Chong CR, Sullivan DJ Jr: New uses for old drugs. Nature. 2007, 448 (7154): 645-646. 10.1038/448645a.
Article
CAS
PubMed
Google Scholar
Phatak SS, Zhang S: A novel multi-modal drug repurposing approach for identification of potent ack1 inhibitors. Pacific Symposium on Biocomputing. 2013, 29-40.
Google Scholar
Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, et al: Discovery of drug mode of action and drug repositioning from transcriptional responses. Proceedings of the National Academy of Sciences. 2010, 107 (33): 14621-14626. 10.1073/pnas.1000138107.
Article
CAS
Google Scholar
Lamb J: The connectivity map: a new tool for biomedical research. Nature Reviews Cancer. 2007, 7 (1): 54-60. 10.1038/nrc2044.
Article
CAS
PubMed
Google Scholar
Cokol M, Iossifov I, Weinreb C, Rzhetsky A: Emergent behavior of growing knowledge about molecular interactions. Nature biotechnology. 2005, 23 (10): 1243-1248. 10.1038/nbt1005-1243.
Article
CAS
PubMed
Google Scholar
Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M: Drug-target network. Nature Biotechnology. 2007, 25 (10): 1119-1126. 10.1038/nbt1338.
Article
CAS
PubMed
Google Scholar
Iyer P, Hu Y, Bajorath J: SAR monitoring of evolving compound data sets using activity landscapes. J Chem Inf Model. 2011, 51 (3): 532-540. 10.1021/ci100505m.
Article
CAS
PubMed
Google Scholar
Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R: Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol Ther. 2013, 138 (3): 333-408. 10.1016/j.pharmthera.2013.01.016.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hopkins AL: Network pharmacology: the next paradigm in drug discovery. Nature Chem Biol. 2008, 4 (11): 682-690. 10.1038/nchembio.118.
Article
CAS
Google Scholar
Ashburn TT, Thor KB: Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004, 3 (8): 673-683. 10.1038/nrd1468.
Article
CAS
PubMed
Google Scholar
Boguski MS, Mandl KD, Sukhatme VP: Drug discovery. Repurposing with a difference. Science. 2009, 324 (5933): 1394-1395. 10.1126/science.1169920.
Article
CAS
PubMed
Google Scholar
Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008, 24 (13): i232-i240. 10.1093/bioinformatics/btn162.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, et al: Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med. 2011, 3 (96): 96ra76-
Article
PubMed Central
CAS
PubMed
Google Scholar
Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, et al: Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med. 2011, 3 (96): 96ra77-
Article
PubMed Central
CAS
PubMed
Google Scholar
van Laarhoven T, Nabuurs SB, Marchiori E: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics. 2011, 27 (21): 3036-3043. 10.1093/bioinformatics/btr500.
Article
CAS
PubMed
Google Scholar
Mei JP, Kwoh CK, Yang P, Li XL, Zheng J: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics. 2013, 29 (2): 238-245. 10.1093/bioinformatics/bts670.
Article
CAS
PubMed
Google Scholar
Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, et al: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012, 8 (5): e1002503-10.1371/journal.pcbi.1002503.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou T, Ren J, Medo M, Zhang YC: Bipartite network projection and personal recommendation. Physical Review E. 2007, 76 (4): 046115-
Article
Google Scholar
Alaimo S, Pulvirenti A, Giugno R, Ferro A: Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics. 2013, 29 (16): 2004-2008. 10.1093/bioinformatics/btt307.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P: STITCH: interaction networks of chemicals and proteins. Nucleic Acids Research. 2008, 36 (Database issue): D684-D688.
PubMed Central
CAS
PubMed
Google Scholar
Kuhn M, Szklarczyk D, Franceschini A, Campillos M, von Mering C, Jensen LJ, et al: STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Research. 2010, 38 (Database issue): D552-D556.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P: STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Research. 2012, 40 (Datbase issue): D876-D880.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ, Bork P: STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Research. 2014, 42 (Database issue): D401-D407.
Article
PubMed Central
CAS
PubMed
Google Scholar
Micale G, Pulvirenti A, Giugno R, Ferro A: GASOLINE: a greedy and stochastic algorithm for optimal local multiple alignment of interaction networks. PLOS ONE. 9 (6): e98750-
Giugno R, Bonnici V, Bombieri N, Pulvirenti A, Ferro A, Shasha D: GRAPES: a software for parallel searching on biological graphs targeting multi-core architectures. PLOS ONE. 2013, 8 (10): e76911-10.1371/journal.pone.0076911.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bonnici V, Giugno R, Pulvirenti A, Shasha D, Ferro A: A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinformatics. 2013, 14 (Suppl 7): S13-10.1186/1471-2105-14-S7-S13.
Article
PubMed Central
PubMed
Google Scholar
Ferro A, Giugno R, Mongiovì M, Pulvirenti A, Skripin D, Shasha D: GraphFind: enhancing graph searching by low support data mining techniques. BMC Bioinformatics. 2008, 9 (Suppl 4): S10-10.1186/1471-2105-9-S4-S10.
Article
PubMed Central
PubMed
Google Scholar
Mongiovi M, Di Natale R, Giugno R, Pulvirenti A, Ferro A, Sharan R: A set-cover-based approach for inexact graph matching. Journal of Bioinformatics and Computational Biology. 2010, 8: 199-218. 10.1142/S021972001000477X.
Article
CAS
PubMed
Google Scholar
Di Natale R, Ferro A, Giugno R, Mongiovi M, Pulvirenti A, Shasha D: SING: Subgraph search in non-homogeneous graphs. BMC Bioinformatics. 2010, 11: 96-10.1186/1471-2105-11-96.
Article
PubMed Central
PubMed
Google Scholar
Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL, Kim D, Palsson BO: Network context and selection in the evolution to enzyme specificity. Science. 2012, 337 (6098): 1101-1104. 10.1126/science.1216861.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fan TW, Lorkiewicz PK, Sellers K, Moseley HN, Higashi RM, Lane AN: Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther. 2012, 133 (3): 366-391. 10.1016/j.pharmthera.2011.12.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shlomi T, Cabili MN, Ruppin E: Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol. 2009, 5: 263-
Article
PubMed Central
PubMed
Google Scholar
Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB: Computational analysis of plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 2004, 14 (5): 917-924. 10.1101/gr.2050304.
Article
PubMed Central
CAS
PubMed
Google Scholar
Singh S, Malik BK, Sharma DK: Choke point analysis of metabolic pathways in e. histolytica: a computational approach for drug target identification. Bioinformation. 2007, 2 (2): 68-72. 10.6026/97320630002068.
Article
PubMed Central
PubMed
Google Scholar
Li J, Lu Z: Pathway-based drug repositioning using causal inference. BMC Bioinformatics. 2013, 14 (Suppl 16): S3-10.1186/1471-2105-14-S16-S3.
Article
PubMed Central
PubMed
Google Scholar
Li J, Lu Z: A new method for computational drug repositioning using drug pairwise similarity. Bioinformatics and Biomedicine (BIBM), 2012 IEEE International Conference On. 2012, IEEE, 1-4.
Google Scholar
Li Y, Agarwal P: A pathway-based view of human diseases and disease relationships. PloS One. 2009, 4 (2): e4346-10.1371/journal.pone.0004346.
Article
PubMed Central
PubMed
Google Scholar
Kim HU, Kim TY, Lee SY: Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen acinetobacter baumannii aye. Molecular BioSystems. 2010, 6 (2): 339-348. 10.1039/B916446D.
Article
CAS
PubMed
Google Scholar
Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, et al: Integrative genome-scale metabolic analysis of vibrio vulnificus for drug targeting and discovery. Molecular Syst Biol. 2011, 7: 460-
Article
Google Scholar
Kim Y, Kim TK, Kim Y, Yoo J, You S, Lee I, et al: Principal network analysis: identification of subnetworks representing major dynamics using gene expression data. Bioinformatics. 2011, 27 (3): 391-398. 10.1093/bioinformatics/btq670.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma H, Goryanin I: Human metabolic network reconstruction and its impact on drug discovery and development. Drug Discovery Today. 2008, 13 (9-10): 402-408. 10.1016/j.drudis.2008.02.002.
Article
CAS
PubMed
Google Scholar
Ma J, Zhang X, Ung CY, Chen YZ, Li B: Metabolic network analysis revealed distinct routes of deletion effects between essential and non-essential genes. Molecular BioSystems. 2012, 8 (4): 1179-1186. 10.1039/c2mb05376d.
Article
CAS
PubMed
Google Scholar
Barve A, Rodrigues JFM, Wagner A: Superessential reactions in metabolic networks. Proceedings of the National Academy of Sciences. 2012, 109 (18): E1121-E1130. 10.1073/pnas.1113065109.
Article
CAS
Google Scholar
Fatumo S, Plaimas K, Mallm JP, Schramm G, Adebiyi E, Oswald M, Eils R, König R: Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infection, Genetics and Evolution. 2009, 9 (3): 351-358. 10.1016/j.meegid.2008.01.007.
Article
CAS
PubMed
Google Scholar
Perumal D, Lim CS, Sakharkar MK: A comparative study of metabolic network topology between a pathogenic and a non-pathogenic bacterium for potential drug target identification. Summit on Translat Bioinforma. 2009, 2009: 100-104.
PubMed Central
PubMed
Google Scholar
Zimmermann GR, Lehar J, Keith CT: Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today. 2007, 12 (1): 34-42.
Article
CAS
PubMed
Google Scholar
Pujol A, Mosca R, Farrés J, Aloy P: Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010, 31 (3): 115-123. 10.1016/j.tips.2009.11.006.
Article
CAS
PubMed
Google Scholar
Rosado JO, Henriques JP, Bonatto D: A systems pharmacology analysis of major chemotherapy combination regimens used in gastric cancer treatment: predicting potential new protein targets and drugs. Curr Cancer Drug Targets. 2011, 11 (7): 849-869. 10.2174/156800911796798977.
Article
CAS
PubMed
Google Scholar
Savino R, Paduano S, Preianò M, Terracciano R: The proteomics big challenge for biomarkers and new drug-targets discovery. Int J Mol Sci. 2012, 13 (11): 13926-13948.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, et al: Tackling antibiotic resistance. Nature Reviews Microbiology. 2011, 9 (12): 894-896. 10.1038/nrmicro2693.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kitano H: Biological robustness. Nature Reviews Genetics. 2004, 5 (11): 826-837. 10.1038/nrg1471.
Article
CAS
PubMed
Google Scholar
Logue JS, Morrison DK: Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 2012, 26 (7): 641-650. 10.1101/gad.186965.112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Adjei AA: Blocking oncogenic Ras signaling for cancer therapy. Journal of the National Cancer Institute. 2001, 93 (14): 1062-1074. 10.1093/jnci/93.14.1062.
Article
CAS
PubMed
Google Scholar
Nussinov R, Tsai CJ, Mattos C: 'Pathway drug cocktail': targeting Ras signaling based on structural pathways. Trends Mol Med. 2013, 19 (11): 695-704. 10.1016/j.molmed.2013.07.009.
Article
PubMed
Google Scholar
Holzapfel G, Buhrman G, Mattos C: Shift in the equilibrium between on and off states of the allosteric switch in Ras-GppNHp affected by small molecules and bulk solvent composition. Biochemistry. 2012, 51 (31): 6114-6126. 10.1021/bi300509j.
Article
CAS
PubMed
Google Scholar
Altieri DC: Survivin, cancer networks and pathway-directed drug discovery. Nature Reviews Cancer. 2008, 8 (1): 61-70. 10.1038/nrc2293.
Article
CAS
PubMed
Google Scholar
Sawyers C: Targeted cancer therapy. Nature. 2004, 432 (7015): 294-297. 10.1038/nature03095.
Article
CAS
PubMed
Google Scholar
van der Greef J, McBurney RN: Innnovation: Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nature Reviews Drug Discovery. 2005, 4 (12): 961-967. 10.1038/nrd1904.
Article
CAS
PubMed
Google Scholar
Dudley JT, Deshpande T, Butte AJ: Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform. 2011, 12 (4): 303-311. 10.1093/bib/bbr013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006, 313 (5795): 1929-1935. 10.1126/science.1132939.
Article
CAS
PubMed
Google Scholar
Jahchan NS, Dudley JT, Mazur PK, Flores N, Yang D, Palmerton A, et al: A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discovery. 2013, 3 (12): 1364-1377. 10.1158/2159-8290.CD-13-0183.
Article
CAS
PubMed
Google Scholar
Smith SB, Dampier W, Tozeren A, Brown JR, Magid-Slav M: Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis. PLoS One. 2012, 7 (3): e33174-10.1371/journal.pone.0033174.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pan Y, Cheng T, Wang Y, Bryant SH: Pathway analysis for drug repositioning based on public database mining. Journal of chemical information and modeling. 2014, 54 (2): 407-418. 10.1021/ci4005354.
Article
PubMed Central
CAS
PubMed
Google Scholar
DT-Hybrid. Web. http://alpha.dmi.unict.it/dtweb/
Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al: Drugbank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011, 39 (Database issue): D1035-D1041.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36 (Database issue): D901-D906.
PubMed Central
CAS
PubMed
Google Scholar
Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006, 34 (Database issue): D668-D672.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur Ö, Anwar N, et al: Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 2011, 39 (Database issue): D685-D690.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu Y, Hu B, Fu C, Chen X: DCDB: drug combination database. Bioinformatics. 2010, 26 (4): 587-588. 10.1093/bioinformatics/btp697.
Article
CAS
PubMed
Google Scholar
Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, et al: The reactome pathway knowledgebase. Nucleic Acids Res. 2014, 42 (Database issue): D472-D477.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH: PID: the pathway interaction database. Nucleic Acids Res. 2009, 37 (Database issue): D674-D679.
Article
PubMed Central
CAS
PubMed
Google Scholar
Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, et al: The BioPAX community standard for pathway data sharing. Nature Biotechnology. 2010, 28 (9): 935-942. 10.1038/nbt.1666.
Article
PubMed Central
CAS
PubMed
Google Scholar
cPath2. http://www.pathwaycommons.org/pc2/,
Chvatal V: A greedy heuristic for the set-covering problem. Mathematics of Operations Research. 1979, 4 (3): 233-235. 10.1287/moor.4.3.233.
Article
Google Scholar
Jin G, Wong STC: Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discovery Today. 2014, 19 (5): 637-644. 10.1016/j.drudis.2013.11.005.
Article
PubMed Central
PubMed
Google Scholar
Harris RS, Lazar O, Johansen JW, Sebel PS: Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology. 2006, 104 (6): 1170-1175. 10.1097/00000542-200606000-00011.
Article
CAS
PubMed
Google Scholar
Sigel E: Mapping of the benzodiazepine recognition site on GABA(A) receptors. Current topics in medicinal chemistry. 2002, 2 (8): 833-839. 10.2174/1568026023393444.
Article
CAS
PubMed
Google Scholar
Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ: Mechanisms of drug combinations: interaction and network perspectives. Nature Reviews Drug Discovery. 2009, 8 (2): 111-128. 10.1038/nrd2683.
Article
CAS
PubMed
Google Scholar