Martinez NJ, Walhout AJ: The interplay between transcription factors and microRNAs in genome-scale regulatory networks. BioEssays 2009,31(4):435-445. 10.1002/bies.200800212
Article
CAS
Google Scholar
Wingender E, Dietze P, Karas H, Knuppel R: TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 1996,24(1):238-241. 10.1093/nar/24.1.238
Article
CAS
Google Scholar
Wang J, Lu M, Qiu C, Cui Q: TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 2010, 38: 119-122. Database issue
Article
CAS
Google Scholar
Sethupathy P, Corda B, Hatzigeorgiou AG: TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA 2006,12(2):192-197.
Article
CAS
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005,120(1):15-20. 10.1016/j.cell.2004.12.035
Article
CAS
Google Scholar
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell 2003,115(7):787-798. 10.1016/S0092-8674(03)01018-3
Article
CAS
Google Scholar
Shalgi R, Lieber D, Oren M, Pilpel Y: Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoSComputBiol 2007,3(7):e131.
Google Scholar
Re A, Cora D, Taverna D, Caselle M: Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human. MolBiosyst 2009,5(8):854-867.
CAS
Google Scholar
Sethupathy P, Megraw M, Hatzigeorgiou AG: A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 2006,3(11):881-886. 10.1038/nmeth954
Article
CAS
Google Scholar
He F, Balling R, Zeng AP: Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. J Biotechnol 2009,144(3):190-203. 10.1016/j.jbiotec.2009.07.013
Article
CAS
Google Scholar
Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA, et al., et al.: Computational discovery of gene modules and regulatory networks. Nat Biotechnol 2003,21(11):1337-1342. 10.1038/nbt890
Article
CAS
Google Scholar
Qian J, Lin J, Luscombe NM, Yu H, Gerstein M: Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 2003,19(15):1917-1926. 10.1093/bioinformatics/btg347
Article
CAS
Google Scholar
Segal E, Yelensky R, Koller D: Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 2003,19(Suppl 1):i273-i282. 10.1093/bioinformatics/btg1038
Article
Google Scholar
Wang X: ystematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006,34(5):1646-1652. 10.1093/nar/gkl068
Article
CAS
Google Scholar
Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD: Using expression profiling data to identify human microRNA targets. Nat Methods 2007,4(12):1045-1049. 10.1038/nmeth1130
Article
CAS
Google Scholar
Zhou X, Zhang W: Combinatorial Circuits of miRNAs and Transcription Factors in Plant Gene Regulations. In Proceedings of the Third Annual RECOMB Satelite Conference on Systems Biology. San Diego, La Jolla, California; 2007.
Google Scholar
Wang G, Wang Y, Feng W, Wang X, Yang JY, Zhao Y, Liu Y: Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells. BMC Genomics 2008,9(Suppl 2):S22. 10.1186/1471-2164-9-S2-S22
Article
Google Scholar
Guo AY, Sun J, Jia P, Zhao Z: A novel microRNA and transcription factor mediated regulatory network in schizophrenia. BMC SystBiol 2010, 4: 10.
Article
Google Scholar
Cho S, Jun Y, Lee S, Choi H-S, Jung S, Jang Y, Park C, Kim S, Lee S, Kim W: miRGator v2.0: an integrated system for functional investigation of microRNAs. Nucleic Acids Res 2011, 39: 158-162. Database issue 10.1093/nar/gkq1094
Article
Google Scholar
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al., et al.: MicroRNA expression profiles classify human cancers. Nature 2005,435(7043):834-838. 10.1038/nature03702
Article
CAS
Google Scholar
Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, et al., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. ProcNatlAcadSci U S A 2001,98(26):15149-15154. 10.1073/pnas.211566398
Article
CAS
Google Scholar
Ko D, Xu W, Windle B: Gene function classification using NCI-60 cell line gene expression profiles. ComputBiolChem 2005,29(6):412-419.
CAS
Google Scholar
Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z, Liu CG, Reinhold W, Lorenzi PL, Kaldjian EP, et al., et al.: MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 2007,6(5):1483-1491. 10.1158/1535-7163.MCT-07-0009
Article
CAS
Google Scholar
Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D, Stephen R, Green JE: Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol 2011,12(8):R77. 10.1186/gb-2011-12-8-r77
Article
CAS
Google Scholar
Wang YP, Li KB: Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics 2009, 10: 218. 10.1186/1471-2164-10-218
Article
Google Scholar
Yang X, Lee Y, Fan H, Sun X, Lussier YA: Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancers. Chin Sci Bull 2009,53(13):2017-2024.
Google Scholar
Tu K, Yu H, Hua YJ, Li YY, Liu L, Xie L, Li YX: Combinatorial network of primary and secondary microRNA-driven regulatory mechanisms. Nucleic Acids Res 2009,37(18):5969-5980. 10.1093/nar/gkp638
Article
CAS
Google Scholar
Tsang J, Zhu J, van Oudenaarden A: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 2007,26(5):753-767. 10.1016/j.molcel.2007.05.018
Article
CAS
Google Scholar
Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, Reimers MA, Scherf U, Kahn A, Dolginow D, et al., et al.: Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 2007,6(3):820-832. 10.1158/1535-7163.MCT-06-0650
Article
CAS
Google Scholar
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, et al., et al.: Combinatorial microRNA target predictions. Nat Genet 2005,37(5):495-500. 10.1038/ng1536
Article
CAS
Google Scholar
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoSBiol 2004,2(11):e363.
Article
Google Scholar
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res 2004,14(10a):1902-1910. 10.1101/gr.2722704
Article
CAS
Google Scholar
Wei JS, Johansson P, Chen Q-R, Song YK, Durinck S, Wen X, Cheuk ATC, Smith MA, Houghton P, Morton C, et al., et al.: microRNA profiling identifies cancer-specific and prognostic signatures in pediatric malignancies. Clinical Cancer Res 2009,15(17):5560-5568. 10.1158/1078-0432.CCR-08-3287
Article
CAS
Google Scholar
Isik M, Korswagen HC, Berezikov E: Expression patterns of intronic microRNAs in Caenorhabditiselegans. Silence 2010,1(1):5. 10.1186/1758-907X-1-5
Article
Google Scholar
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W: Identification of mammalian microRNA host genes. CurrBiol 2002, 12: 735-739.
Article
CAS
Google Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010,466(7308):835-840. 10.1038/nature09267
Article
CAS
Google Scholar
Brandes U: A faster algorithm for betweenness centrality. J Math Sociol 2001,25(2):163-177. 10.1080/0022250X.2001.9990249
Article
Google Scholar
Lotterman CD, Kent OA, Mendell JT: Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle 2008,7(16):2493-2499. 10.4161/cc.7.16.6452
Article
CAS
Google Scholar
Medina PP, Slack FJ: microRNAs and cancer: an overview. Cell Cycle 2008,7(16):2485-2492. 10.4161/cc.7.16.6453
Article
CAS
Google Scholar
Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL, Shahab A, Yong HC, et al., et al.: Global mapping of c-Myc binding sites and target gene networks in human B cells. ProcNatlAcadSci U S A 2006,103(47):17834-17839. 10.1073/pnas.0604129103
Article
CAS
Google Scholar
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005,435(7043):839-843. 10.1038/nature03677
Article
Google Scholar
Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008,40(1):43-50. 10.1038/ng.2007.30
Article
CAS
Google Scholar
Pan S, Yu F, Song E: Tumor Invasion and Metastasis Initiated by mir-106b in Breast Cancer by Targeting BRMS1 and RB. Cancer Res 2009,69(24 Suppl):3.
Google Scholar
Petrocca F, Vecchione A, Croce CM: Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 2008,68(20):8191-8194. 10.1158/0008-5472.CAN-08-1768
Article
CAS
Google Scholar
Shah YM, Morimura K, Yang Q, Tanabe T, Takagi M, Gonzalez FJ: Peroxisome proliferator-activated receptor alpha regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 2007,27(12):4238-4247. 10.1128/MCB.00317-07
Article
CAS
Google Scholar
Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-Stamm L, Roth FP, Ambros VR, Walhout AJ, AC : elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 2008,22(18):2535-2549. 10.1101/gad.1678608
Article
CAS
Google Scholar
Vermeirssen V, Barrasa MI, Hidalgo CA, Babon JA, Sequerra R, Doucette-Stamm L, Barabasi AL, Walhout AJ: Transcription factor modularity in a gene-centered C. elegans core neuronal protein-DNA interaction network. Genome Res 2007,17(7):1061-1071. 10.1101/gr.6148107
Article
CAS
Google Scholar
Krackhardt D: Graph Theoretical Dimensions of Informal Organizations. In Computational Organization Theory. Edited by: Carley KM, Prietula MJ. Hillsdale, NJ: Lawrence Erlbaum Associates Inc; 1994:89-111.
Google Scholar
Ravasz E, Somera AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297: 1551-1556. 10.1126/science.1073374
Article
CAS
Google Scholar
Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, et al., et al.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004,430(6995):88-93. 10.1038/nature02555
Article
CAS
Google Scholar
Bertin N, Simonis N, Dupuy D, Cusick ME, Han JD, Fraser HB, Roth FP, Vidal M: Confirmation of organized modularity in the yeast interactome. PLoSBiol 2007,5(6):e153.
Article
Google Scholar
Chang X, Liu S, Yu YT, Li YX, Li YY: Identifying modules of coexpressed transcript units and their organization of Saccharopolysporaerythraea from time series gene expression profiles. PLoS One 2010,5(8):e12126. 10.1371/journal.pone.0012126
Article
Google Scholar
Shalgi R, Brosh R, Oren M, Pilpel Y, Rotter V: Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging (Albany NY) 2009,1(9):762-770.
CAS
Google Scholar
Herranz H, Cohen SM: MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 2010,24(13):1339-1344. 10.1101/gad.1937010
Article
CAS
Google Scholar
Baroudi ME, Cora D, Bosia C, Osella M, Caselle M: A curated database of miRNA mediated feed-forward loops involving MYC as master regulator. PLoS One 2011,6(3):e14742. 10.1371/journal.pone.0014742
Article
Google Scholar
Pace NL: Independent predictors from stepwise logistic regression may be nothing more than publishable P values. AnesthAnalg 2008, 107: 1775-1778.
Google Scholar
Tibshirani R: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B (Methodological) 1996,58(1):267-288.
Google Scholar
Adl F: From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases. Trends Genet 2010,26(7):326-333. 10.1016/j.tig.2010.05.001
Article
Google Scholar