Müller M: Ueber den Einfluss von Fieber temperaturen auf die Wachstumsgeschwindigkeit und die Virulenz des Typhus Bacillus. Z Hyg Infektionskr. 1895, 20: 245-

Google Scholar

Penfold WJ: On the nature of bacterial lag. J Hyg (Lond). 1914, 14: 215-241.

CAS
Google Scholar

Monod J: The growth of bacterial cultures. Annu Rev Microbiol. 1949, 3: 371-394. 10.1146/annurev.mi.03.100149.002103.

Article
CAS
Google Scholar

Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH, Van Impe JF: Predictive modelling of the microbial lag phase: a review. Int J Food Microbiol. 2004, 94: 137-159. 10.1016/j.ijfoodmicro.2004.01.006.

Article
PubMed
CAS
Google Scholar

Koyuncu S, Andersson MG, Häggblom P: Accuracy and sensitivity of commercial PCR-based methods for detection of salmonella enterica in feed. Appl Environ Microbiol. 2010, 76: 2815-2822. 10.1128/AEM.02714-09.

Article
PubMed
CAS
PubMed Central
Google Scholar

Van Impe J, McMeekin T, Olley J, Ratkowsky D: 3rd international conference on predictive modeling in foods. Int J Food Microbiol. 2002, 73: 107-454. 10.1016/S0168-1605(01)00642-0.

Article
Google Scholar

Bättig P, Hathaway LJ, Hofer S, Mühlemann K: Serotype-specific invasiveness and colonization prevalence in Streptococcus pneumoniae correlate with the lag phase during in vitro growth. Microbes Infect. 2006, 8: 2612-2617. 10.1016/j.micinf.2006.07.013.

Article
PubMed
Google Scholar

Hathaway LJ, Brugger SD, Morand B, Bangert M, Rotzetter JU, Hauser C, Graber WA, Gore S, Kadioglu A, Mühlemann K: Capsule type of Streptococcus pneumoniae determines growth phenotype. PLoS Pathog. 2012, 8: e1002574-10.1371/journal.ppat.1002574.

Article
PubMed
CAS
PubMed Central
Google Scholar

Frimodt-Møller N, Sebbesen O, Frølund Thomsen V: The pneumococcus and the mouse protection test: importance of the lag phase in vivo. Chemotherapy. 1983, 29: 128-134. 10.1159/000238186.

Article
PubMed
Google Scholar

Baranyi J, George SM, Kutalik Z: Parameter estimation for the distribution of single cell lag times. J Theor Biol. 2009, 259: 24-30. 10.1016/j.jtbi.2009.03.023.

Article
PubMed
CAS
Google Scholar

Buchanan RL, Cygnarowicz ML: A mathematical approach toward defining and calculating the duration of the lag phase. Food Microbiol. 1990, 7: 237-240. 10.1016/0740-0020(90)90029-H.

Article
Google Scholar

Buchanan RL, Solberg M: Interaction of sodium nitrate, oxygen and ph on growth of staphylococcus aureus. J Food Sci. 1972, 37: 81-85. 10.1111/j.1365-2621.1972.tb03391.x.

Article
CAS
Google Scholar

McKellar RC, Knight K: A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int J Food Microbiol. 2000, 54: 171-180. 10.1016/S0168-1605(99)00204-4.

Article
PubMed
CAS
Google Scholar

Pirt SJ: Principles of microbe and cell cultivation. 1975, New York: Wiley

Google Scholar

Zhou K, George SM, Métris A, Li PL, Baranyi J: Lag phase of salmonella enterica under osmotic stress conditions. Appl Environ Microbiol. 2011, 77: 1758-1762. 10.1128/AEM.02629-10.

Article
PubMed
CAS
PubMed Central
Google Scholar

Zwietering MH, Rombouts FM, van ’t Riet K: Comparison of definitions of the lag phase and the exponential phase in bacterial growth. J Appl Bacteriol. 1992, 72: 139-145. 10.1111/j.1365-2672.1992.tb01815.x.

Article
PubMed
CAS
Google Scholar

Baranyi J, Roberts TA, McClure P: A non-autonomous differential equation to modelbacterial growth. Food Microbiol. 1993, 10: 43-59. 10.1006/fmic.1993.1005.

Article
Google Scholar

Srivastava AK, Volesky B: Characterization of transient cultures of clostridium acetobutylicum. Biotechnol Prog. 1990, 6: 408-420. 10.1021/bp00006a002.

Article
CAS
Google Scholar

Baranyi J, Roberts TA: A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 1994, 23: 277-294. 10.1016/0168-1605(94)90157-0.

Article
PubMed
CAS
Google Scholar

Pin C, Baranyi J: Kinetics of single cells: observation and modeling of a stochastic process. Appl Environ Microbiol. 2006, 72: 2163-2169. 10.1128/AEM.72.3.2163-2169.2006.

Article
PubMed
CAS
PubMed Central
Google Scholar

Métris A, Le Marc Y, Elfwing A, Ballagi A, Baranyi J: Modelling the variability of lag times and the first generation times of single cells of E. coli. Int J Food Microbiol. 2005, 100: 13-19. 10.1016/j.ijfoodmicro.2004.10.004.

Article
PubMed
Google Scholar

Elowitz MB, Levine AJ, Siggia ED, Swain PS: Stochastic gene expression in a single cell. Science. 2002, 297: 1183-1186. 10.1126/science.1070919.

Article
PubMed
CAS
Google Scholar

Locke JCW, Young JW, Fontes M, Jiménez MJH, Elowitz MB: Stochastic pulse regulation in bacterial stress response. Science. 2011, 334: 366-369. 10.1126/science.1208144.

Article
PubMed
CAS
PubMed Central
Google Scholar

Kaern M, Elston TC, Blake WJ, Collins JJ: Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. 2005, 6: 451-464. 10.1038/nrg1615.

Article
PubMed
CAS
Google Scholar

Golding I, Paulsson J, Zawilski SM, Cox EC: Real-time kinetics of gene activity in individual bacteria. Cell. 2005, 123: 1025-1036. 10.1016/j.cell.2005.09.031.

Article
PubMed
CAS
Google Scholar

Elfwing A, LeMarc Y, Baranyi J, Ballagi A: Observing growth and division of large numbers of individual bacteria by image analysis. Appl Environ Microbiol. 2004, 70: 675-678. 10.1128/AEM.70.2.675-678.2004.

Article
PubMed
CAS
PubMed Central
Google Scholar

Larsen N, Boye M, Siegumfeldt H, Jakobsen M: Differential expression of proteins and genes in the Lag phase of lactococcus lactis subsp. Lactis grown in synthetic medium and reconstituted skim milk. Appl Environ Microbiol. 2006, 72: 1173-1179. 10.1128/AEM.72.2.1173-1179.2006.

Article
PubMed
CAS
PubMed Central
Google Scholar

Cuny C, Lesbats M, Dukan S: Induction of a global stress response during the first step of Escherichia coli plate growth. Appl Environ Microbiol. 2007, 73: 885-889. 10.1128/AEM.01874-06.

Article
PubMed
CAS
PubMed Central
Google Scholar

Novotna J, Vohradsky J, Berndt P, Gramajo H, Langen H, Li X-M, Minas W, Orsaria L, Roeder D, Thompson CJ: Proteomic studies of diauxic lag in the differentiating prokaryote Streptomyces coelicolor reveal a regulatory network of stress-induced proteins and central metabolic enzymes. Mol Microbiol. 2003, 48: 1289-1303. 10.1046/j.1365-2958.2003.03529.x.

Article
PubMed
CAS
Google Scholar

Osuna R, Lienau D, Hughes KT, Johnson RC: Sequence, regulation, and functions of fis in salmonella typhimurium. J Bacteriol. 1995, 177: 2021-2032.

PubMed
CAS
PubMed Central
Google Scholar

McKellar RC: Correlation between the change in the kinetics of the ribosomal RNA rrnB P2 promoter and the transition from lag to exponential phase with pseudomonas fluorescens. Int J Food Microbiol. 2008, 121: 11-17. 10.1016/j.ijfoodmicro.2007.10.003.

Article
PubMed
CAS
Google Scholar

McKellar RC: Effect of starvation on expression of the ribosomal RNA rrnB P2 promoter during the lag phase of pseudomonas fluorescens. Int J Food Microbiol. 2007, 114: 307-315. 10.1016/j.ijfoodmicro.2006.09.022.

Article
PubMed
CAS
Google Scholar

McKellar RC: Effect of sub-lethal heating and growth temperature on expression of the ribosomal RNA rrnB P2 promoter during the lag phase of pseudomonas fluorescens. Int J Food Microbiol. 2007, 116: 248-259. 10.1016/j.ijfoodmicro.2007.01.009.

Article
PubMed
CAS
Google Scholar

Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD: Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol. 2012, 194: 686-701. 10.1128/JB.06112-11.

Article
PubMed
CAS
PubMed Central
Google Scholar

Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U: A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods. 2006, 3: 623-628. 10.1038/nmeth895.

Article
PubMed
CAS
Google Scholar

Kaplan S, Bren A, Zaslaver A, Dekel E, Alon U: Diverse two-dimensional input functions control bacterial sugar genes. Mol Cell. 2008, 29: 786-792. 10.1016/j.molcel.2008.01.021.

Article
PubMed
CAS
PubMed Central
Google Scholar

Madar D, Dekel E, Bren A, Alon U: Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli. BMC Syst Biol. 2011, 5: 111-10.1186/1752-0509-5-111.

Article
PubMed
PubMed Central
Google Scholar

Hudson JA, Mott SJ: Comparison of lag times obtained from optical density and viable count data for a strain of pseudomonas fragi. J Food Saf. 1994, 14: 329-339. 10.1111/j.1745-4565.1994.tb00604.x.

Article
Google Scholar

Robinson TP, Ocio MJ, Kaloti A, Mackey BM: The effect of the growth environment on the lag phase of Listeria monocytogenes. Int J Food Microbiol. 1998, 44: 83-92. 10.1016/S0168-1605(98)00120-2.

Article
PubMed
CAS
Google Scholar

Kell DB, Young M: Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol. 2000, 3: 238-243. 10.1016/S1369-5274(00)00082-5.

Article
PubMed
CAS
Google Scholar

Weichart DH, Kell DB: Characterization of an autostimulatory substance produced by Escherichia coli. Microbiology. 2001, 147: 1875-1885.

Article
PubMed
CAS
Google Scholar

Mukamolova GV, Kaprelyants AS, Young DI, Young M, Kell DB: A bacterial cytokine. Proc Natl Acad Sci U S A. 1998, 95: 8916-8921. 10.1073/pnas.95.15.8916.

Article
PubMed
CAS
PubMed Central
Google Scholar

Kempner ES, Hanson FE: Aspects of light production by photobacterium fischeri. J Bacteriol. 1968, 95: 975-979.

PubMed
CAS
PubMed Central
Google Scholar

Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML: Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol. 2007, 62: 191-234.

Article
PubMed
CAS
PubMed Central
Google Scholar

Pontryàgin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF: The mathematical theory of optimal processes. 1962, New York: John Wiley

Google Scholar

Alexander RM: Optima for animals. 1996, Princeton: Princeton University Press

Google Scholar

Cai L, Friedman N, Xie XS: Stochastic protein expression in individual cells at the single molecule level. Nature. 2006, 440: 358-362. 10.1038/nature04599.

Article
PubMed
CAS
Google Scholar

Levin-Reisman I, Gefen O, Fridman O, Ronin I, Shwa D, Sheftel H, Balaban NQ: Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes. Nat Methods. 2010, 7: 737-739. 10.1038/nmeth.1485.

Article
PubMed
CAS
Google Scholar

Ishay J, Bytinski-Saltz H, Shulov A: Contributions to the bionomics of the oriental hornet Vespa orientalis. Isr J Entomol. 1967, 2: 45-106.

Google Scholar

Macevicz S, Oster G: Modeling social insect populations II: optimal reproductive strategies in annual eusocial insect colonies. Behav Ecol Sociobiol. 1976, 1: 265-282. 10.1007/BF00300068.

Article
Google Scholar

Oster GF, Wilson EO: Caste and ecology in the social insects. (Mpb-12). 1979, Princeton: Princeton University Press

Google Scholar

Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Alon U: Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science. 2012, 336: 1157-1160. 10.1126/science.1217405.

Article
PubMed
CAS
Google Scholar

Cashel M, Kalbacher B: The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem. 1970, 245: 2309-2318.

PubMed
CAS
Google Scholar

Cashel M, Gentry DR, Hernandez VH, Vinella D: The stringent response. Escherichia coli & salmonella typhimurium: cellular & molecular biology. Volume 1. Edited by: Ingraham JL, Neidhardt FC, Ingraham JL, Neidhardt FC. 1996, Washington DC: ASM Press, 1458-1496. 2

Google Scholar

Schneider DA, Ross W, Gourse RL: Control of rRNA expression in Escherichia coli. Curr Opin Microbiol. 2003, 6: 151-156. 10.1016/S1369-5274(03)00038-9.

Article
PubMed
CAS
Google Scholar

Bouveret E, Battesti A: The stringent response. In Bacterial stress response. 2nd Edition. Edited by Storz G, Hengge R. 2011, Washington, DC: ASM Press

Google Scholar

Yamamotoya T, Dose H, Tian Z, Fauré A, Toya Y, Honma M, Igarashi K, Nakahigashi K, Soga T, Mori H, Matsuno H: Glycogen is the primary source of glucose during the lag phase of E. coli proliferation. Biochim Biophys Acta. 1824, 2012: 1442-1448.

Google Scholar

Zhou K, George SM, Li PL, Baranyi J: Effect of periodic fluctuation in the osmotic environment on the adaptation of Salmonella. Food Microbiol. 2012, 30: 298-302. 10.1016/j.fm.2011.09.016.

Article
PubMed
CAS
Google Scholar

Itzkovitz S, Blat IC, Jacks T, Clevers H, van Oudenaarden A: Optimality in the development of intestinal crypts. Cell. 2012, 148: 608-619. 10.1016/j.cell.2011.12.025.

Article
PubMed
CAS
PubMed Central
Google Scholar

Oxman E, Alon U, Dekel E: Defined order of evolutionary adaptations: experimental evidence. Evolution. 2008, 62: 1547-1554. 10.1111/j.1558-5646.2008.00397.x.

Article
PubMed
Google Scholar

Cormack BP, Valdivia RH, Falkow S: FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996, 173 (1 Spec No): 33-38.

Article
PubMed
CAS
Google Scholar

Hart Y, Madar D, Yuan J, Bren A, Mayo AE, Rabinowitz JD, Alon U: Robust control of nitrogen assimilation by a bifunctional enzyme in E. Coli. Mol Cell. 2011, 41: 117-127. 10.1016/j.molcel.2010.12.023.

Article
PubMed
CAS
Google Scholar

Hershey AD: Factors limiting bacterial growth. J Bacteriol. 1939, 37: 285-299.

PubMed
CAS
PubMed Central
Google Scholar

Pin C, Baranyi J: Single-cell and population lag times as a function of cell age. Appl Environ Microbiol. 2008, 74: 2534-2536. 10.1128/AEM.02402-07.

Article
PubMed
CAS
PubMed Central
Google Scholar

D’Arrigo M, de Fernando GDG, Velasco de Diego R, Ordóñez JA, George SM, Pin C: Indirect measurement of the lag time distribution of single cells of listeria innocua in food. Appl Environ Microbiol. 2006, 72: 2533-2538. 10.1128/AEM.72.4.2533-2538.2006.

Article
PubMed
PubMed Central
Google Scholar

Biesta-Peters EG, Mols M, Reij MW, Abee T: Physiological parameters of Bacillus cereus marking the end of acid-induced lag phases. Int J Food Microbiol. 2011, 148: 42-47. 10.1016/j.ijfoodmicro.2011.04.024.

Article
PubMed
CAS
Google Scholar

Gennis RB, Stewart V: Respiration. Escherichia Coli & Salmonella Typhimurium: Cellular & Molecular Biology. Volume 1. Edited by: Ingraham JL, Neidhardt FC. Washington, DC: ASM Press, 217-261. 2

Guillier L, Pardon P, Augustin J-C: Influence of stress on individual lag time distributions of listeria monocytogenes. Appl Environ Microbiol. 2005, 71: 2940-2948. 10.1128/AEM.71.6.2940-2948.2005.

Article
PubMed
CAS
PubMed Central
Google Scholar

Marie D, Vaulot D, Partensky F: Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl Environ Microbiol. 1996, 62: 1649-1655.

PubMed
CAS
PubMed Central
Google Scholar

Gasol JM, del Giorgio PA: Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar. 2000, 64: 197-224.

Article
Google Scholar

Kamiya E, Izumiyama S, Nishimura M, Mitchell JG, Kogure K: Effects of fixation and storage on flow cytometric analysis of marine bacteria. J Oceanogr. 2007, 63: 101-112. 10.1007/s10872-007-0008-7.

Article
Google Scholar

Günther S, Hübschmann T, Rudolf M, Eschenhagen M, Röske I, Harms H, Müller S: Fixation procedures for flow cytometric analysis of environmental bacteria. J Microbiol Methods. 2008, 75: 127-134. 10.1016/j.mimet.2008.05.017.

Article
PubMed
Google Scholar

Monfort P, Baleux B: Comparison of flow cytometry and epifluorescence microscopy for counting bacteria in aquatic ecosystems. Cytometry. 1992, 13: 188-192. 10.1002/cyto.990130213.

Article
PubMed
CAS
Google Scholar

George TC, Fanning SL, Fitzgerald-Bocarsly P, Fitzgeral-Bocarsly P, Medeiros RB, Highfill S, Shimizu Y, Hall BE, Frost K, Basiji D, Ortyn WE, Morrissey PJ, Lynch DH: Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods. 2006, 311: 117-129. 10.1016/j.jim.2006.01.018.

Article
PubMed
CAS
Google Scholar

Rajwa B, Venkatapathi M, Ragheb K, Banada PP, Hirleman ED, Lary T, Robinson JP: Automated classification of bacterial particles in flow by multiangle scatter measurement and support vector machine classifier. Cytometry Part A. 2008, 73A: 369-379. 10.1002/cyto.a.20515.

Article
Google Scholar

Yamaguchi N, Torii M, Uebayashi Y, Nasu M: Rapid, Semiautomated Quantification of Bacterial Cells in Freshwater by Using a Microfluidic Device for On-Chip Staining and Counting. Appl Environ Microbiol. 2011, 77: 1536-1539. 10.1128/AEM.01765-10.

Article
PubMed
CAS
PubMed Central
Google Scholar