Spallanzani L: Opuscoli di Fisica Animale e Vegetabile. Modena: Società Tipografica 1776, 203-285.
Google Scholar
Baumann H: Die Anabiose der Tardigraden. Zool Jahrb 1922, 45: 501-556.
Google Scholar
Rahm P: Effect of very low temperatures on the fauna of moss. Proc K Ned AkadWet Ser C Biol Med Sci 1921, 23: 235-248.
Google Scholar
Schill R: Anhydrobiotic Abilities of Tardigrades. In Dormancy and Resistance in Harsh Environments, Volume 21 of Topics in Current Genetics. Edited by: Lubzens E, Cerda J, Clark M. Heidelberg: Springer Berlin; 2010:133-146. [http://dx.doi.org/10.1007/978-3-642-12422-8∖_8]
Chapter
Google Scholar
Clegg JS: Cryptobiosis–a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 2001,128(4):613-624. 10.1016/S1096-4959(01)00300-1
Article
CAS
Google Scholar
Crowe JH: The physiology of cryptobiosis in tardigrades. Memorie dell’Istituto Italiano di Idrobiologica 1975,32(Suppl):37-59.
Google Scholar
Hengherr S, Heyer AG, Köhler HR, Schill RO: Trehalose and anhydrobiosis in tardigrades - evidence for divergence in responses to dehydration. FEBS J 2008, 275: 281-288. 10.1111/j.1742-4658.2007.06198.x
Article
CAS
Google Scholar
Westh P, Ramløv H: Cryptobiosis in Arctic tardigrades with special attention to the appearance of trehalose. In Greenland Excursion,. Institute of polar Ecology. Kiel University; 1988.
Google Scholar
Westh P, Ramløv H: Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 1991, 258: 303-311. 10.1002/jez.1402580305
Article
CAS
Google Scholar
Jönsson KI, Persson O: Trehalose in three species of desiccation tolerant tardigrades. Open Zool J 2010, 3: 1-5. 10.2174/1874336601003010001
Article
Google Scholar
Jönsson KI, Schill RO: Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. Comp Biochem Physiol B Biochem Mol Biol 2007,146(4):456-460. [http://dx.doi.org/10.1016/j.cbpb.2006.10.111] 10.1016/j.cbpb.2006.10.111
Article
Google Scholar
McGee B, Schill RO, Tunnacliffe A: Hydrophilic proteins in invertebrate anhydrobiosis. Integr Comp Biol 2004, 44: 679-679.
Google Scholar
Ramløv H, Westh P: Cryptobiosis in the Eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols temperature and de novo protein synthesis. Zoologischer Anzeiger 2001, 240: 517-523. 10.1078/0044-5231-00062
Article
Google Scholar
Reuner A, Hengherr S, Mali B, Förster F, Arndt D, Reinhardt R, Dandekar T, Frohme M, Brümmer F, Schill RO: Stress response in tardigrades: differential gene expression of molecular chaperones. Cell Stress Chaperones 2010,15(4):423-430. [http://dx.doi.org/10.1007/s12192-009-0158-1] 10.1007/s12192-009-0158-1
Article
CAS
Google Scholar
Schill RO, Steinbrück GHB, Köhler HR: Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 2004,207(Pt 10):1607-1613.
Article
CAS
Google Scholar
Schokraie E, Hotz-Wagenblatt A, Warnken U, Frohme M, Dandekar T, Schill RO, Schnölzer M: Investigating heat shock proteins of tardigrades in active versus anhydrobiotic state using shotgun proteomics. Journal of Zoological Systematics and Evolutionary Research 2011, 49: 111-119. [http://dx.doi.org/10.1111/j.1439-0469.2010.00608.x]
Article
Google Scholar
Altiero T, Guidetti R, Boschini D, Rebecchi L: Heat shock proteins in encysted and anhydrobiotic eutardigrades. J LImnol 2012,71(1):211-215.
Google Scholar
Mali B, Grohme MA, Förster F, Dandekar T, Schnölzer M, Reuter D, Wełnicz W, Schill RO, Frohme M: Transcriptome survey of the anhydrobiotic tardigrade Milnesium tardigradum in comparison with Hypsibius dujardini and Richtersius coronifer. BMC Genomics 2010, 11: 168. [http://dx.doi.org/10.1186/1471-2164-11-168] 10.1186/1471-2164-11-168
Article
Google Scholar
Förster F, Beisser D, Frohme M, Schill RO, Dandekar T: Bioinformatics identifies tardigrade molecular adaptations including the DNA-j family and first steps towards dynamical modelling. J Zoological Syst Evolutionary Res 2011, 49: 120-126. [http://dx.doi.org/10.1111/j.1439-0469.2010.00609.x]
Article
Google Scholar
Scott J, Ideker T, Karp RM, Sharan R: Efficient algorithms for detecting signaling pathways in protein interaction networks. J Comput Biol 2006,13(2):133-144. [http://dx.doi.org/10.1089/cmb.2006.13.133] 10.1089/cmb.2006.13.133
Article
CAS
Google Scholar
Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 2008,24(13):i223-i231. [http://dx.doi.org/10.1093/bioinformatics/btn161] 10.1093/bioinformatics/btn161
Article
CAS
Google Scholar
Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002,18(Suppl 1):S233-S240. 10.1093/bioinformatics/18.suppl_1.S233
Article
Google Scholar
Ulitsky I, Shamir R: Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 2007, 1: 8. [http://dx.doi.org/10.1186/1752-0509-1-8] 10.1186/1752-0509-1-8
Article
Google Scholar
Beisser D, Brunkhorst S, Dandekar T, Klau GW, Dittrich MT, Müller T: Robustness and accuracy of functional modules in integrated network analysis. Bioinformatics 2012, in press.. [http://dx.doi.org/10.1093/bioinformatics/bts265]
Google Scholar
Pop A, Huttenhower C, Iyer-Pascuzzi A, Benfey PN, Troyanskaya OG: Integrated functional networks of process, tissue, and developmental stage specific interactions in Arabidopsis thaliana. BMC Syst Biol 2010, 4: 180. [http://dx.doi.org/10.1186/1752-0509-4-180] 10.1186/1752-0509-4-180
Article
Google Scholar
Cecil A, Rikanović C, Ohlsen K, Liang C, Bernhardt J, Oelschlaeger TA, Gulder T, Bringmann G, Holzgrabe U, Unger M, Dandekar T: Modeling antibiotic and cytotoxic effects of the dimeric isoquinoline IQ-143 on metabolism and its regulation in Staphylococcus aureus, Staphylococcus epidermidis and human cells. Genome Biol 2011,12(3):R24. [http://dx.doi.org/10.1186/gb-2011-12-3-r24] 10.1186/gb-2011-12-3-r24
Article
CAS
Google Scholar
Deo RC, Hunter L, Lewis GD, Pare G, Vasan RS, Chasman D, Wang TJ, Gerszten RE, Roth FP: Interpreting metabolomic profiles using unbiased pathway models. PLoS Comput Biol 2010,6(2):e1000692. [http://dx.doi.org/10.1371/journal.pcbi.1000692] 10.1371/journal.pcbi.1000692
Article
Google Scholar
Oberhardt MA, Palsson B, Papin JA: Applications of genome-scale metabolic reconstructions. Mol Syst Biol 2009, 5: 320. [http://dx.doi.org/10.1038/msb.2009.77]
Article
Google Scholar
Kümmel A, Panke S, Heinemann M: Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2006, 2: 2006.0034. [http://dx.doi.org/10.1038/msb4100074]
Article
Google Scholar
Shlomi T, Cabili MN, Herrgård MJ, Palsson B, Ruppin E: Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008,26(9):1003-1010. [http://dx.doi.org/10.1038/nbt.1487] 10.1038/nbt.1487
Article
CAS
Google Scholar
Usaite R, Patil KR, Grotkjaer T, Nielsen J, Regenberg B: Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation. Appl Environ Microbiol 2006,72(9):6194-6203. [http://dx.doi.org/10.1128/AEM.00548-06] 10.1128/AEM.00548-06
Article
CAS
Google Scholar
Bradley PH, Brauer MJ, Rabinowitz JD, Troyanskaya OG: Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. PLoS Comput Biol 2009, 5: e1000270. [http://dx.doi.org/10.1371/journal.pcbi.1000270] 10.1371/journal.pcbi.1000270
Article
Google Scholar
Patil KR, Nielsen J: Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 2005,102(8):2685-2689. [http://dx.doi.org/10.1073/pnas.0406811102] 10.1073/pnas.0406811102
Article
CAS
Google Scholar
Cakir T, Patil KR, iIsen Onsan Z, Ulgen KO, Kirdar B, Nielsen J: Integration of metabolome data with metabolic networks reveals reporter reactions. Mol Syst Biol 2006, 2: 50. [http://dx.doi.org/10.1038/msb4100085]
Article
Google Scholar
Beisser D, Klau GW, Dandekar T, Mueller T, Dittrich M: BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics 2010, 26: 1129-1130. [http://dx.doi.org/10.1093/bioinformatics/btq089] 10.1093/bioinformatics/btq089
Article
CAS
Google Scholar
Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28: 27-30. 10.1093/nar/28.1.27
Article
CAS
Google Scholar
Fellenberg K, Hauser NC, Brors B, Neutzner A, Hoheisel JD, Vingron M: Correspondence analysis applied to microarray data. Proc Natl Acad Sci U S A 2001,98(19):10781-10786. [http://dx.doi.org/10.1073/pnas.181597298] 10.1073/pnas.181597298
Article
CAS
Google Scholar
Jonckheere AR: A distribution-free K-sample test against ordered alternatives. Biometrika 1954, 41: 133-145.
Article
Google Scholar
Terpstra TJ: The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking. Proc Kon Ned Akad v Wetensch 1952, 55: 327-333.
Article
Google Scholar
Mack H, Wolfe D: K-sample rank tests for umbrella alternatives. J Am Stat Ass 1981, 76: 175-181.
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007,35(Web Server issue):W182-W185. [http://dx.doi.org/10.1093/nar/gkm321]
Article
Google Scholar
Michal G: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. Wiley-Spektrum; 1998. [http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20path=ASIN/0471331309]
Google Scholar
Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L: Metabolite profiling for plant functional genomics. Nat Biotechnol 2000,18(11):1157-1161. [http://dx.doi.org/10.1038/81137] 10.1038/81137
Article
CAS
Google Scholar
Erban A, Schauer N, Fernie AR, Kopka J: Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography-mass spectrometry metabolite profiles. Methods Mol Biol 2007, 358: 19-38. 10.1007/978-1-59745-244-1_2
Article
CAS
Google Scholar
Luedemann A, Strassburg K, Erban A, Kopka J: TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 2008,24(5):732-737. [http://dx.doi.org/10.1093/bioinformatics/btn023] 10.1093/bioinformatics/btn023
Article
CAS
Google Scholar
Hummel J, Strehmel N, Selbig J, Walther D, Kopka J: Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics 2010,6(2):322-333. [http://dx.doi.org/10.1007/s11306-010-0198-7] 10.1007/s11306-010-0198-7
Article
CAS
Google Scholar
Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J: Retention index thresholds for compound matching in GC-MS metabolite profiling. J Chromatogr B Analyt Technol Biomed Life Sci 2008,871(2):182-190. [http://dx.doi.org/10.1016/j.jchromb.2008.04.042] 10.1016/j.jchromb.2008.04.042
Article
CAS
Google Scholar
Förster F, Liang C, Shkumatov A, Beisser D, Engelmann JC, Schnölzer M, Frohme M, Müller T, Schill RO, Dandekar T: Tardigrade workbench: comparing stress-related proteins, sequence-similar and functional protein clusters as well as RNA elements in tardigrades. BMC Genomics 2009, 10: 469. [http://dx.doi.org/10.1186/1471-2164-10-469] 10.1186/1471-2164-10-469
Article
Google Scholar
Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998,8(3):175-185.
Article
CAS
Google Scholar
Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998,8(3):186-194.
Article
CAS
Google Scholar
Green P: cross_match. [http://www.phrap.org]
Dlugosch KM: SnoWhite: A cleaning pipeline for Roche 454 cDNA sequences. [http://www.kdlugosch.net/software]
Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006,22(13):1658-1659. [http://dx.doi.org/10.1093/bioinformatics/btl158] 10.1093/bioinformatics/btl158
Article
CAS
Google Scholar
Broberg P: SAGx: Statistical Analysis of the GeneChip. 1.22.0. 2010. [http://home.swipnet.se/pibroberg/expression_hemsida1.html[Rpackageversion1.22.0] 1.22.0. 2010.
Zhang JD, Wiemann S: KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 2009,25(11):1470-1471. [http://dx.doi.org/10.1093/bioinformatics/btp167] 10.1093/bioinformatics/btp167
Article
CAS
Google Scholar
Csardi G, Nepusz T: The igraph software package for complex network research. InterJournal 2006, Complex Systems: 1695. [http://igraph.sf.net
Google Scholar
Förster J, Famili I, Fu P, Palsson B, Nielsen J: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 2003,13(2):244-253. [http://dx.doi.org/10.1101/gr.234503] 10.1101/gr.234503
Article
Google Scholar
Pounds S, Morris SW: Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 2003,19(10):1236-1242. 10.1093/bioinformatics/btg148
Article
CAS
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004,5(10):R80. [http://dx.doi.org/10.1186/gb-2004-5-10-r80] 10.1186/gb-2004-5-10-r80
Article
Google Scholar
Benzécri JP: L’Analyse des Données. L’Analyse des Correspondences., Volume II. Paris, France: Dunod; 1973.
Google Scholar
Dixon P, Palmer MW: VEGAN, a package of R functions for community ecology. J Vegetation Sci 2003,14(6):927-930. [http://dx.doi.org/10.1658/1100-9233(2003)014[0927:VAPORF]2.0.CO;2] 10.1111/j.1654-1103.2003.tb02228.x
Article
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25: 25-29. [http://dx.doi.org/10.1038/75556] 10.1038/75556
Article
CAS
Google Scholar
Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007,23(2):257-258. 10.1093/bioinformatics/btl567
Article
CAS
Google Scholar