832-834.
Article
PubMed
Google Scholar
Qi Y, Balem F, Faloutsos C, Klein-Seetharaman J, Bar-Joseph Z: Protein complex identification by supervised graph local clustering. Bioinformatics. 2008, 24: i250-258. 10.1093/bioinformatics/btn164.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mete M, Tang F, Xu X, Yuruk N: A structural approach for finding functional modules from large biological networks. BMC Bioinformatics. 2008, 9: S19-
Article
PubMed Central
PubMed
Google Scholar
Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003, 4: 2-10.1186/1471-2105-4-2.
Article
PubMed Central
PubMed
Google Scholar
Nepusz T, Yu H, Paccanaro A: Detecting overlapping protein complexes from protein-protein interaction networks. 2011, under review
Google Scholar
Pietro C, De Las Rivas J: APID: Agile Protein Interaction DataAnalyzer. Nucl Acids Res. 2006, 34: 298-302. 10.1093/nar/gkl128.
Article
Google Scholar
Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD: Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007, 2: 2366-2382. 10.1038/nprot.2007.324.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK: Global analysis of protein localization in budding yeast. Nature. 2003, 425: 686-691. 10.1038/nature02026.
Article
CAS
PubMed
Google Scholar
Grandi P, Doye V, Hurt EC: Purification of NSP1 reveals complex formation with 'GLFG' nucleoporins and a novel nuclear pore protein NIC96. EMBO J. 1993, 12: 3061-3071.
PubMed Central
CAS
PubMed
Google Scholar
Nouet C, Bourens M, Hlavacek O, Marsy S, Lemaire C, Dujardin G: Rmd9p controls the processing/stability of mitochondrial mRNAs and its overexpression compensates for a partial deficiency of oxa1p in Saccharomyces cerevisiae. Genetics. 2007, 175: 1105-1115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Perocchi F, Jensen LJ, Gagneur J, Ahting U, von Mering C, Bork P, Prokisch H, Steinmetz LM: Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet. 2006, 2: e170-10.1371/journal.pgen.0020170.
Article
PubMed Central
PubMed
Google Scholar
Hess DC, Myers CL, Huttenhower C, Hibbs MA, Hayes AP, Paw J, Clore JJ, Mendoza RM, Luis BS, Nislow C, Giaever G, Costanzo M, Troyanskaya OG, Caudy AA: Computational analysis of the yeast proteome: understanding and exploiting functional specificity in genomic data. PLoS Genet. 2009, 5: e1000407-10.1371/journal.pgen.1000407.
Article
PubMed Central
PubMed
Google Scholar
Mick DU, Fox TD, Rehling P: Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol. 2011, 12: 14-20. 10.1038/nrm3029.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bonnefoy N, Fiumera HL, Dujardin G, Fox TD: Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. Biochim Biophys Acta. 2009, 1793: 60-70. 10.1016/j.bbamcr.2008.05.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Williams EH, Butler CA, Bonnefoy N, Fox TD: Translation initiation in Saccharomyces cerevisiae mitochondria: functional interactions among mitochondrial ribosomal protein Rsm28p, initiation factor 2, methionyl-tRNA- formyltransferase and novel protein Rmd9p. Genetics. 2007, 175: 1117-1126.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wallis MG, Groudinski O, Slonimski PP, Dujardin G: The NAM1 protein (NAM1p), which is selectively required for cox1, cytb and atp6 transcript processing/stabilisation, is located in the yeast mitochondrial matrix. Eur J Biochem. 1994, 222: 27-32. 10.1111/j.1432-1033.1994.tb18837.x.
Article
CAS
PubMed
Google Scholar
Rodeheffer MS, Boone BE, Bryan AC, Shadel GS: Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem. 2001, 276: 8616-8622. 10.1074/jbc.M009901200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Scherrer T, Mittal N, Janga SC, Gerber AP: A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS One. 2010, 5: e15499-10.1371/journal.pone.0015499.
Article
PubMed Central
CAS
PubMed
Google Scholar
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C: The genetic landscape of a cell. Science. 2010, 327: 425-431. 10.1126/science.1180823.
Article
CAS
PubMed
Google Scholar
Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, Weng S, Botstein D: SGD: Saccharomyces Genome Database. Nucleic Acids Research. 1998, 26: 73-79. 10.1093/nar/26.1.73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hernandez-Toro J, Prieto C, De Las Rivas J: APID2NET: unified interactome graphic analyzer. Bioinformatics. 2007, 23: 2495-2497. 10.1093/bioinformatics/btm373.
Article
CAS
PubMed
Google Scholar
Chen DC, Yang BC, Kuo TT: One-step transformation of yeast in stationary phase. Curr Genet. 1992, 21: 83-84. 10.1007/BF00318659.
Article
CAS
PubMed
Google Scholar
Wach A, Brachat A, Pöhlmann R, Philippsen P: New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994, 10: 1793-1808. 10.1002/yea.320101310.
Article
CAS
PubMed
Google Scholar
Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E: Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast. 1999, 15: 963-972. 10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W.
Article
CAS
PubMed
Google Scholar
Nouet C, Truan G, Mathieu L, Dujardin G: Functional analysis of yeast bcs1 mutants highlights the role of Bcs1p-specific amino acids in the AAA domain. J Mol Biol. 2009, 388: 252-261. 10.1016/j.jmb.2009.03.018.
Article
CAS
PubMed
Google Scholar
Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah AS, Meng L, Stark MJ, Stern DF, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki PF, Snyder M: Global analysis of protein phosphorylation in yeast. Nature. 2005, 438: 679-684. 10.1038/nature04187.
Article
CAS
PubMed
Google Scholar