The-Cancer-Genome-Atlas-Research-Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008, 455 (7216): 1061-1068.
Article
Google Scholar
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 2009, 59 (4): 225-249.
Article
Google Scholar
Ahluwalia A, Yan P, Hurteau JA, Bigsby RM, Jung SH, Huang TH, Nephew KP: DNA methylation and ovarian cancer. I. Analysis of CpG island hypermethylation in human ovarian cancer using differential methylation hybridization. Gynecol Oncol. 2001, 82 (2): 261-268.
Article
CAS
Google Scholar
Bardos A: Treatment of ovarian cancer. 2004
Google Scholar
Swanton C, Caldas C: Molecular classification of solid tumours: towards pathway-driven therapeutics. Br J Cancer. 2009, 100 (10): 1517-1522.
Article
CAS
Google Scholar
Molina F, Dehmer M, Perco P, Graber A, Girolami M, Spasovski G, Schanstra JP, Vlahou A: Systems biology: opening new avenues in clinical research. Nephrol Dial Transplant. 25 (4): 1015-1018.
van't Veer LJ, Bernards R: Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature. 2008, 452 (7187): 564-570.
Article
Google Scholar
Azuaje F: What does systems biology mean for biomarker discovery?. Expert Opinion on Medical Diagnostics. 2010, 4: 1-10.
Article
CAS
Google Scholar
Razin A: CpG methylation, chromatin structure and gene silencing - a three-way connection. Embo Journal. 1998, 17 (17): 4905-4908.
Article
CAS
Google Scholar
Bibikova M, Lin ZW, Zhou LX, Chudin E, Garcia EW, Wu B, Doucet D, Thomas NJ, Wang YH, Vollmer E, et al: High-throughput DNA methylation profiling using universal bead arrays. Genome Research. 2006, 16 (3): 383-393.
Article
CAS
Google Scholar
Bestor TH: Methylation meets acetylation.
Esteller M: CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002, 21 (35): 5427-5440.
Article
CAS
Google Scholar
Pinkel D, Seagraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, et al: High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics. 1998, 20 (2): 207-211.
Article
CAS
Google Scholar
Berchuck A, Iversen ES, Luo J, Clarke JP, Horne H, Levine DA, Boyd J, Alonso MA, Secord AA, Bernardini MQ, et al: Microarray analysis of early stage serous ovarian cancers shows profiles predictive of favorable outcome. Clin Cancer Res. 2009, 15 (7): 2448-2455.
Article
CAS
Google Scholar
Dressman HK, Berchuck A, Chan G, Zhai J, Bild A, Sayer R, Cragun J, Clarke J, Whitaker RS, Li L, et al: An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol. 2007, 25 (5): 517-525.
Article
CAS
Google Scholar
Yasrebi H, Sperisen P, Praz V, Bucher P: Can survival prediction be improved by merging gene expression data sets?. PLoS One. 2009, 4 (10): e7431-
Article
Google Scholar
Xu JZ, Wong CW: Hunting for robust gene signature from cancer profiling data: sources of variability, different interpretations, and recent methodological developments. Cancer Lett. 296 (1): 9-16.
Kim SY: Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics. 2009, 10: 147-
Article
Google Scholar
Field JK, Spandidos DA, Stell PM, Vaughan ED, Evan GI, Moore JP: Elevated expression of the c-myc oncoprotein correlates with poor prognosis in head and neck squamous cell carcinoma. Oncogene. 1989, 4 (12): 1463-1468.
CAS
Google Scholar
Herms J, Neidt I, Luscher B, Sommer A, Schurmann P, Schroder T, Bergmann M, Wilken B, Probst-Cousin S, Hernaiz-Driever P, et al: C-MYC expression in medulloblastoma and its prognostic value. Int J Cancer. 2000, 89 (5): 395-402.
Article
CAS
Google Scholar
Chang CC, Kampalath B, Schultz C, Bunyi-Teopengco E, Logan B, Eshoa C, Dincer AP, Perkins SL: Expression of p53, c-Myc, or Bcl-6 suggests a poor prognosis in primary central nervous system diffuse large B-cell lymphoma among immunocompetent individuals. Arch Pathol Lab Med. 2003, 127 (2): 208-212.
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102 (43): 15545-15550.
Article
CAS
Google Scholar
Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y: Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Inform. 2007, 3: 11-17.
Google Scholar
Xu X, Zhao Y, Simon R: Gene Set Expression Comparison kit for BRB-ArrayTools. Bioinformatics. 2008, 24 (1): 137-139.
Article
CAS
Google Scholar
Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC: A global test for groups of genes: testing association with a clinical outcome. Bioinformatics. 2004, 20 (1): 93-99.
Article
CAS
Google Scholar
Efroni S, Schaefer CF, Buetow KH: Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS ONE. 2007, 2: e425-
Article
Google Scholar
Greenblum SI, Efroni S, Schaefer CF, Buetow KH: The PathOlogist: an automated tool for pathway-centric analysis. Bmc Bioinformatics. 12: 133-
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH: PID: the Pathway Interaction Database. Nucleic Acids Res. 2009, 37 (Database issue): D674-679.
Article
CAS
Google Scholar
Efroni S, Ben-Hamo R, Edmonson M, Greenblum S, Schaefer CF, Buetow KH: Detecting cancer gene networks characterized by recurrent genomic alterations in a population. PLoS One. 6 (1): e14437-
Dagostin Rb: Omnibus Test of Normality for Moderate and Large Size Samples. Biometrika. 1971, 58 (2): 341-&.
Article
Google Scholar
Potter DM: Omnibus permutation tests of the association of an ensemble of genetic markers with disease in case-control studies. Genetic Epidemiology. 2006, 30 (5): 438-446.
Article
Google Scholar
Selvendiran K, Tong L, Bratasz A, Kuppusamy ML, Ahmed S, Ravi Y, Trigg NJ, Rivera BK, Kalai T, Hideg K, et al: Anticancer efficacy of a difluorodiarylidenyl piperidone (HO-3867) in human ovarian cancer cells and tumor xenografts. Mol Cancer Ther. 9 (5): 1169-1179.
Verma A, Kambhampati S, Parmar S, Platanias LC: Jak family of kinases in cancer. Cancer Metastasis Rev. 2003, 22 (4): 423-434.
Article
CAS
Google Scholar
Keshamouni VG, Mattingly RR, Reddy KB: Mechanism of 17-beta-estradiol-induced Erk1/2 activation in breast cancer cells. A role for HER2 AND PKC-delta. J Biol Chem. 2002, 277 (25): 22558-22565.
Article
CAS
Google Scholar
Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ: Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell. 1997, 90 (5): 859-869.
Article
CAS
Google Scholar
Angel P, Hattori K, Smeal T, Karin M: The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988, 55 (5): 875-885.
Article
CAS
Google Scholar
Hattori K, Angel P, Le Beau MM, Karin M: Structure and chromosomal localization of the functional intronless human JUN protooncogene. Proc Natl Acad Sci USA. 1988, 85 (23): 9148-9152.
Article
CAS
Google Scholar
Hernandez P, Sole X, Valls J, Moreno V, Capella G, Urruticoechea A, Pujana MA: Integrative analysis of a cancer somatic mutome. Mol Cancer. 2007, 6: 13-
Article
Google Scholar
Kanda N, Seno H, Konda Y, Marusawa H, Kanai M, Nakajima T, Kawashima T, Nanakin A, Sawabu T, Uenoyama Y, et al: STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene. 2004, 23 (28): 4921-4929.
Article
CAS
Google Scholar
Jing N, Tweardy DJ: Targeting Stat3 in cancer therapy. Anticancer Drugs. 2005, 16 (6): 601-607.
Article
CAS
Google Scholar
Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S, Ward A, Korf U, Wiemann S, Sahin O: miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene. 29 (30): 4297-4306.
Andrae J, Gallini R, Betsholtz C: Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008, 22 (10): 1276-1312.
Article
CAS
Google Scholar
Jordan Schmitt DM: Platelet-Derived Growth Factor Pathway Inhibitors in Ovarian Cancer. Clinical Ovarian Cancer. 2008, 1 (2): 120-126.
Article
Google Scholar
Schmitt J, Matei D: Targeting angiogenesis in ovarian cancer. Cancer Treat Rev.
Wang Z, Ahmad A, Li Y, Kong D, Azmi AS, Banerjee S, Sarkar FH: Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochim Biophys Acta. 1806 (1): 122-130.
Ries LA: Ovarian cancer. Survival and treatment differences by age. Cancer. 1993, 71 (2 Suppl): 524-529.
CAS
Google Scholar
Hoskins WJ, McGuire WP, Brady MF, Homesley HD, Creasman WT, Berman M, Ball H, Berek JS: The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol. 1994, 170 (4): 974-979. discussion 979-980
Article
CAS
Google Scholar
Bakin AV, Curran T: Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science. 1999, 283 (5400): 387-390.
Article
CAS
Google Scholar
Hu E, Mueller E, Oliviero S, Papaioannou VE, Johnson R, Spiegelman BM: Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J. 1994, 13 (13): 3094-3103.
CAS
Google Scholar
Mahner S, Baasch C, Schwarz J, Hein S, Wolber L, Janicke F, Milde-Langosch K: C- Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer. 2008, 99 (8): 1269-1275.
Article
CAS
Google Scholar
Hein S, Mahner S, Kanowski C, Loning T, Janicke F, Milde-Langosch K: Expression of Jun and Fos proteins in ovarian tumors of different malignant potential and in ovarian cancer cell lines. Oncol Rep. 2009, 22 (1): 177-183.
CAS
Google Scholar
Chen TK, Smith LM, Gebhardt DK, Birrer MJ, Brown PH: Activation and inhibition of the AP-1 complex in human breast cancer cells. Mol Carcinog. 1996, 15 (3): 215-226.
Article
CAS
Google Scholar
Integrated genomic analyses of ovarian carcinoma. Nature. 474 (7353): 609-615.
Lee E, Chuang HY, Kim JW, Ideker T, Lee D: Inferring pathway activity toward precise disease classification. PLoS Comput Biol. 2008, 4 (11): e1000217-
Article
Google Scholar
Lee K, Chuang HY, Beyer A, Sung MK, Huh WK, Lee B, Ideker T: Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species. Nucleic Acids Res. 2008, 36 (20): e136-
Article
Google Scholar
Ammerpohl O, Martin-Subero JI, Richter J, Vater I, Siebert R: Hunting for the 5th base: Techniques for analyzing DNA methylation. Biochimica Et Biophysica Acta-General Subjects. 2009, 1790 (9): 847-862.
Article
CAS
Google Scholar
Coe BP, Ylstra B, Carvalho B, Meijer GA, MacAulay C, Lam WL: Resolving the resolution of array CGH. Genomics. 2007, 89 (5): 647-653.
Article
CAS
Google Scholar
Gorringe KL, Jacobs S, Thompson ER, Sridhar A, Qiu W, Choong DY, Campbell IG: High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin Cancer Res. 2007, 13 (16): 4731-4739.
Article
CAS
Google Scholar
Gorringe KL, George J, Anglesio MS, Ramakrishna M, Etemadmoghadam D, Cowin P, Sridhar A, Williams LH, Boyle SE, Yanaihara N, et al: Copy number analysis identifies novel interactions between genomic loci in ovarian cancer. PLoS One. 5 (9):
Haverty PM, Hon LS, Kaminker JS, Chant J, Zhang Z: High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors. BMC Med Genomics. 2009, 2: 21-
Article
Google Scholar
Efroni S, Carmel L, Schaefer CG, Buetow KH: Superposition of transcriptional behaviors determines gene state. PLoS ONE. 2008, 3 (8): e2901-
Article
Google Scholar
SPSS for Windows: Chicago: SPSS Inc. Rel. 13.0.0. 2000